
HAL Id: hal-02270268
https://hal.science/hal-02270268

Submitted on 24 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Statistical Testing of Synchronous Reactive Systems
Julien Fayolle, Marie-Claude Gaudel, Sandrine-Dominique Gouraud, Bruno

Marre

To cite this version:
Julien Fayolle, Marie-Claude Gaudel, Sandrine-Dominique Gouraud, Bruno Marre. Statistical Testing
of Synchronous Reactive Systems. Embedded Real Time Software and Systems (ERTS2008), Jan 2008,
Toulouse, France. �hal-02270268�

https://hal.science/hal-02270268
https://hal.archives-ouvertes.fr

Page 1/8

Statistical Testing of Synchronous Reactive Systems

Julien Fayolle1, Marie-Claude Gaudel1, Sandrine-Dominique Gouraud1, Bruno Marre2

1: LRI; Univ. Paris-Sud, CNRS ; Bât 490,91405 Orsay, France
2: LSL, CEA List Centre de Saclay, 91191 Gif sur Yvette Cedex, France

Abstract: The synchronous data-flow language
Lustre is widely used to describe the behavior of
reactive systems. Most of these systems are critical
so they need intensive testing. Statistical testing
allows intensive testing but generally misses special
cases. We present a new approach enriching
statistical testing with a coverage criteria of the
Lustre description.
We have developed sALLUSTe, a software tool
dedicated to the statistical testing of Lustre
descriptions. sALLUSTe generates test scenarios by
drawing uniformly at random paths in a structure
related to the Lustre description. Our approach and
the early results of sALLUSTe are presented here.

Keywords : Lustre, statistical testing, reactive
systems

1. Introduction

This paper presents a new approach to intensive
statistical testing of synchronous reactive systems
that are specified in the data-flow language Lustre
[14].
This approach combines some techniques and tools
that already proved their interest in their own fields,
namely: the GATeL tool for structural and functional
testing based on Lustre descriptions, and the
AuGuSTe tool for statistical testing of imperative
programs.
Classically, random testing methods are based on
some distribution on the input domain. They allow
intensive and low-cost testing campaigns. But they
lead to a poor coverage of particular cases.
Previous works [6,2] on biasing random testing of
imperative programs toward the coverage of their
control structure (under the name of statistical
testing) have shown experimentally a very good
detection power.
In this paper we study the transposition of such
approaches to data-flow reactive programs, taking
into account data dependencies and cyclic
behaviors.
The new approach consists of 1) translating the
Lustre description into a combinatorial structure
specification, which represents all behaviors, 2)
drawing uniformly at random an object within this
structure. This object corresponds to a behavior, and
3) computing a sequence of inputs that ensures this
behavior.

The second step exploits results and tools in
combinatorics. The third step is based on constraint
solving. A prototype called sALLUSTe has been
developed. It reuses the front-end and the constraint
solver of the GATeL tool.
The paper presents the method, the prototype, and a
significant set of first experimental results. These
results have been obtained on an academic example
formerly used to evaluate GATeL which is
representative of most Lustre descriptions, and on
an industrial example. These first experiments give
hints on how to improve the method and the tool for
producing test sequences of greater length.

2. Lustre and testing methods for Lustre

Lustre is a synchronous data-flow language. A data-
flow language describes the transformation of a
data-flow, namely a sequence of inputs into another
data-flow, the sequence of outputs. The
dependencies between successive inputs and
outputs is described by equations on the data-flows.
These specificities are well-suited for the description
of reactive systems. In this section we first recall
some basics about the Lustre syntax. Then we
sketch the specific testing methods for Lustre that
have influenced our work.

2.1 Lustre

A Lustre description is structured into nodes. In this
paper, we consider only one node but the approach
can be generalized to several nodes.

Each node is defined by a set of equations and an
equation denotes a flow. An equation is an
expression that may be a value, a variable, a
conditional expression (if…then…else), a temporal
operator (pre, when, current, ->) or any classical
operator (and, or, +, -, etc.).

Here is the example of a node called oven. It takes
three Boolean data-flows and one integer data-flow
(duration) in input and outputs a Boolean data-flow
(cooking).

node oven (start, abort, open: bool; duration: int)
returns (cooking: bool);
var
 running: bool;

Page 2/8

let
 running = if (open or abort)
 then false
 else if start
 then true
 else (false -> pre(running));

 cooking = running and (duration >0);

tel;

2.2 Testing methods for Lustre

Several methods and tools have been proposed to
test synchronous reactive systems. We describe
some of them adapted to the Lustre language:
Lutess [12], Lurette [4], Lustructu [3], GATeL [1,9] or
the statistical testing method described in [13].

