
HAL Id: hal-02270277
https://hal.science/hal-02270277v1

Submitted on 24 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Walk through EMS2010 Modular Software
Development
Jean-Marc Dressler

To cite this version:
Jean-Marc Dressler. A Walk through EMS2010 Modular Software Development. Embedded Real
Time Software and Systems (ERTS2008), Jan 2008, Toulouse, France. �hal-02270277�

https://hal.science/hal-02270277v1
https://hal.archives-ouvertes.fr

A Walk through EMS2010 Modular Software Development
Jean-Marc Dressler1

1: Renault, 1 rue du Golf, 78288 Guyancourt France

Abstract: The development of internal combustion
engines is driven by two forces: the need for
increased performances and most important of all
the regulation for emissions reduction. Thanks to
electronic control, in recent years engines have
known spectacular progression in those two areas,
but also a spectacular increase in complexity,
especially for software. With the current high level of
complexity rigorous processes are not enough to
guarantee the quality. This is why RENAULT has
launched the EMS 2010 (Engine Management
System) project to build the standardization of the
software structure with the support of its suppliers,
especially the support of SIEMENS VDO.
This article presents the main specificities of EMS
2010 software development through two parts. The
first part introduces the EMS 2010 software
architecture, its principles and main notions, and
ends with a comparison with AUTOSAR. The second
part goes through the technical particularities of the
different steps of EMS 2010 software development
from the specification of a module to its integration
into a complete software.

Keywords: Modular architecture, MBD, MIL, SIL

1. Architecture

1.1 An applicative architecture

Figure 1: EMS 2010 architecture

An embedded software architecture can roughly be
divided in two parts:
• The applicative software which contains the

control laws and strategies which support the
system functionality and performances.

• The basic software which main role is to manage
the hardware resources of the ECU and to
provide services (communication, memory
management, scheduling) to the applicative part.

For an engine manufacturer applicative software is
the strategic part to define and control, and this is
why EMS 2010 focuses on the applicative software.
As shown by figure 1, the EMS 2010 architecture
covers the applicative part (the darker boxes) and its
interfaces with the basic software (the three boxes
surrounding the applicative software). The basic
software itself remains specific to the supplier of the
ECU.

1.2 A modular architecture
The EMS 2010 architecture has three level of
composition: the higher level is the function (this is
the level visible on figure 1), functions are divided in
sub-functions which are themselves composed of
modules. The modules are the atomic elements of
the architecture and a complete software can contain
about 200 of them.
A module has a well defined functionality and
interface. Also the division into modules aims at
reducing dependencies. The benefits of such a
modular architecture are well known:

input

IN Power train
Coordination

PC

 Torque
Structure

TQ

 Vehicle
functions

PC

 Coolant &
Lubrification

CL

 After
 Treatment

AT

 Air
System

AS

 Engine Speed
Management

SM

 Combustion

CB

output

OU

Library LB

Diagnostic DG

basic output

BO

basic input

BI

Platform Adaptation Layer
Applicative/basic software interface

Basic Software
(platform designed by the supplier)

Communication CM

• Module level validation (reduces the complexity
and cost of validation).

• Improved evolution management (impact
analysis, containment, validation).

Another important principle of EMS 2010 is the
reusability at the source code level. EMS 2010
distinguishes two kinds of modules:
• Specific modules which are specific to a supplier

platform. Examples of specific modules are the
basic input/output (functions BI and BO)
modules which make the interface between the
supplier platform and the applicative software.

• Reuse modules which can be integrated in any
platform with an EMS 2010 compliant interface
(e.g. a reuse module can be common to diesel
and gasoline engines). The EMS 2010 software

 Page 1/5

design rules ensure that reuse modules are
portable at the source code level.

Most modules are reuse modules, which means that
they are developed once and then reused on the
different engine projects. Together modularity and
reusability set the basis for a simpler and better
validation and therefore an improved quality of the
final software.

1.3 Configuration mechanisms
EMS 2010 provides two levels of configurations:
• On-board configuration: this is the usual

calibration mechanism. It is mostly used to fine
tune the control laws and strategies and adapt
them to a particular vehicle. This mechanism
provides a great flexibility as calibrations can be
changed on a running ECU.

