
HAL Id: hal-02270275
https://hal.science/hal-02270275

Submitted on 24 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ensuring Timed Validity of Distributed Real Time Data
Tanguy Le Berre, Philippe Quéinnec, Gérard Padiou

To cite this version:
Tanguy Le Berre, Philippe Quéinnec, Gérard Padiou. Ensuring Timed Validity of Distributed Real
Time Data. Embedded Real Time Software and Systems (ERTS2008), Jan 2008, Toulouse, France.
�hal-02270275�

https://hal.science/hal-02270275
https://hal.archives-ouvertes.fr

Ensuring Timed Validity of
Distributed Real Time Data

Tanguy Le Berre, Philippe Quéinnec, Gérard Padiou
Université de Toulouse

INP-IRIT
CNRS UMR 5505

Abstract—The goal of this paper is to study timed
requirements on distributed real time data. More pre-
cisely, we want to ensure that values used for computa-
tion are valid considering timed requirements. For that
purpose, we model relations and interactions between
data and define timed properties and requirements on
those relations.

The possibility is given to express different require-
ments on data by considering the update times of vari-
ables. For example, we expect a value to be fresh when
used or we filter transient values or sporadic values.
Moreover we generally characterize the behaviour of
a variable depending on the properties of any of its
values.

Communication in distributed systems introduce a
latency and a timed indeterminism incompatible with
real time systems requirements. We define an abstract
communication mechanism as a relation between a
couple of variables: a source and an image. To introduce
timed properties, we characterize the communication
delay by binding the time shift between the source and
the image.

The properties of the model are then used to check
that, during any execution, timely values are always
available (safety) or available in enough states (liveness).

1. Introduction
Embedded systems are more and more current in

everyday’s life and in the same time become more
complex. One factor of the complexity increase is the
use of distributed architecture. In such systems, an
important aspect is the verification of timed properties
and most researches are done on the task schedula-
bility and on the synchronization of these tasks.

In this paper, we use another approach for the
problem of timed properties verification by using a
system model focused on the system variables and
not on the tasks. The variables are the products of
the tasks execution, the interdependency of the tasks
is bound to the semantics which links the different
variables; for instance the value of a variable A is
needed to compute the value of a variable B. We
here check the timed validity of used values. For

that purpose, we must first specify the properties
of variables and of relations between variables. For
example, systems modeled here are distributed system
so the latency introduced by communication should
be taken into account. The model of the system is
used to check the properties of all variables used
and produced by a distributed system: for example
timed requirements specified like the freshness and
the stability of values must be satisfied.

2. Related Works
Most approaches done to check timed properties of

distributed systems are based on studying the timed
behaviour of tasks. For example, works like [1] try
to include the timed properties of communication in
classical scheduling analysis. We diverge from this
work by focusing on variables and their values instead
of tasks.

Others approaches based on variables instead than
being based on the process computing these variables
values are mainly done in the field of database. For ex-
ample, the variables semantics and their timed validity
domain are used in [2] to optimize the transaction
scheduling in databases.

In [3], OCL constraints are used to define the
validity domain of variables. A variation of TCTL
is used to check the system synchronization and
prevent a value from being used out of its validity
domain. Instead of formally defining synchronization
mechanisms, we use an abstraction of communication
to check the variables properties.

A closed work was done in [4] where a grammar
able to describe the timed behaviour of a variable is
defined. Rules are given to combine the properties
of the different variables of the system depending on
their relations.

3. Context
3.1 State Transition System

Models used in this paper are based on state
transition systems. More precisely, this paper use the

semantics of TLA+ [5]. A state is an assignment of
values to variables. A transition relation is predicate
on pair of states. A transition system is a couple (set
of states, transition relation). A step is a pair of states
which satisfy the transition relation. An execution σ
is a infinite sequence of states σ0σ1 . . . σi . . . such
that two consecutive states form a step. We note
σi → σi+1 a step between the two consecutive states
σi and σi+1.