Lutess, developed by LSR-Imag (Grenoble, France),
and Lurette, developed by Verimag (Grenoble,
France), consider both synchronous reactive
systems as black-boxes. Input sequences are
generated from Lustre descriptions of the
environment properties. Then, outputs are checked
against an oracle: the state of the system (values of
each flow) at each cycle should satisfy the safety
properties. Lutess only deals with Boolean data
flows but allows an elaborated environment i.e.,
operational profiles, or behavioral pattern. Lutess
also allows the design of tests from safety properties
in order to test the fault detection power of the
system under test. Lurette handles Boolean and
numerical data flows. The environment constraints
can be described by the Lucky language which
allows the generation of tests from non-deterministic
environments.

Lustructu, also developed by LSR-Imag, is not
exactly a test generation tool. Its goal consists in
evaluating the structural coverage of a Lustre
description i.e., the quality of a data test set. In order
to measure the structural coverage, the authors
defined some structural coverage criteria based on
the operator network. Given a Lustre description, a
coverage criteria and a data test set, Lustructu
determines the structural coverage after a symbolic
computation of path activation conditions.
Like Lutess, Lustructu only deals with Boolean data
flows.

2.3 GATeL

Given a reactive program and two (partial)
descriptions of its behavior and of its environment as
Lustre models, the main role of GATeL [1,9] is to
automatically generate test sequences according to
user-oriented test cases. These test sequences can

then be submitted to the program under test. In both
cases where the program has been automatically
generated from the model or not (depending on the
development process followed), GATeL also
provides a basis for an automatic oracle (expected
outputs).

The model of the environment is intended to filter out
from all the possible behaviors those corresponding
to realistic reactions, decreasing the state space to
be explored.

Requested test cases can then be finely
characterized in order to exercise meaningful
situations. Test cases selection is a crucial part of
the testing process. Several approaches have been
proposed to automate it, but none of them is
universally recognized. On the contrary, GATeL
provides the user the means to define his/her own
selection strategies. The first step on this direction is
the definition of a test objective. The test objective
states some important expected properties of the
program under test to be checked. It can be either
invariant properties or reachability properties.
Invariant properties are stated with assert directives.
The properties that must be satisfied in at least one
cycle (in fact, in the last cycle of sequences built by
GATeL) are stated by reach directives. To build a
sequence reaching the test objective according to
the Lustre model of the program and its
environment, these three elements are automatically
translated into a constraint system. A randomized
resolution procedure then solves this system.

The random aspect of this resolution procedure
implies that the input domains are not fairly covered,
thus quite distinct sequences may be generated for
the same objective (for instance different ways to
raise an alarm). A second step in the definition of a
selection strategy is to help GATeL to distinguish
these sequences. This can be achieved by splitting
the constraint system so that each sub-system
characterizes a particular class of behaviors
reaching the objective. This splitting can be
processed interactively by applying predefined
decompositions of Boolean-numerical-temporal
operators in the Lustre expressions corresponding to
the current constraint system. This interactive
splitting process provides the user a way to define a
tunable structural coverage of the model. A second
way to proceed is to state declaratively the various
behaviors one wants to observe through a dedicated
selectable directive split Var with [Cond_1...Cond_n].
When selected (depending on the visibility of the
attached variable), the constraint system is split into
n sub-systems with each one corresponding to the
assignment of one condition to true. These two
techniques allow the user to finely tune the kind of
selection strategy needed.

Page 3/8

Finally, test submission consists in reading input
sequences generated with GATeL, computing
program outputs, then comparing these values to the
expected ones evaluated during the generation
procedure. When the program has not been
automatically generated from the Lustre model, this
gives an automatic oracle. On the other case, the
truth value of the test objective can play the role of a
partial oracle. GATeL is still under development
concerning methodological and efficiency aspects.
However, it has been successfully experimented on
industrial case studies.

