
HAL Id: hal-02270270
https://hal.science/hal-02270270v1

Submitted on 24 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modularity And Associated Tools As A Mean To Master
Quality Of Complex Embedded Systems

Robert Bonetto, Jean Michon

To cite this version:
Robert Bonetto, Jean Michon. Modularity And Associated Tools As A Mean To Master Quality Of
Complex Embedded Systems. Embedded Real Time Software and Systems (ERTS2008), Jan 2008,
Toulouse, France. �hal-02270270�

https://hal.science/hal-02270270v1
https://hal.archives-ouvertes.fr

 Page 1/6

Modularity And Associated Tools As A Mean To Master
Quality Of Complex Embedded Systems

Robert Bonetto1, Jean Claude Michon2,

1: RENAULT
2: FCF

Abstract
In line with its focus on quality, RENAULT has
settled a special action plan to answer the burst of
complexity of engine management systems : EMS
2010. It will allow us a very high mastery of complex
systems’ development with limited efforts in term of
development time or development costs. This will
enabled us to concentrate our forces on the benefits
for our customers. Its development has been
supported by our main engine management
systems’ suppliers and especially the
CONTINENTAL company.
The basic feature of EMS 2010 is a modular
architecture. This architecture is answering
functional and dysfunctional requirements, and takes
into accounts the constraints of embedded real time
applications. The main objective is to answer all our
vehicle line-up technical definitions with a limited
number of versions of standardized modules. These
modules have a standardized interface and adapt
themselves to several parameters thanks to a
particular mechanism. The second objective is to
have standard modules of code that can be re-used
on all our engine management electronic control
units (ECU). The modules are hardware
independent, thanks to specific coding rules, and are
“plugged” on the basic software of ECU.
The key element is our shelf that records our
modules, and all the data linked to their development
and their validation, allowing a high level of mastery
in their development. The basis of the shelf, is a
configuration management tool ; it manages the
different versions of the modules but also their
automatic adaptation to vehicle and engine technical
definition. It supports also the development
processes of our modules and is structured
according to our architecture.
Some specific tools are linked to this configuration
management tool, so as to master the important

features or development processes of our modular
product :

• Architecture : data flows verification , real
time operation, specification rules

• Dysfunctional operation : failure propagation,
dysfunctional process management

• Specifications and models : model in the
loop validation, specifications rules checker

• Code : software in the loop validation,
coding rules checker

• Calibrations
• Issues management, change management,

project management…

--

1. Introduction
The car market is experiencing a very strong
competition and a significant increase in customers’
expectations. A first consequence has been a very
important increase of the performances of internal
combustion engines, inducing a very quick
development of the capacity of the engine electronic
management. The engine is operated on very
precise conditions, to optimize its efficiency, increase
its reliability, ease its reparability and reduce its
emissions at the same time. It requires the
computation of a lot of information, coming from
many sensors, and a very significant number of
adjustable parameters, requiring many actuators. A
second consequence is the multiplication of models
and versions of cars, sold in different countries, with
different regulations. This has also an impact on
engine management systems, which have to comply
with many different requirements. Thus, the
complexity of the embedded software has been
multiplied about tenfold during the last ten years.
As far as RENAULT is concerned, the mastery of
electronic management system has historically been
a point of high interest. In line with the company

 Page 2/6

focus on quality, a major objective of RENAULT
contract 2009, RENAULT has settled a special
action plan to answer the burst of complexity of
engine management systems : EMS 2010. Its
development has been supported by RENAULT
main engine management systems’ suppliers and
especially the CONTINENTAL company, that has
been our main partner for this project. BOSCH and
VALEO have also largely contributed.
First objective of the plan is the mastery of quality,
despite the increase of complexity. Second objective
is to reduce the development cost for a given level of
complexity. We will see later how we have been able
to achieve at the same time this better quality with
limited development costs.

This plan had two main axis :

• Mastery of complexity thanks to a structured
architecture. This architecture should allow
confinement in order to identify and limit the
impacts of changes. It also should increase
the standardization of the different elements
of the architecture

• Implementation of rigorous processes,
adapted to an industrial production.

We will now focus on the first one, the architecture.

2. Functional architecture
 RENAULT, as a major engine manufacturer,
designs with a combined process its engines and the
way the electronics has to operate them : this allows
the best optimization of the complete powertrain.
The strategies to operate the engine are the core of
what we call the Engine Management System
(EMS).
In order to master these strategies it is important to
give them a clear, logical and strong structure.
The first principle that has driven the design of our
architecture is that the functions should be spread in
different layers, with a progressive abstraction of the
hardware.