• Off-board configuration: this mechanism has
been introduced to efficiently handle technical
definition diversity. This configuration takes
place at compile time and as such is much less
flexible than calibration but it avoid wasting
memory resources with unnecessary code.

With off-board configuration a module can handle
different technical definitions such as different
sensor or actuator technologies, diesel/gasoline
engines with a unique module version. Alternative
solutions would have been either to use different
versions of the same module or finer grained
modules but it would have introduced more
complexity in the version management. The off-
board configuration mechanism will be detailed later
on.

1.4 Functions organisation

In this section we will have a closer look at the
software structure showed by figure 1. The layout of
the figure is organized so that the left to right
orientation shows the sense of the main data flow
between the functions, starting with the BI and
ending with the BO. The modules in IN and OU
functions perform applicative signal filtering and
formatting. In the remaining functions we distinguish
the transversal functions LB, DG and CM from the
non transversal functions which contain the control
laws and strategies for the engine sub-systems.
The role of transversal functions is to provide
common services to other modules:
• The DG (diagnostic) function contains the

diagnostic services (i.e. interaction with
diagnostic tools) and the failure manager. Note
that the failure manager does not handle the
faults itself since dysfunctional behaviour is
managed by the modules themselves, but it
collects the fault reported by the modules for
diagnostic and fault confirmation purposes.

• The CM (communication) function is composed
of one module which handles the applicative
strategies for bus/network communications. This
module is also responsible for performing
multiplexing / demultiplexing of network frames
so that other applicative modules only see the
signals and never the frames.

• The LB (library) function essentially contains one
reuse module which provides commonly used
operations (filtering, timers, …) through an API.

1.5 The platform adaptation layer

In order to provide an EMS 2010 compliant platform,
each integrator supplier must implement and
configure the EMS 2010 platform adaptation layer
above his own basic software platform.

NVMY COM BI / BO

Applicative software

Reprog

Tasks
definition

Libs

Standard
files

Project
conf

Figure 2: The platform adaptation layer

The first role of the adaptation layer is to provide an
interface between the basic and the applicative
software. This interface is composed of the BI and
BO modules, the COM interface (mainly used by the
applicative CM function) and the NVMY (the non
volatile memory manager) interface.
In addition to those interfaces the adaptation layer
provides the following non reuse libraries: an
arithmetic library for saturated operations (additions,
multiplications …), an interpolation library, a bit
operation library and a memory management library.
Those libraries are non reuse because they are low
level and can be optimized for a supplier platform,
and as they are widely used their impact on
performance is important.
The adaptation layer also contains the interfaces for
the following services: the NVM (Non volatile
Memory) manager, the lower communication layer
(only used by the applicative communication
module).
Finally the adaptation layer also includes the ECU
reprogramming functionality, several EMS 2010
source files mainly used for portability (type
definition) and the tasks definition and the project
(off-board) configuration which we will both see in
more details in the section about module integration.

 Page 2/5

1.6 Comparison with AUTOSAR

AUTOSAR (AUTomotive Open System
ARchitecture) is an open and standardized
automotive software architecture, jointly developed
by automobile manufacturers, suppliers and tool
developers. The EMS 2010 project and AUTOSAR
phase 1 progressed separately and nearly in parallel
and while both architectures are modular there are
many differences between the two.

Focus
AUTOSAR aims at providing a general purpose
software architecture, and while it the AUTOSAR
partnership worked on standardized functional
architecture, its main focus has been the definition of
the RTE (Run Time Environment) and the extensive
standardization of the basic software modules. The
EMS 2010 project took a different approach focused
on the definition of the functional architecture for
engine control software and the associated
modularity mechanisms. EMS 2010 kept
standardization of basic software to a minimum by
only specifying the interfaces necessary for the
applicative software.

Modularity mechanisms
At the centre of the AUTOSAR architecture lies the
RTE. The RTE is responsible for inter module
communications, and to that purpose provides
sender/receiver and client/server mechanisms.
Connections between modules are made through
the RTE configuration by associating the ports of the
modules. Compared to the AUTOSAR mechanism
EMS 2010 is much simpler because of its static
architecture. Modules communicate through data
signals (implemented as global variables) and
events (implemented as function calls). As EMS
2010 scheduling policy is almost completely
cooperative there is no need to protect the global
variables. Also there no configuration is needed to
“connect” the modules because this connection is
done through the signal and event names which are
unique. This static architecture has the advantage of
reduced resource consumption compared to
AUTOSAR more generic mechanisms. Finally the
off-board configuration mechanism is completely
specific to EMS 2010.