3. Coverage-guided random testing for
imperative languages

The first statistical testing method guided by
coverage criteria was proposed by Thévenod-Fosse
and Waeselynck in [6]. In 2004, Denise, Gaudel, and
Gouraud [2] introduced a new method along the
same line for the random generation of tests for C
programs. The control graph of a C program is
represented as a combinatorial structure. A path in
the control graph represents a possible execution of
the program. Drawing paths randomly within a
combinatorial structure (here the control graph) is an
active field of research and has produced highly
efficient algorithms [10, 11]. Paths within the
combinatorial structure are drawn and the testing
method uses constraint-solving to find the inputs
which execution leads to this path. For any path
drawn within the structure, there may be no input
which execution is represented by this path: The
path is said to be infeasible and this is a general
problem to software testing. A further advantage of
the method is that the combinatorial decomposition
makes possible the generation of inputs aiming to
satisfy a coverage criteria on the structure.

This method was the basis for the tool AuGuSTe.
AuGuSTe takes a C program as input (currently a
program written in a subset of C) and generates at
random as many test inputs as asked by the user in
order to cover a coverage criteria with some quality
[7].

As in the structural statistical testing method
proposed by [6], the method is able to draw some
interesting test suites that classical random testing
would probably not. It also enables the quantification
of the coverage ensured by the test suites.

4. A new approach for testing Lustre
descriptions

The new approach we present here is the
transposition of the one introduced by Denise,
Gaudel, and Gouraud in 2004 to the synchronous
reactive language Lustre, taking into account data
dependencies and temporal behaviors. In this
section we detail the brute-force method and explain
it on an example. Several optimizations of the
method are presented in the next section.

4.1 General scheme

The approach first consists in preprocessing a Lustre
description to represent it as a combinatorial
structure specification. This structure is related to the
decomposition of the Lustre operators into sub-
cases. Secondly paths are drawn uniformly at
random within this structure. Each edge on a path
holds a label. This label is a predicate (called FLA,
standing for feasible local atom) on the data-flows.
The conjunction of all the local predicates along the
drawn path is also a (large) predicate. Thirdly a
resolution step is performed (using constraint-solving
techniques) on the large predicate which may lead to
a test scenario.

In the following no difference is made between the
edge drawn and the label (FLA) it holds.

4.2 Brute-Force method

Preprocessing During the first step a Lustre node is
translated in a combinatorial structure specification.
Several flows are defined within a Lustre node. The
output value of a flow depends on the values of
“definitional” flows (i.e., flows used in the definition of
the output flow) and on the operators used in the
definition. Hence the output value of a flow
constrains the definitional flows. If there are only two
ouput values for the flow (for instance in the Boolean
case) then there are two large sets of constraints:
the constraints on the definitional flows that lead to a
true output and those leading to a false output. We
resort to the unfolding technique as used in Loft [8]
to further decompose the sets of constraints. It leads
to a larger number of sets of constraints but this
allows the identification of far more interesting
behaviors. Furthermore, it seems more likely that all
flows satisfying constraints from a given set have the
same fault detection power. The unfolding is done on
the Lustre operators (the level of the decomposition
is parametrizable by the user). The example
subsection above provides an example of the
unfolding technique.

Unfolding is one part of the preprocessing. Another
is the construction of FLAs by constraint-solving:
Once the sets of constraints for each flow have been
identified, the conjunction of these sets for all the

Page 4/8

flows defined within the Lustre node is built. This
creates a large number of sets of (larger)
constraints. Then the constraints of each of these
sets are solved and the sets which constraints are
not locally satisfiable are removed. This resolution is
done by constraint-solving. In the following, the
remaining sets of constraints are viewed as
predicates (the conjunction of each of the constraints
in the set leads to a predicate) and correspond to the
FLA (feasible local atom).

The Lustre initialization operator init (also noted ->)
is also unfolded and it creates two classes of cycles:
initial and non-initial. We formally define the sets
FLA-Init and FLA-NI as the sets of FLAs for the initial
cycle and for any non-initial cycle. Suppose there
are j FLAs at the initial cycle and k for any non-initial
cycle, then

FLA-Init:={FLA-Init1, ..., FLA-Initj} and
 FLA-NI:={FLA-NI1, ..., FLA-NIk}. [1]

The length n of the test scenario (number of cycles)
is specified by the user. The structure is called the
tree of FLAs. It represents the set of sequences of
FLAs of length n (sequences starting with a FLA
from FLA-Init and where any other FLA in the
sequence is from a non-initial cycle). Thus the tree is
a way of representing the set

FLA-Init x (FLA-NI) (n-1). [2]

Drawing and resolution Our method generates
uniformly a path (i.e., a sequence of FLAs) of the
given length among all sequences of the same
length. To each edge on the path is associated a
label which is a FLA. The conjunction of all FLAs
along the path is a large predicate. The constraint
solver from GATeL then checks whether the large
predicate is satisfiable, i.e., if there exists a
sequence of inputs satisfying the predicate.