A temporal predicate is a predicate on execution;
we note σ |= P when an execution σ satisfies the
predicate P . Such a predicate is generally written in
linear temporal logic. A state expression e (in short,
an expression) is a formula on variables; the value
of e in a state σi is noted e.σi. The set of values
taken by e during an execution σ is noted e.σ. A state
predicate is a formula whose meaning is a boolean-
valued expression on states.

3.2 Time

We want to study real time properties of the sys-
tem. To distinguish them from the (logical) temporal
properties, such properties are called timed properties.
Time is integrated in our transition system in a simple
way, as described in [5]. Time is represented by a
variable T taking values in an infinite totally ordered
set, such as N or R+. T is an increasing and un-
bound variable. It makes no difference whether time
is dense (real) or not (natural). Moreover, it makes
no difference whether time is continuous or discrete.
However, as an execution is a sequence of states, the
actual sequence of values taken by T during a given
execution is necessarily discrete.

An execution can be seen as a sequence of snap-
shots of the system, each taken at some instant of
time. We require that there are “enough” snapshots,
that is that no variable can have different values at the
same time. Any change in the system implies time
passing.

Definition 1: Separation. An execution σ is sepa-
rated iff for any variable x:

∀i, j : T.σi = T.σj ⇒ x.σi = x.σj

In the following, we only consider separated execu-
tions. This allows to timestamp changes of variables.

3.3 Clocks

Let’s consider a totally ordered set of values T ,
such as N or R+. A clock is a (sub-)approximation
of a sequence of T values.

Definition 2: Clock. A function c from T to T is
a clock iff:

• a clock never outgrows the value: ∀t ∈ T :
c(t) ≤ t

• a clock is monotonously increasing: ∀t, t′ ∈ T :
t < t′ ⇒ c(t) ≤ c(t′)

In the following, clocks are used to characterized
the timed behavior of variables. They are defined
on the time variable T , to express a time delayed
behavior (section 4), as well as on the indices of
the sequence of states, to express a logical delay
(section 5.1). Two clock subsets are used:

Definition 3: A clock c from T to T is idempotent
iff:

∀c : clock(c) : ∀t ∈ T : c(c(t)) = c(t)

Definition 4: A clock c from T to T is a liveclock
iff:

∀t ∈ T : ∃t′ ∈ T : t′ > t ∧ c(t′) > c(t)

4. Timed Properties of Variables
We give here the definition of some timed prop-

erties of the system variables. Transition systems do
not explicitly mention the events of the system such
as read or update events. We focus on the history of
values taken by variables in an execution and deduce
the interesting timestamps from this history.

4.1 Updates

In order to express properties on the timed be-
haviour of a variable x, we want to be able to refer to
the last time this variable was updated. They are called
the update instants x̂. Two possibilities exists, this
referential can be implicit or explicit. In the explicit
case, the developer has the responsibility to give its
own variable x̂. This can be the case if there is a
periodic behaviour of x without having to describe
actual values of x.

In the implicit case, a formal definition of x̂ is
given based on the history of values taken by x. The
goal is to capture the moment the current value of x
appeared, i.e. the beginning of the current occurrence.
A clock x̂t is used to give this definition.

Definition 5: For an execution σ and a variable x,
function x̂t is defined so that:

clock(x̂t) ∧ idempotent(x̂t) ∧ ∀ I = [s, e] : ∀ t, t′ ∈ (I ∩ T.σ)2 : x̂t(t) = x̂t(t′)
⇔

∀ i, j : T.σi, T.σj ∈ I2 : x.σi = x.σj

x̂t is built from the history of x values. When x

is updated and its value changes then the value of
x̂t is also updated. Conversely, x changes when x̂t

t

x(t)

t1 t2 t3 t4

x(t2)=t2

x(t1)=t1

x(t3)=t3

x(t4)=t4

Figure 1: General Aspect of x̂

changes. Idempotency ensures the value of x̂t to be
the beginning of the interval when the current value
is stable.

Proposition 1: Given an execution σ and a vari-
able x, x̂t exists and is unique.

Existence is due to the use of separated execution
and x and unicity is due to idempotency.