Fault Management
The purpose of the AUTOSAR DEM (Diagnostic
Event Manager) is very close to the EMS 2010
failure manager. But contrary to AUTOSAR, the
EMS 2010 architecture does not provide a generic
fault handling mechanism like the FIM (Function
Inhibition Manager) as it is the responsibility of each
module to handle the faults. To manage coherency
of fault management at the system level, EMS 2010

relies on tools to analyze the degraded modes
activated by a fault confirmation.

2. EMS 2010 software development

In this part we will walk through the different steps of
the development of EMS 2010 reuse modules.

2.1 Specification

The MBD approach
EMS 2010 takes full advantage of the MBD (Model
Based Design) approach. Indeed each module
specification is composed of several Simulink®
models (Simulink® is a modeling environment
developed by The MathWorks). Each model is
executable and so can be used for simulation or
rapid prototyping. This means that the specification
is very detailed and can be validated, sometimes
directly on the vehicle. Each module is actually
validated in a MIL (Model In the Loop) environment;
the test cases used for this validation will be reused
for the validation of the final module source code.
Each model also has an associated textual
documentation to facilitate its comprehension and a
data dictionary which gives more details on the
characteristic of the signals definition (units,
resolution …).

Specification structure
The specification of a module is composed of the
following items:
• Specification elements: the elements are

equivalent to sub-modules, also each element
correspond to a Simulink® model and its
interface. One of the elements plays the specific
role of module scheduler, this means that it
defines the execution sequence of the different
elements entry points.

• The MID (Module Interface Description): this is a
textual document which describes the interface
of the module (data and event inputs/outputs)
and its off-board configuration. The interface of
the module is actually a subset of its elements
interface, defining such an interface avoids to
expose unnecessary elements to other modules.

Off-board configuration
The off-board configuration mechanism takes place
at the module level. Specification elements are not
themselves configurable but simply are present or
not in a given configuration. A configuration is
defined by a set of configuration constants which can
take a limited number of values. For example the
variable engine_type can take two values: diesel and
gasoline. Figure 3 shows an example of module with
two configurations: gasoline and diesel. Note that

 Page 3/5

since the module interface is a subset of its element
interface, the module interface depends on the
configuration (actually this is only true for data
inputs/outputs)

Figure 3: Module off-board configuration

2.2 Module coding and validation

By coding we mean the transformation of the
specification in optimized C source code. As
explained earlier the main characteristic of a reuse
module is its portability: a reuse module can be
integrated to any platform which implements the
EMS 2010 adaptation layer. To achieve this
portability RENAULT in close partnership with
SIEMENS VDO has elaborated a set of coding rules.
The coding rules:
• Set constraints on the implementation (the code

must be C ANSI, only EMS 2010 libraries can be
used …).

• Define the structure of the module source code.
• Define the different software mechanisms

(memory allocation, off-board configuration …).

Code structure
One of the main principles of the coding rules is the
1 to 1 relationship with specification, and this is
reflected in the code structure.
The file structure strictly enforces a file structure of
the module which closely matches the specification.
Each specification element is implemented by a set
of 5 source files named after the element (one C file
containing the program, another C file containing the
definition for observable variables and calibrations,
and three header files for public and private
declarations). In addition to files related to elements,
a module contains several other files among which
the most important are:
• The export file: this header files contains the

declaration of all the items which are exported
by the module to other modules. This mainly
includes the variables produced by the module,
and the module entry points/functions.

• The import file: this file simply includes all the
export files of the modules which produces items
which are consumed by the target module.
Actually this file implements statically the
dependencies between the modules.

• The configuration file: this file implements the
off-board configuration logic of the module.