Example We illustrate the brute-force method with
the example of the simple microwave oven
described in section 2.

The unfolding refines the sets of constraints for the
constraint-solving step. For example, the operator >
is (default setting) split into three sub-cases:
(duration>0) is true, (duration=0) is true, and
(duration<0) is true. The operator and is unfolded in
four cases: A and B leads to (A and B), (not(A) and
B), (A and not(B)), and (not(A) and not(B)). The
operator or is unfolded in four cases: (A and B),
(not(A) and B), (A and not(B)), and (not(A) and
not(B)). The operator if then else is unfolded in two
sub-cases: cond is true and cond is false.

The flow cooking has two definitional flows: running
and duration. The unfolding of operators and and >
lead to six predicates:
co1:={running=true, duration>0, cooking=true},
co2:={running=true, duration=0, cooking=false},
co3:={running=true, duration<0, cooking=false},
co4:={running=false duration>0, cooking=false},
co5:={running=false, duration=0, cooking=false},
co6:={running=false, duration<0, cooking=false}.

At the initial cycle there are 6 cases for the flow
cooking and also 6 cases at any non-initial cycle. At
the initial cycle there are 5 cases for the flow running
and also 5 at any non-initial cycle. Hence there are
30 conjunction predicates for the initial cycle and
also 30 for any non-initial cycle. Of these 30
predicates, 18 are locally satisfiable after constraint
solving i.e., there are 18 FLAs (and 15 FLAs for the
initial cycle).

5. Optimizations

The brute-force approach is simple in its conception
but suffers some drawbacks: a large number of
paths have to be drawn in order to find satisfiable
ones, the resolution of long predicates is costly, and
the re-drawing of paths does not take advantage of
previously drawn path. The resolution of the
predicate associated to a path may be unsatisfiable,
meaning that there is no test scenario which satisfies
the predicate. This problem of infeasible path is
general to software testing. We have developed
optimizations of the brute-force method that reduce
the number of drawn paths that are unfeasible.
Several other optimizations have been developed:
memorizing the infeasible paths and rejecting
infeasible paths earlier in the resolution step.

5.1 Optimizations for the generation

Real-time systems have the general behavior of
having little memory i.e., the values of the flows at a
given cycle do not depend too far back on previous
cycles. Hence the temporal dependencies between
flows are of short time frame. We preprocess all
predicates on a given (short) time frame by checking
them for satisfiability. In the brute-force method, this
time frame is one cycle, we extend it to 2 and 3
cycles. This preprocessing eliminates a large
number of unfeasible predicates, and consequently
this limits the possibility of drawing an infeasible
path.

Pairs 2-by-2 FLAs (only in the non-initial case)
consist in choosing two non-initial FLAs, defining
their conjunction as a new predicate, and checking

Page 5/8

the satisfiability of this predicate. The predicates that
are not unsatisfiable are kept. Then a tree of 2-by-2
FLAs is built on the same pattern as the tree of
FLAs.

The construction of pairs of FLAs is costly
nevertheless it removes a lot of local insatisfiability
and the pre-processing is done once.

Suppose the FLA “co4xru3”, the conjunction of the
predicate co4 and a predicate for the flow running is
drawn (this is indeed a FLA since the conjunction of
the two predicates is satisfiable) at the non-initial
cycle k and the FLA “co2xru2” at the cycle k+1 .
Both FLAs are feasible (by definition of the FLA)
nevertheless their conjunction is not satisfiable: At
cycle k, running is false and at cycle k+1, running
has the value of the flow at the previous cycle (since
running=pre(running) in ru2) but furthermore
running is false (in co2).

• Cycle k : co4:={running=false, duration>0,
cooking=false};

• Cycle k : ru3:={open=false, abort=true,
running=false};

• Cycle k+1 : co2:={running=true, duration<0,
cooking=false};

• Cycle k+1 : ru2:={open=false, abort=false,
start=false, running=pre(running)}.

To avoid these kind of insatisfiabilities on a two-cycle
time frame, all the pairs of FLAs on consecutive
cycles are preprocessed and insatisfiable pairs of
FLAs on this time frame are removed. The remaining
predicates are the 2-by-2 FLAs.