Definition 6: For an execution σ and a variable x,
the variable x̂ is defined by:

∀i : x̂.σi = x̂t(T.σi)

x̂ is used rather than x̂t in this paper to directly
refer to state of transition systems.

4.2 Next

For a given execution, in any state we want to be
able to denote the next distinct value a variable takes.
So we define a function that can be applied to any
expression.

Definition 7: For an expression e, and a value
none, the function Next(e, none) is:

Next(e, none).σi , LET S , {j > i : e.σj 6= e.σi} IN

IF S 6= ∅ THEN e.σmin(S)

ELSE none

For example, for a variable x, Next(x̂,+∞) is the
instant when x current value changes or is +∞ in
case x remains stable.

4.3 Freshness

An interesting property is that a value taken by a
system variable is recent enough to be meaningful
when used. this property is called freshness and we
define a predicate denoting if it is worth using a

value with respect to freshness requirements. Given
a variable x, the difference T.σi − x̂.σi denotes the
time elapsed since x last update. So this difference
must be upper bounded. On the other hand, giving a
lower bound to this difference shows that the value
has not changed for some time.

Definition 8: For a variable x, the state predicate
Freshness is:

Freshnessx(δ,∆) , δ ≤ T − x̂ ≤ ∆

This predicate is true when the current value of
variable x meets the freshness requirement. Here 0
is used when there is no lower bound and +∞ when
there is no upper bound.

4.4 Stability

Depending on the modeled system, we may also
require a value to remain stable long enough or on
the contrary, to be transient. In each state, we define
the predicate Stability which, given a variable, states
if the current value remains stable or if it is transient
according to two parameters.

Definition 9: For a variable x, the state predicate
Stability is:

Stabilityx(δ,∆) , δ ≤ Next(x̂,+∞)− x̂ ≤ ∆

Here the difference Next(x̂,+∞) − x̂ is used to
compute the time elapsed before the disappearance
of the current value. Compared to freshness, this
predicate not only consider current instant but the
whole interval when the value remain stable.

4.5 Timed Behaviour of a Variable

x̂ is used to describe two possible behaviours
of a variable: sporadicity and liveness. A variable
is sporadic if in any execution each value remains
stable for at least some duration.

Definition 10:

Sporadicity(x,m) , ∀σ : ∀i : Stabilityx(m,+∞).σi

This ensures that new updates can never occur
before m time units has elapsed.

Conversely, we say that a variable meets the live-
ness property if it is updated in a periodic way. For
such a variable, time does not pass too long before
the variable is updated.

Definition 11: Given a system variable x, x satis-
fies M -liveness:

Liveness(x,M) , ∀σ : ∀i : Freshnessx(0,M).σi

1

X
0 1 2 3 4 5 6 7 8 9

1

2 4

1 1 2 4 63 3 3`X

1 1 2 3 3 5 6 7

i 0 1 2 3 4 5 6 7 8 9

c(i) 0 0 0 0 3 4 4 5 6 8

Figure 2: The Observation Relation

So here, there cannot be more than M time units
elapsed since the update of the current value.

The difference M − m is the jitter of x. These
two properties can be combined to define a strictly
periodic variable. In this case no jitter is allowed on
the updates. If m = M then necessarily x is updated
every m units.

5. Abstracting Communication
5.1 The Observation Relation

The observation relation is an abstraction of com-
munication in a distributed system defined in [6]. This
relation binds two variables: the source x and the
image ‘x and denotes that the history of the variable ‘x
is a subhistory of the (remote) variable x. The relation
is defined by a triplet < source, image, liveclock >
where the clock defines for each instant which one
of the previous values of the source is taken by the
image. The formal definition is:

Definition 12: The variable ‘x is an observation
of the variable x (‘x≺· x) iff:

∀σ : ∃ c : liveclock(c) ∧ ∀i : ‘x.σi = x.σc(i)

This relation states that any value of ‘x is a previous
value of x. Due to properties of c, ‘x is assigned
x values in a chronological order. Moreover, c al-
ways eventually increases, so ‘x is always eventually
updated with a new value of x. An example of an
observation relation is shown figure 5.1.

