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ABSTRACT
The strict and clear semantics of Java make it an ideal lan-
guage for static analysis. Nevertheless, the use of program-
wide pointer analysis for proving the absence of Java runtime
error conditions such as null pointer uses or illegal array in-
dices is still not widespread. Current uses of program-wide
pointer analysis focus on extracting information for optimi-
sations in compilers. In this case, imprecise analysis results
only in less agressive optimisation, which is often tolerable.

Existing implementations of program-wide data flow anal-
ysis either lack the required accuracy to prove the absence
of large enough numbers of certain errors or cause an explo-
sion in analysis time and space requirements for non-trivial
applications. Low accuracy leads to large numbers of “false
positives”, i.e., code for which the analysis fails to prove that
a certain error condition does not occur. An explosion in the
analysis effort causes the analysis not to produce any useful
results within reasonable time at all.

The approach presented in this paper applies the analysis to
create a correctness proof of safety-critical Java applications.
This includes the absence of runtime errors (null pointer use,
division by zero, etc.), the absence of potential deadlocks,
the correctness of region-based memory management and
the determination of resource constraints (heap and stack
use).
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1. INTRODUCTION
The enormous success of Java technology is due to the lan-
guage’s many advantages over more traditional languages,
such as higher productivity and safety. Even critical applica-
tions, as in automotive or aerospace control, can profit from
these advantages hidoors, aero [6, 1]. Extensions such as
the Real-Time specification for Java (RTSJ) [3] or real-time
garbage collection technology [13] make Java implementa-
tions fit for the time-critical application domain.

1.1 Scoped Memory in the RTSJ
Language extensions such as the Realtime Specification for
Java [3] have made it possible to use Java implementations
even though a garbage collector may interrupt the execu-
tion of normal Java code in an unpredictable way. Region
based memory management [17] using scoped memory and
realtime tasks that cannot access the garbage collected heap
make it possible to develop code that has predictable timing
behaviour and that can be used for hard realtime tasks.

Scoped memory provides an allocation context that is freed
when the context is exited. The use of scoped memory,
however, requires that certain runtime error conditions are
avoided. These new runtime error conditions are scopes that
are nested improperly and assignment that may lead to dan-
gling references.

Scoped memory areas may be nested such that entered mem-
ory areas form a tree. Each scope has at most one parent
scope in this nesting, but it may have several child scopes.
Since the same scoped memory area may be used by dif-
ferent threads simultaneously, each thread must follow the
same nesting order. Current implementations of the RTSJ
check at runtime that the scopes actually form a proper tree
and not a cyclic graph. If a cycle would be created by en-
tering a scoped memory area, a ScopedCycleException is
thrown at runtime.

Since memory allocated in a scope will be reclaimed after
this scope was exited by all threads, the implementation
has to ensure that no dangling references to any objects al-
located in a scope will exist when this scope is exited. There-
fore, the RTSJ does not permit storing a reference to an ob-
ject allocated in scoped memory into a static variable or into
another object that was allocated in heap memory, immor-
tal memory, or in an outer scope. Current implementations
of the RTSJ use runtime checks on all pointer assignments
to make sure that no assignments that may lead to dangling



references are made. In case an attempt is made to make
such an illegal assignment, an IllegalAssignmentError is
thrown by the virtual machine.

In addition to ScopedCycleException and IllegalAssignment-
Error, another runtime error that may occur when using
scoped memory is, of course, an OutOfMemoryError when
more memory is allocated than the scope was declared to
hold.

1.2 Pointer Analysis
The application of pointer analysis to object-oriented lan-
guages such as Java is a relatively new area of research.
There are two main uses of the results of pointer analy-
sis: the results can be used to control optimisations of code
manipulating tools such as compilers, or the results may
be used for the correctness analysis of an application. In
the presented approach, the results are used for correctness
analysis, which requires a very accurate analysis to produce
useful results.