Triples The 3-by-3 FLAs are built on the same
pattern as 2-by-2 FLAs but the time frame is 3
cycles. A triple of FLAs is composed and checked for
satisfiabilty in a preprocessing step. If the predicate
is satisfiable, it is kept as a 3-by-3 FLA. Then a
structure based on these triples is constructed and a
path is drawn within this structure.

Building the set of triples of FLA is extremely time-
and memory-consuming and in most cases it does
not remove many insatisfiabilities (most were already
removed by the 2-by-2 FLAs).

5.2 Optimizations for the resolution

The brute-force method utilizes the naïve resolution
mode: A path of the required length is drawn during
the generation step then the predicate associated to
the path is checked for satisfiability. This is costly
since the checked predicate is long. (Its length is
related to the number of cycles and to the number of

flows defined within the node.) We offer two possible
optimized modes for the resolution: reject and
incremental. Reject means checking for satisfiability
predicates related to the prefix of the full path
incrementally until either a prefix is in the database
of rejected prefixes, a prefix is unsatisfiable, or the
full path predicate has been checked. Incremental
means checking for satisfiability predicates related to
the prefix of the full path incrementally, until either a
prefix is unsatisfiable, or the full-length predicate has
been checked.

Reject A path (which length is given by the user) is
generated uniformly among all paths. The predicate
associated to the full-length path is built
incrementally as the conjunction of the predicate
built on the prefix of the path and the predicate
associated to the current edge. A database of
rejected prefixes is built alongside the resolution. At
first the database is empty. The database is queried
to check whether the first predicate has already been
rejected. If the query gives no answer then the
current prefix predicate is checked for satisfiability. If
the predicate fails the satisfiability check then it is
added to the database of rejected prefixes.
Otherwise the predicate is prolonged (a new FLA, or
2-by-2 FLA, or 3-by-3 FLA is added), the database is
queried for the new predicate and so on until a path
of the required length has been found satisfiable.

With this mode, there is no need to store the full
predicate in memory. The length of the predicate is
the number of cycles asked for by the user, hence
the storing can be cumbersome. The database reject
is fast since it is a simple look-up.

Incremental A path (which length is given by the
user) is generated uniformly among all paths. The
predicate associated to the full-length path is built
incrementally as the conjunction of the predicate
built on the prefix of the path and the predicate
associated to the current edge. The incremental
resolution mode incrementally checks the
satisfiability of the predicate i.e., it checks the
satisfiability alongside the predicate construction.
The method first checks the satisfiability of the
predicate associated to the first edge (i.e., the label
associated to the edge drawn for the initial cycle), if
the predicate is satisfiable, then the predicate for the
second edge (corresponding to cycle 1) is added to
the path predicate and checked for satisfiability, and
so on. If, at some cycle, an unsatisfiability is
detected, the resolution is abandoned and a new
path is generated. The process stops when the full-
length predicate is successfully checked for
satisfiability.

In the incremental resolution mode, the length of the
predicate under consideration is increasing
incrementally from 1 to the given number of cycles.

Page 6/8

Hence the first predicates under consideration are of
small sizes allowing efficient satisfiability checking,
unlike the naïve mode. If the satisfiability check is
unsuccessful at one cycle then the longer predicates
are not even looked at, avoiding the dealing with
longer predicates.

5.3 Optimization for re-drawing

The brute-force method’s mode for re-drawing is
reset. At one point the resolution of a predicate may
fail (the predicate corresponds either to the full-
length path, or to a prefix of the path). Two modes to
re-draw another path are available: either (reset
mode), a new path is drawn from scratch (i.e., from
the initial cycle), or (backtrack mode) one backtracks
to the longest satisfiable predicate, then the
generation and resolution steps continue from this
“healthy” prefix.

The reset mode is slower since there is a new path
to generate each time the resolution of a predicate
fails. But the generation of paths is uniform among
all paths from the structure and it gives the ability to
quantify the coverage of the set of test scenarios.
The backtrack mode takes advantage of the
previous draws since it does not need to re-draw a
satisfiable predicate. Hence the generation of the
desired number of test scenarios is faster,
nevertheless the uniformity of the drawing and thus
the possibility of quantifying the coverage are lost.