• first layer makes the abstraction of the
different sensors or actuators of the system
enabling the upper functions to be little
sensitive to changes of type of sensors or
actuators.

• second layer deals with subsystem
operation such the realization of a given
Exhaust Gas Recirculation valve section or
a given throttle opening.

• third layer deals more with the physics of the
engine. It will realize the operating
conditions of the engine : decide the EGR
rate, the air flow.

• The upper layer decides the torque that the
engine as to deliver, taking into account all
the needs (driver, losses, air conditioning,
transmission, stability control…).

From this structure it is clear that elements are
allowed to exchange information if they are in two
consecutive layers or on the same layer. The other
flows are generally forbidden.

This structure has enabled us to limit the dataflow
between modules thus implementing a strong
confinement between the elements of the
architecture.
The next question was, how to implement this
functional architecture in our EMS.

An EMS is first a set of electro-mechanic and
electronic elements (sensors, actuators, wiring and
the Engine Control Unit) that we procure from
suppliers, according to our requirements.
Then, in the Engine Control Unit (ECU) runs a
software (SW). In this SW we can distinguish
according to our point of view two main parts.

• basic SW: it implements the services
necessary to run the applicative part and to
operate hardware resources (operating
system, communication services and
sensors and actuators’ drivers)

• applicative SW, running the strategies that
pilot the engine. We have seen that we have
structured these strategies according to
several layers. This structure has been
enforced in the applicative SW through
modules.

The module is the smaller element of the
architecture. It has its own functionality.

Physics

Sub
System

Sens.
Act.
Smart

Realization
(consigne &
limitations)

Supervision:
Target torque
determination

I/O Drivers

SENSOR

SUB System Parameters
SENSOR Models

System Parameters
Presentation Layer Ex: Tq losses

LIMITATIONS TORQUE
REQUESTS

TORQUE SET POINT SYNTHESIS

Torque Setpoint
Implementation

SUB Systems Setpoint
Implementation ex:MAFsp

Actuators Setpoint
Implementation

ACTUATOR

SENSOR Driver
ACTUATOR Driver

 Page 3/6

In the applicative software the modules are grouped
in 95 sub-functions and 16 functions, according to
their functionality.
We have also developed an interface between our
applicative standard software and the basic SW we
buy from each supplier. The main purpose of this
interface is to « adapt the impedances » between
our standards and the supplier’s one.

3. Development process

How to develop an engine management system,
taking advantage of our architecture ?

• First we have produced a shelf of modules
with the structure of our architecture. In each
compartment we find one module of
specifications (Matlab Simulink models), the
associated C-code, the elements allowing
the use of the module on a platform and the
important design documents such as the
validation reports. All the elements are of
course under configuration management.

• From the project specifications we identify
the modules we have to create or to modify,
according to our architecture, taking as a
constraint to minimize the impacts on
existing modules

• The models are designed and validated
through several means, including simulation
(Model In the Loop) or rapid prototyping. We
have implemented specific modular design
rules, that are checked with a specific tool.

• The models are coded by suppliers. We
check the compliance of the code with our
modular coding rules in order to guaranty
the code independence to the hardware and
the respect of our architecture. Then the
functionality of the code is validated. For the

modules that benefit of a MIL validation we
automatically check that the code behavior
is the same as the model’s one with a
Software in the Loop tool.

• The validated modules are placed on the
shelf. During all this process a specific tool,
EMSET, guides our teams through the
different steps, ensuring its repeatability and
quality.

• The architects define the set of modules for
each project. The EMSET tool configures
the modules according to the project
technical definition.

• On the same time ECU suppliers have
developed the necessary platforms
(hardware, basic software and interface) for
the projects.

• The set of C-code modules (applicative
code) and relevant documents are sent to
these ECU suppliers. They integrate them
on their platform and valid their correct
integration.

• We validate the platform and the applicative
code and then the calibration process starts
on the vehicle

The basis of this development process is the re-use
of validated modules of C-code enabled by the
structuring of our applicative SW. The advantages
are easy to understand :

• Re-use of proven-technology with
cumulative validation : quality

• New projects development limited to new
functionalities whatever the ECU supplier :
cost and development time

4. Upstream V
As already mentioned, the benefits gained from a
standard architecture are considerable. But this
standard architecture cannot be an obstacle to
innovation : it has to evolve with a large spectrum of
possible modifications from minor rectification (you
cannot expect architecture to be perfect) to
integration of big new functions (particulate filter has
been such a big new function, and NOx after
treatment is today).