1.3 Contributions
This paper presents a context-sensitive and flow-sensitive
pointer analysis algorithm for an object-oriented environ-
ment. The results of this pointer analysis are applied to
prove the absence of error conditions. The development of
the analysis algorithm was driven by the requirement to re-
duce the number of false positives in the set of potential er-
rors that is reported without causing a state explosion. The
error conditions include standard Java runtime errors such
as null pointer use, illegal casts and illegal array stores, but
also memory related runtime errors in applications using the
Real-Time Specification for Java [3]. The analysis results are
used for the verification of safety-critical Java applications
that are developed according to the profiles defined within
the HIJA project [7].

To illustrate the usefulness and scalability of the presented
algorithm, it is applied to the real-world Java applications
that are part of the SPECjvm98 benchmark suite [14], the
time and memory demands for the analysis of these applica-
tions are presented as well as the achieved analysis accuracy
for runtime error conditions.

2. MOTIVATING EXAMPLE
A typical use of scoped memories is show in figure 1. In This
example, a realtime thread runs it its own scoped memory
area s1. It starts by reading data from several files. A
second memory area s2 is used to store all the temporary
objects required to read those files. However, the data read
from the files is allocated in s2 and copied directly to s1
causing an IllegalAssignmentError at runtime in the call
to V ector.add made in line 28.

This kind of programming error is hard to predict since it is
caused caused by an apparently harmless pointer store oper-
ation. Finding it typically requires complex manual analysis
of the code to determine the possible memory areas of the
source and the target of the pointer store operation. In
this example, the illegal assignment error occurs inside class
V ector, even though the code of class V ector is correct; the
error is in the call at line 28 of the example that passes an ar-
gument that cannot be stored into the vector. This example

1: import javax.realtime.*;
2: import java.io.*;
3: import java.util.Vector;
4: public class Test implements Runnable
5: {
6: final static LTMemory s1 = new LTMemory(1000000);
7: final static LTMemory s2 = new LTMemory(1000000);
8: public static void main(String[] args)
9: {
10: new RealtimeThread(null,null,null,s1,
11: null,new Test()).start();
12: }
13: public void run()
14: {
15: final Vector results = new Vector();
16: for(int i=0; i<10; i++)
17: {
18: final int n = i;
19: s2.enter(new Runnable() {
20: public void run()
21: {
22: try
23: {
24: RandomAccessFile f = new
25: RandomAccessFile("file"+n,"r");
26: byte[] a=new byte[(int)f.length()];
27: f.readFully(a);
28: results.add(a);
29: f.close();
30: }
31: catch (Throwable t)
32: {
33: t.printStackTrace();
34: }
35: }
36: });
37: }
38: }
39: }

Figure 1: Example that causes an IllegalAssignmentError
in line 28.

illustrates that the feature of not causing illegal assignment
errors at runtime is not an aspect of a single class or method,
but an aspect of a whole application.

To prove the absence of such errors, all assignments have to
be analysed in all possible calling contexts they may be used
in. The pointer analysis presented in this paper solves this
problem. One of the results of the pointer analysis is the
value sets of all variables in the application. The represen-
tation of these values includes the memory area the values
were allocated in, such that assignment errors can be found
(see section 4.10).

3. POINTER ANALYSIS

3.1 Background
Significant effort has been undertaken in the area of pointer
analysis during the last decades [8]. Pointer analysis typi-
cally uses static, program-wide data flow analysis, which is
an iterative algorithm that determines an upper bound for
the set of values each reference variable in an application
may hold. In addition to the set of values for each variable,



the analysis determines a set of invocations, where an invo-
cation is a method call together with context information at
the call. The resulting set of invocations is an upper bound
for the set of invocations that may be performed during an
actual program run.

The analysis starts with an empty set of variable values and
the set of invocations containing only the main routine of
the analysed application. In each iteration, the set of pos-
sible values each variable may hold is joined with the set of
values that are assigned to these variables by any method
that is in the invocation set. Also, any new invocation that
is performed by a method that is in the set of invocations
is also added to this set. The iterative analysis continues
as long as these two sets grow, stopping when the smallest
fix point has been reached, i.e., when the sets of values and
invocations remained constant during a complete iteration
over all invocations.