6. sALLUSTe

sALLUSTe is an implementation of the method
explained in the previous two sections. It has been
developed by Bruno Marre and Julien Fayolle, using
the logical programming language Prolog. The
constraint-solving step is performed by a module
from GATeL. Our tool generates test scenarios
according to some strategy defined by the user. The
user may also specify the unfolding of the Lustre
operators.

The user provides sALLUSTe a Lustre description,
along with the length of the scenarios and their
numbers. The following optional modes presented in
the previous sections are available:

• Generation of the path: FLAs, 2-by-2
FLAs,or 3-by-3 FLAs;

• Resolution: naïve, incremental, or reject;
• Re-drawing: backtrack or reset.

The generation mode is set by the flag UPT (Unique
FLA, Pair of FLAs, or Triple of FLAs). The value zero
corresponds to FLAs, value 1 to 2-by-2 FLAs, and
value 2 to 3-by-3 FLAs. The resolution mode is set
by the flag NIR (Naïve, Incremental, or Reject). The
value zero corresponds to naïve, value 1 to
incremental, and value 2 to reject. The
backtrack/reset mode is set to backtrack if the value
of the parameter is zero, to reset if the value is one.

7. Experimental results

Experiments have been run on two examples : firstly
the description of a microwave oven with an
environment and secondly a description provided by
MBDA, an industrial partner. The benchmarks have
been run on GNU/Linux 2.6.20-16 with an Intel
Pentium IV 2.6 Ghz (512 MB of RAM). For each of
the four tables, the CPU time is averaged on 5
experiments.

The Lustre description of the microwave oven is
terse (63 lines of code and 4 flows), but possesses a
variety of Lustre operators and a large number of
temporal dependencies. Nevertheless the number of
FLA is limited (5 in the initial case and 13 in the non-
initial cases). This microwave is the same as the one
in Marre and Blanc [9] (see their Appendix for the full
description).

Table 1 shows the CPU time taken by sALLUSTe to
generate 1000 test scenarios using the brute-force
method. Obtaining 1000 test scenarios of length 10
already takes about 13 hours. Hence the brute-force
method is prohibitive even for small lengths.

Table 1
Length CPU time
5 130.21
10 47638

Table 2 shows the CPU time taken for the
generation of 1000 test scenarios using the modes
reject, FLA 2-by-2, and reset. The preprocessing
step, i.e., computing the FLAs 2-by-2, is of little
influence in itself, but this optimization it provides
large gains on the costly resolution step.

Table 2
Length CPU time
5 4.24
10 8.9
15 13.7
20 18.66
25 23.66
30 28.8
35 33.5
40 39.8
45 45.27
50 50.2
100 112.5
150 195.7
200 295.6

Page 7/8

The Lustre description of the second example has
388 lines of code and 19 flows are defined within the
node. There are 74 FLAs at the initial node and 744
at the non-initial nodes (for the standard unfolding of
operators).

Table 3 shows the time taken by sALLUSTe to
generate a single test scenario of length 4 to 6. The
brute method is used i.e., naïve resolution, AFLs and
reset.

Table 3

It can be noted that the computing time increases
very fast and obtaining even a single test scenario of
length 6 takes roughly 5 minutes. Once again the
brute force method is prohibitive even for test
scenarios on a small number of cycles.

The test generation using the above-mentioned
optimizations is far more satisfactory. Table 4 sums
up the results for the generation of 100 test
scenarios of length varying from 5 to 20. The method
uses the building of FLAs 2-by-2, the resolution
mode is reject and redrawing mode is reset.

For this example, the computation of the FLAs 2-by-
2, and 3-by-3 is lengthy (roughly 10 minutes to
compute 57,196 FLAs 2-by-2 from 553,536 couples
o f FLA) given the large number of FLAs.
Nevertheless this preprocessing step is done once
for the description and can be stored. The time in the
table measure the generation, resolution and reset
steps but not the preprocessing.

The preprocessing reduces the combinatorial size of
the problem by 90%. It is possible to generate 100
test scenarios of length 20 in about 10 minutes. A
scenario of length 20 already exhibits some
interesting behaviors to the tester.

Table 4

Length CPU time

5 5.47

10 26.85

15 130.

20 584.2

Overall these benchmarks indicate that the brute-
force method is ineffective. The backtrack mode
exhibits faster generation times but the uniformity on
the drawing is lost, and hence the ability to quantify
the coverage of the structure. Nevertheless with the
optimizations we devised, sALLUSTe is able to
generate test scenarios in large number and of
expressive length, in reasonable time.