For new innovative functions, a specific process has
been defined (Upstream V). At the very beginning of
this process is an analysis of the impact of the
introduction of the new function. Thus the modified
architecture is defined in order to minimize the
impacts in terms of modifications on functional and
dysfunctional data flow, number of impacted
modules, and complexity of modifications. The result
of this analysis is an optimized (from architecture

Applicative SW

Sensors and actuators, CAN

ECU hardware

SW encapsulation of hardware & services : Basic SW

Interface : Applicative / Basic SW

Power train
Coordination

PC

Diagnostic DG

After-treatment
AT

Air system
AS

Combustion
CB

Torque
Structure

TQ

Vehicle
Functions

VF

Engine speed
Management

SM

Coolant &
Lubrication

CL

Library LB

ECU

wiring

EMS 2010
Applicative

SW

Platform

* 16 functions
* 95 sub-functions
* 232 modules G+D
(53 common G & D)

 Page 4/6

point of view) set of modules, defined by their
external interfaces, and empty at this stage.

The key technical object for this operation is the
Module Interface Definition (MID) containing for each
module :

• Information linked to technical diversity
management

• Inputs, Outputs (functional flow)
• Dysfunctional interfaces and local fail-safe

modes
• Scheduling
• Other features under investigation, such as

Functional FMEA (Failure Modes and
Effects Analysis) for the module.

This technical process has to be managed. A single
centralized entity, composed of functional architects
has the ability to make decisions about architecture
changes. The main responsibilities of this team, as
keepers of standard architecture, are:

• Evaluation of different solutions for new
functions and final choice

• Decision making regarding minor
architecture changes requested by the
projects

• Management of specification rules (as part
of the architecture) and the associated
verification tool.

Due to their skills and knowledge of architecture, this
team is also involved in different tasks for industrial
production of software such as global dataflow
control, or real time global architecture building.
These tasks are described later in this paper.

This way to manage introduction of new functions
enables also different business models for the
development of these functions:

• In house development
• Delocalized development in another RSA

technical center
• Subcontracting
• Purchase of already developed function

In any case, the early definition of modules and
associated MIDs gives a very high level of
confidence for plugging (integration) of the new
function in the architecture.

Another very important feature of EMS software is
the reconfiguration management (shift to degraded
or fail-safe modes) in order to guarantee the mastery
of safety and availability.
The management of failures is based upon a
dysfunctional architecture, consistent with the
modular functional architecture.
The principle is simple: each important functional
dataflow has an associated Validity Level Indicator

(VLI). Each module has to react according to the
validity of its inputs, and to propagate the failure
indication by the setting of appropriate VLI for its
outputs.
The input modules, close to hardware and OS
generate VLI according to electrical and functional
diagnosis. Intermediate modules generate VLI
according to their VLI inputs, and final setpoint
elaboration modules choose the best degraded or
fail-safe mode.
A global evaluation of this dysfunctional architecture
is made, using the appropriate tools to :

• Check the global consistency of local and
global degraded or fail-safe modes

• Identify lacks in the specifications, for
diagnosis and compliant treatment or
generation of VLI.

Of course, all these mechanisms are based upon :
• FMEA for each component of the system,

identifying the possible origin of failures
• A global system FMEA to assess the

coverage of failures against system
objectives, for the whole system.

5. Software industrial production

Software industrial production is based on a tool
managing the shelf : input in the shelf for new
modules, and output for EMS software production.

In order to understand the extent of complexity for
shelf management, we have first to comment the
origin of technical diversity. The main axes for
diversity are:

• Major Technical Definition features:
Gasoline, Diesel, NoxTrap, … These big
options are managed through branches of
architecture. Nevertheless, the architecture
has been designed in order to maximize
commonalities for example between
Gasoline and Diesel, and a significant
number of modules are common (see
example later).

• Vehicle architecture. For example, different
families of vehicles have different on CAN
messaging system. Again the architecture
has been designed in order to minimize the
impact of these differences.

• Minor Technical Definition features. The
main examples are: use of a sensor or use
of a model for some parameters, different
types of sensors for the same physical
parameter (Threshold measurement or
continuous measurement). The mechanism
used is option integrated in a module. For

 Page 5/6

the designer of a software system, the
available choices are:

o Select an option at design time. In
this case, only the selected part of
the module will be embedded in the
final product.

o Delay the selection and embed all
options. In this case, the code for all
options is embedded in the final
product, and the applicable option is
chosen by a configuration
calibration.

• Legal aspects: OBD is the best example.
Options are depending on local regulations.