5.2 Timed Observation

In order to specify timed constraints upon
communications, we bind the delays introduced
by distribution. For each state i, the difference
T.σi − T.σc.σi

denotes the timed latency between
the source and the image. A lower bound on
this difference is the shortest time taken by
communications. An upper bound prevents the image
from drifting with respect to the source. We define

δ∆
t

c(t)x(c(t)) x(c(t))+m

m-(∆-δ)

[]
ʻx(t) ʻx(t)+α

Figure 3: Observation of a Sporadic Variable

the latency predicate and use it to define timed
observation:

Definition 13:

Latency(c, δ,∆) , ∀ i : δ ≤ T.σi − T.σc(i) ≤ ∆

Definition 14: The variable ‘x is a timed ob-
servation of the variable x with parameter (δ,∆)
(‘x≺· [δ,∆] x) iff

∀σ : ∃ c : liveclock(c)∧ ∀i :
(

‘x.σi = x.σc(i)
∧ Latency(c, δ,∆)

)
The difference ∆ − δ is the jitter introduced by

communication.

5.3 Influence of Distribution on Variables Timed Be-
haviour

Knowing the timed behaviour of a variable, the
effect of reading this variable through a network
can be defined. We give here properties showing
the weakest timed properties for an image given the
properties of the source.

Proposition 2: If there are two variables ‘x and x
so that ‘x≺· [δ,∆] x then:

Sporadicity(x,m)⇒ Sporadicity(‘x,m+ (δ −∆))
Liveness(x,M)⇒ Liveness(‘x,M + (∆− δ))

To prove this proposition we use the observation
relation and the definition of x̂ and ‘x̂ to build the
shortest and longest stability intervals of ‘x (see figure
3 for the sporadicity).

The observation weakens the sporadicity and live-
ness of the source. The local copy of the source is
not be as stable as the source and conversely takes a
longer time to change. Here, the jitter of the image
is the jitter of the source increased by twice the jitter
of the observation (M −m+ 2(∆− δ)).

If (m + (δ − ∆) > 0) is positive, then any value
taken by x is present in ‘x history at least m+(δ−∆).
Then communication does not enable loss of values.

We can also give necessary conditions on the source
properties for the image to be sporadic or liveness :

Proposition 3: If there are two variables ‘x and x
so that ‘x≺· [δ,∆] x then:

Sporadicity(‘x,m)⇒ Sporadicity(x,m+ (δ −∆))
Liveness(‘x,M)⇒ Liveness(x,M + (∆− δ))

These conditions do not imply sufficient conditions
but on the contrary just show the impossibility of
having an image fulfilling the sporadicity or liveness
requirements without further conditions on the source
and the communication.

5.4 Filtering the Values

When the source do not satisfy the sporadicity
or liveness requirements, we extend the observation
relation by filtering the source values. Values that
do not satisfy the requirements cannot be seen. For
example, in a state i the image is assigned the value
taken by the source in state σc(i). If this value is not
fresh enough, x.σi is replaced by ⊥. Filtering can
also be used to keep values according to a criterion
of stability.

There are four cases:
• the value is not fresh enough
• the value can not be seen just after an update

(for example in order to synchronize different
images)

• the current value is transient and only stable
versions are interesting

• only transient values are interesting and the cur-
rent one is stable

6. Case Study
In order to illustrate the properties defined in this

paper, we rely on a simple example of a distributed
system. Our example is a meteorological station. Two
sensors measure two phenomena: the wind speed
and the temperature. Due to the specificities of each
measures, the sensors are distributed. A station col-
lects the measurement and processes them, the packed
results are then sent to a central station, for example,
to collect all measurement in an area. The system
topology is given on figure 4.

The temperature may not be stable in front of short
modification of the environment but the station is only
interested in stable values. Due to the distribution of
the system, there is a delay between the sensors com-
putation of data and their availability at the station.
For each variable, there are freshness requirements
depending on the variable and their use.