M
odule interface

Elt2 Elt1

Elt3

Elt4 Elt5 Elt6

Diesel conf

Gas. conf

All confs

Again the 1 to 1 relationship with the specification is
verified as the 3 files described above directly derive
from the MID.
This relationship is also enforced at a lower level,
with naming rules for main functions and all
observable variables. It is interesting to note that all
observable variables and calibration have the same
name in the specification and in the code and that
this name is also used by the calibration and
diagnostic tools.

Off-board configuration
In the section about specification we have seen the
off-board configuration mechanisms simply consist in
defining a sub-set of “active” specification elements
for each configuration. This mechanism is
reproduced at the code level by using conditional
compiling. Each source file of an element begins
with the inclusion of the configuration file
immediately followed by an #ifdef
ELEMENT_NAME… #endif block which encompass
all the rest of the file. If an element is not present in a
given configuration, the configuration file will not
define ELEMENT_NAME and thus after the pre
processing the element files will be empty and the
element will not be present in the final binary
avoiding unnecessary waste of resources. Thanks to
this mechanism, there is a single set of sources for
all configuration of a module.

MIL/SIL validation
One part of the module validation is done in a SIL
(Software In the Loop) environment. Thanks to a
dedicated tool and to the 1 to 1 relationship between
code and specification, the integration of the module
source code in the SIL environment and the
comparison between MILS and SIL results is greatly
facilitated. The test cases and environment used for
the SIL are exactly the same as in the MIL. The
module source code is compiled as a Simulink® S-
function to allow its integration in the SIL Simulink®
model. All observable variables can be compared
which allows a finer comparison than if only inputs
and outputs where compared. It is up to the human
tester to decide if the differences between MIL and
SIL results are acceptable or not.

 Page 4/5

2.3. Integration
Once the reuse modules have been coded and
validated they are put in an electronic shelf. Each
engine software project picks the reuse modules its
need for its engine technical definition.
Before the integration the integrator supplier (i.e. the
supplier which provides a complete ECU integrating
the reuse modules) must have prepared its EMS
2010 platform adaptation layer (implementation of
BI/BO modules, non reuse libraries …). As not all
modules are available at the start of the project, the
integration is done incrementally. For each
integration step RENAULT provides to the supplier:
• The code and MID of the reuse modules to be

integrated.
• The specification of non reuse modules to be

developed or updated.
• The tasks definition specification which defines

for each task (periodic tasks like 10ms or 20ms,
and events like the engine top dead center
event), all the modules entry points to be called
and their execution order. Note that this tasks
definition is build directly from the specification.

• A stubbing specification for the modules which
will be integrated in the future.

• The project off-board configuration specification,
i.e. the value of each configuration constant.

EMS 2010 methodology defines the following
process for the integration of the reuse modules in
the supplier platform:
• The first step is to configure the platform

adaptation layer in order to receive the new or
updated modules. This step includes the
following operations:
o Update of the project configuration
o Configuration of the NVMY with the NVM

blocks from the new/updated modules.
o Update the tasks definition.

• The second steps consist in compiling and
linking the software with the new modules.

• The remaining steps essentially consist of static
and dynamic checks at module and application
levels to verify that:
o The integration has been done correctly.
o Hardware resources consumption (CPU and

memory) is still within the project targets.
o Timing are compatible with the real time

execution of the software (actually the
coding rules define the maximum execution
time for a module entry point)

The final software consist of a binary and its
associated A2L file (the A2L file contains all the
information necessary to diagnostic and calibration
tools).

3. Conclusion

The first goal of the EMS 2010 project is to improve
the quality of the engines software through
modularity and code reuse. To support this modular
architecture approach many new mechanisms but
also processes and tools have been developed.
As EMS 2010 has progressed separately from
AUTOSAR, its architecture and mechanisms are
quite different. Today RENAULT and SIEMENS
VDO bring their experience acquired on EMS 2010
through their participation to AUTOSAR phase 2.
Modularity and code reuse have also opened the
way to a business model were the developer of the
applicative software and the provider of the
electronic system can be different suppliers. At this
time EMS 2010 software is running on ECUs from
three different suppliers and each supplier integrates
several modules developed by another supplier.

8. Glossary

MBD: Model Based Design
MIL: Model In the Loop
SIL: Software In the Loop
MID: Module Interface Description
ECU: Electronic Control Unit

 Page 5/5