• Hardware platform. The code of the majority
of modules is portable, and identical for
different hardware platform. But the interface
with OS and vendor specific low level
functions is not portable.

• Precise matching and tuning for a vehicle:
calibrations (for configuration of modules
and for adaptation to engine
thermodynamic).

• And of course module version management.

The tool used for shelf management is named
EMSET for Engine Management System
Engineering Tool. Basically, it is a standard
configuration management tool, customized for the
specific framework of EMS2010 project. It is linked to
task dedicated business tools, for module input and
software output.
The basic object in EMSET is the module with :

• Specifications
• Module Interface Definition (MID)
• Code
• Models for specification and code validation
• Results of validation, …
• All these elements are versioned.

EMSET integrates of course the classical services
functions to manage the usual life of software
objects : issues management, change management,
project management. But the main goal of EMSET is
to provide the two main functions described below.

The first main function of EMSET is dedicated to
module development with :

• Check of specification rules, by a dedicated
tool (These rules are part of architecture,
and their configuration is also managed by
EMSET)

• Specification validation, based upon models,
by a dedicated tool (MIL)

• Check of coding rules, again by a peripheral
dedicated tool. Coding rules are very
important to insure portability of modules on
different hardware platforms.

• Code validation, using the model already
developed for specifications validation

• Check of VLI use and production.

The second main function of EMSET is dedicated to
software design (integration of on the shelf
modules), with :

• Ability to choose the modules composing the
product

• Ability to choose for a module:
o The version, according to technical

definition, level of functionalities,
validation level, …

o The options for technical definition
options: embedded or not …

• Support for consistence analysis for the
chosen modules.

This last item deserves a larger comment. The
number of possible combinations of modules,
including configuration options and versions does
not enable a comprehensive management of all
these combinations. Our choice is:

• Beforehand, a partial preliminary
management of consistencies between
modules (versions included) limiting the
possible choices.

• Consistency checks of the set of modules
composing the software product, afterwards.
The main checks are:

o Functional dataflow consistency (no
input or output pending, …)

o Dysfunctional management
consistency (propagation of failure
messages)

o Real time management consistency
(usage of events or recurrences)

In order to illustrate the nature of these checks, we
will describe a tool used for Dysfunctional
Consistency Checking.
Each module producing an output with VLI specifies
the different possible values and their meaning.
Each module using an input with VLI requires the
different possible values it needs (with their
meaning).
The consistency between a producer of information
and all consumers is recorded in a LNA (Level
Needs Adequation). This LNA can change, or not,
when the version of a module changes.
So, a simple analysis of LNA enable to check the
consistency between two versions of modules, from
a dysfunctional point of view.
This tool is used:

• For the choice of a module version at design
time

• For a global check of the product, after the
selection of all modules

 Page 6/6

6. Conclusion
The EMS 2010 project is now in its final phase. At
least one version of each module is present in our
shelf. This enables us to build the applicative
software for the first projects that will be released
soon.
Let us take now an example. One of these projects
will be a diesel engine equipped with a particulate
filter to fulfill the next emission regulations with a
very good fuel efficiency.
The applicative SW of this project contains 150
modules. These modules have been coded by the
three partners of the project, CONTINENTAL,
BOSCH and VALEO.

We can distinguish 4 categories of modules

• Interface modules : these modules are
generally very simple also rather numerous.
There could be a way to withdraw the need
of this interface : standardization of
interfaces for powertrain sensors and
actuators. We are currently working in
Autosar 10.2 group in this objective.

• Specific modules, linked to the specificity of
application

• Common modules for all RENAULT diesel
engines

• Common modules for all RENAULT gasoline
and diesel engines

A fifth category does not appear on this scheme : the
modules that are common for all our gasoline
engines.

Today, these modules are used by more than ten
main projects running in parallel. For each module,
the lessons learned resulting from the number of
configurations, number of test scenarii, accumulated
kilometers on vehicles are greatly increased
compared to traditional scheme of development,
giving us a further enhancement in the mastery of
quality that is a constant focus for the company.
The same modules are running on 4 different ECUs
coming from 3 different suppliers and using 3
different microcontrollers. This is a proof of the
validity of our concepts, but also this will give to the
workshops a standard behavior of all of our range of
engines, increasing the efficiency of the
maintenance and easing the reparability, in line with
our concern of giving our customers the best
available cost of ownership.
The re-use process reduces also our development
effort and duration. It allows us to concentrate our
efforts on the added value for our customers of
engine management system’s strategies, such as
the introduction of new solutions to limit the
environmental impact of our vehicles.