We call sensW the variable assigned the wind
speed measures, sensT the one assigned the tem-
perature measures. The couple (statW, statT) is an

Weather station Weather center

Sensors

sensT

sensW

statT

statW

stat cent

Figure 4: System Topology

observation by the station of the sensors measures.
This couple is packed to create the variable stat. This
variable is bound to the variable cent which is an
observation of stat in the central station. Timed obser-
vations are used to describe more precisely relations
between the variables of this distributed system.

6.1 Relation statW ≺· sensW
This relation is characterized by three parameters:
• δ1 and ∆1 the bounds on the observation latency;
• ∆2 the upper bound of the freshness limiting the

oldness of available values.

6.2 Relation statT ≺· sensT
This relation is similar to statW ≺· sensW except

that there is also a criterion on the value stability so
there are four parameters:
• δ3 and ∆3 the bounds on the observation latency;
• ∆4 the upper bound of the freshness limiting the

oldness of available values;
• δ4 the lower bound of the stability to keep stable

values only.

6.3 Relation cent≺· stat
This relation, such as statW ≺· sensW is charac-

terized by three parameters:
• δ5 and ∆5 the bounds on the observation latency;
• ∆6 the upper bound of the freshness limiting the

oldness of available values?

6.4 Additional Information

In order to study the characteristics of cent and
stat, the timed behaviours of sensW and sensT
should be known. So either an explicit description of
ŝensW and ŝensT is given, either there is a represen-
tative sample of value taken by these variables which
allows us to implicitly compute the update instants.

7. Analysis
Analysing a system such as the meteorological

station can be done with two different objectives:
• any values of a variable always meets the re-

quirements. Considering filtering, the ⊥ value is
never taken. This is a safety property.

• define the set of states where the value is not
⊥. This is a liveness property where it must be
proved that infinitely often there are values other
than ⊥, so there are an infinite number of states
meeting the requirements.

Both of these analysis can be done for a restricted
part of the system or considering all variables at once.
Analysis is based on two methods: model checking
and use of proofs. Both strategies are explained with
their pros and cons.

7.1 Proof Strategy

The proof strategy is not based on building a
proof for a given system but on reusing proposi-
tion to deduce system properties. For example, here,
the characteristics of sensW and sensT are used
(more precisely of ŝensW and ŝensT) to derive
automatically the properties of the other variables.
Let consider the couple (sensW, sensT). Suppose
both variables have properties of sporadicity. Then
properties of stat and cent are derived and their
sporadicity characteristics are deduced. Moreover if
the value of (δ1+δ5−∆1−∆5) or (δ3+δ5−∆3−∆5)
are smaller than the sporadicity characteristics of
sensW and sensT , all observation are loss free. Then
each value taken by the inputs is taken by cent.

These results can only be derived in certain cases
as the properties deal with the worst cases. In case
this method is not sufficient model checking is used
instead of building a proof dedicated to a particular
model.

7.2 Model Checking

In most cases, such proof cannot be automated and
become cumbersome. This does not imply the system
does not meet the requirements. In this case, using
model checking is proposed as an automated way to
analyse the system.

Most of the system properties are here given as
bound on differences. Therefore, difference bound
matrices are used as in [7] and in Uppaal [8]. Dif-
ference bound matrices are used to check that a set
of inequalities does not imply a contradiction. For
that purpose, matrice multiplication in a {min,+}
algebra is used. Each multiplication is equivalent

to a search for shortest paths or here for tighter
bounds. Incompatible inequalities are detected when
a positive inequality becomes upper bounded by a
negative value. If no error is detected, each inequality
is reduced to its minimal form and a fix point (the
canonical form of the problem) is found.

The size of a matrice is related to the number of in-
equalities and so to the number occurrences requested
for a sample of value to be representative of a full
execution. A set is considered to be representative
if it is similar to a prefix where a loop can be
built. Given n the size of a set, this analysis has a
n3 complexity. Before using DBM, different sets of
inequalities must be built. Some inequalities such as
inequalities derived from freshness requirements are
bound to the update instants. So a set of inequalities
exists for each possible value of these update instants.
This number of inequalities sets depends on the jitter
on these update instants and is roughly n2 if the size
of each set is n. Finally, the complexity of checking
a full model is n5.