8. Conclusion

Several improvements on the method are on-going.
First of all a refinement of the combinatorial structure
representing the Lustre description is under
consideration (currently it is the trivial concatenation
of FLAs, 2-by-2 FLAs, or 3-by-3 FLAs). We also
study the use of some learning process from the
detected insatisfiabilities (currently there is a
database of failures). An intelligent backtracking
strategy keeping the drawing uniform is considered.
Finally we investigate the use of program slicing
techniques in our approach since it may limit the
number of FLAs.

In this paper we do not consider the Lustre temporal
operators when and current, nor do we deal with
multiple clocks. This has to be taken care of in later
works.

The approach we devised is dedicated to Lustre
descriptions. Nevertheless, we are considering the
extension of the principle to others synchronous
languages like Esterel or Signal.

9. Acknowledgements

This work is part of the Software Factory project
(www.usine-logicielle.org) of the Cluster System@tic
Paris-Région.
The authors thank P. Baufreton from Hispano-Suiza,
and D. Pariente from Dassault Aviation for their on-
going evaluation of sALLUSTe and their feedback.
We also thank J.-S. Cruz from MBDA for providing
us a Lustre description (the one used in this article)
and M. Nakhlé and J. Courtilleux, both from C-S, for
sending us a very interesting Lustre description to
work on.

10. References

[1] Bruno Marre, Agnès Arnould: Test Sequence
Generation from Lustre Descriptions: GATeL.
In Fifteenth International Conference on
Automated Software Engineering, Grenoble,
2000.

[2] Alain Denise, Marie-Claude Gaudel, and
Sandrine-Dominique Gouraud: A Generic
Method for Statistical Testing, In ISRRE 2004.

Length CPU time

4 4.2

5 21.15

6 324.7

Page 8/8

 [3] Abdesselam Lakehal and Ioannis Parissis:
Lustructu : A tool for the automatic coverage
assessment of LUSTRE programs. In
Sixteenth IEEE International Symposium on
Software Reliability Engineering, pages
301–310, 2005.

[4] Pascal Raymond, Daniel Weber, Xavier
Nicollin, and Nicolas Halbwachs: Automatic
testing of reactive systems. In Nineteenth
IEEE Real-Time Systems Symposium, 1998.

[5] Lydie du Bousquet and Nicolas Zuanon: An
Overview of Lutess, A Specification-based
Tool for Testing Synchronous Software. In
14th IEEE International Conference on
Automated Software Engineering, pages 208-
215, 1999.

[6] Pascale Thévenod-Fosse and Hélène
Waeselynck. An investigation of software
statistical testing. The Journal of Software
Testing, Verification and Reliability, 1(2):5–26,
july-september 1991.

[7] Sandrine-Dominique Gouraud. Utilisation des
Structures Combinatoires pour le Test. Thèse
de doctorat. Université Paris-Sud. Juin 2004.

[8] Bruno Marre. Toward automatic test data set
selection using algebraic specifications and
logic programming. ICLP’91 Eighth
Internat ional Conference on Logic
Programming, pages 25-28, MIT Press, 1991.

[9] Bruno Marre, Benjamin Blanc: Test Selection
Strategies for Lustre Description in GATeL.
Electronic Notes in Theoretical Computer
Science 111 (2005) 93—111.

[10] Philippe Flajolet, Paul Zimmermann, and
Bernard Van Cutsem. A calculus for the
random generation of labelled combinatorial
structures. Theoretical Computer Science.
132:1-35, 1994.

[11] Albert Nijenhuis and Herbert Wilf.
Combinatorial Algorithms. Academic Press,
Harcourt, Brace, and Jovanovich, 1975.

[12] Ioannis Parissis and Farid Ouabdesselam.
Specification-based testing of synchronous
software. ACM SIGSOFT Fourth Symposium
on the Foundation of Software Engineering,
1996.

[13] Guillaume Lussier and Helene Waeselynck,
Deriving test sets from partial proofs, Fifteenth
Int. Symposium on Software Reliability
Engineering (ISSRE'04), pages 14-24,
November 2004.

[14] Nicolas Halbwachs, Paul Caspi, Pascal
Raymond, and Didier Pi laud. The
synchronous Data Flow Programming
Language Lustre. Proceedings of the IEEE,
79(9) :1305-1320, september 1991.