Back to the case study, model checking can be
used to check that values assigned to cent meets the
requirements. For example, the proof strategy can be
used to prove that there is no loss except those due to
stability requirements and transient values. In order
to be able to filter transient values the availability
of sensT values is delayed. It is to say, the values
are filtered using a lower bound on the freshness
predicate. In those conditions,the following checks
can be performed:
• there are not only stable value available and

transient ones are filtered;
• there exists states where stable values are avail-

able and still fresh.
So it checks that there are enough states where the
requirements are not incompatible.

Another example concerns the couple
(sensW, sensT). The relations statT ≺· sensT
and statW ≺· sensW have different parameters. The
variable cent is assigned a couple of values obtained
through this two relations. The model is checked to
determine if a value assigned to cent satisfies the
requirements in the same state, i.e. there are states
where none of the values of the couple cent has
been filtered and is equal to ⊥.

7.3 Perspectives

Due to the complexity of model checking, analysis
of a model using this method is long. A perspective is
to reduce this complexity by decreasing the number
of sets to check. Propositions are used to analyse

the model and deduce properties of the variables. In
this case the properties and the proved propositions
are used to avoid considering a case (i.e. a set of
inequalities) leading to a contradiction. For example
the necessary conditions given in 5.3 are used to
eliminate sample inputs that can not lead to a system
meeting the requirements.

8. Conclusion

We proposed an approach focused on variables
instead of task and process to model and analyse
distributed real time systems. Based on the state
transition system semantics extended by a timed ref-
erential, we express timed properties of variables,
and of communications. These properties are used to
check the freshness of values, their stability and the
compatibility of requirements. The analysis is done
using propositions to derive simple proof or in more
complex case using model checking. The complexity
of model checking is a problem when analysing
large systems so we work on combining proofs, to
reduce the problem size, and model checking, to
easily analyse simple models. For that purpose we
will extend the number of properties and of proved
propositions binding these properties.

References

[1] K. Tindell and J. Clark, “Holistic schedulability analysis
for distributed hard real-time systems,” Microprocessing
and Microprogramming - Euromicro Journal (Special
Issue on Parallel Embedded Real-Time Systems),
vol. 40, pp. 117–134, 1994. [Online]. Available:
citeseer.ist.psu.edu/tindell94holistic.html

[2] M. Xiong, R. Sivasankaran, J. A. Stankovic, K. Ramam-
ritham, and D. Towsley, “Scheduling transactions with tem-
poral constraints: exploiting data semantics,” in RTSS ’96:
Proc. of the 17th IEEE Real-Time Systems Symposium (RTSS
’96), 1996, pp. 240–253.

[3] S. Anderson and J. K. Filipe, “Guaranteeing temporal validity
with a real-time logic of knowledge,” in ICDCSW ’03: Proc.
of the 23rd Int’l Conf. on Distributed Computing Systems.
IEEE Computer Society, 2003, pp. 178–183.

[4] D. Delfieu, “Expression et validation de contraintes tem-
porelles pour la spécification des systèmes réactifs,” Master’s
thesis, Université Paul Sabatier - Toulouse III, 1995.

[5] L. Lamport, Specifying Systems: The TLA+ Language and
Tools for Hardware and Software Engineers. Addison-
Wesley Longman Publishing Co., Inc., 2002.

[6] M. Charpentier, M. Filali, P. Mauran, G. Padiou, and
P. Quéinnec, “The observation : an abstract communication
mechanism ,” Parallel Processing Letters, vol. 9, no. 3, pp.
437–450, 1999.

[7] J. Bengtsson and W. Yi, “Timed automata:
Semantics, algorithms and tools.” [Online]. Available:
http://citeseer.ist.psu.edu/703625.html

[8] J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and
W. Yi, “UPPAAL — a Tool Suite for Automatic Verification
of Real–Time Systems,” in Proc. of Workshop on Verification
and Control of Hybrid Systems III, ser. Lecture Notes in
Computer Science, no. 1066. Springer–Verlag, Oct. 1995,
pp. 232–243.