Pointer analysis is called context-sensitive when the context
of the caller is part of the representation of invocations and
values. Context information is usually the call chain that
leads to an invocation. However, context may include other
information such as the thread that performs the invocation
or environmental information such as the current allocation
context when region-based memory management is used [17,
16].

An algorithm that is not context-sensitive is called context-
insensitive. Context-insensitive pointer analysis identifies
invocations and values by the method that is invoked and
the source code position that creates a value, respectively.
Context-insensitive analysis significantly reduces the anal-
ysis complexity, but it yields results that are not accurate
enough for the purposes described in this paper: values cre-
ated in different contexts cannot be distinguished and result
in the inability to prove the absence of an error. For exam-
ple, since the instances of a container that are used by dif-
ferent threads cannot be distinguished, a context-insensitive
analysis cannot detect that thread local objects stored into
a thread local container are not accessible by another thread
that uses a different thread local container instance.

In a context-sensitive analysis, the complete call chain is
usually used as context. Since this leads to infinite value
sets for recursive routines, the call chain has to be reduced
to contain no or only a limited number of cycles. However,
even with this restriction, the number of possible call chains
typically grows exponentially with the application size mak-
ing context-sensitive analysis difficult to apply to real world
applications.

Pointer analysis can be classified further as flow-sensitive
and flow-insensitive. A flow-sensitive analysis respects the
order of statements during the analysis of one routine, while
a flow-insensitive analysis ignores this order. A flow-sensitive
analysis achieves higher accuracy since information available
in the control graph (such as a null pointer check) can be
used to reduce the set of values of a variable. Unlike context-
sensitivity, the effect of flow-sensitivity on the performance
of the analysis is less critical; the additional overhead is
similar to the overhead of routine-wide (global) data-flow
analysis that is widely applied in optimising compilers at an

acceptable cost.

Object-sensitive points-to analysis for Java was presented
by Milanova et. al [10]. In object-sensitive analysis, the
context information does not consist of the call chain, but
the allocation site of the current object (this in Java) is used
as context information. This approach brings a significant
improvement in accuracy compared to a context-insensitive
analysis while the analysis complexity grows less than using
a context-sensitive analysis based on the complete call chain.

3.2 Jamaica Data Flow Analysis
For the analysis of the correctness of applications using the
Real-Time Specification for Java, a new pointer analysis al-
gorithm using augmented context information has been im-
plemented. This data flow analysis uses the intermediate
code representation used by the JamaicaVM [9] static Java
compiler generated from Java byte code. Single instructions
are more fine-grain than bytecodes. For exmaple, an ar-
ray element access is split into four independent instructions
that check the array for null, obtain the array length, check
the index value and finally read the array element. This
intermediate representation replaces the Java stack and the
local variables used in the bytecode by using the static sin-
gle assignment form [2, 11] instead. The static single assign-
ment form simplifies the local data flow analysis in a single
method since the data flow between intermediate commands
is explicit.

During the data flow analysis, two sets are determined: the
set of invocations (called methods with their context) and
the set reference values for each reference field and reference
array’s elements. The analysis runs iteratively starting with
the main function of the application 1. The data flow for
all invocations is analysed in each iteration. During the
analysis, new values are added to the value sets of fields
and array elements and new methods that are found to be
called are added to the set of called methods. The algorithm
terminates when these sets remained constant during one
iteration.

Reference values are identified by the class of the object they
represent together with context information. This context
information is crucial. When it is too detailed, the num-
ber of values explodes and the analysis becomes infeasible,
while too little context information results in an analysis
that finds more “false positives”, i.e., potential errors that
actually cannot occur at run-time. The context information
of the Jamaica data flow analysis consists of the allocation
site, the thread that performed the allocation, the current
memory area in use, the set of locks held and a form of
object context as proposed by Milanova et. al [10].

To reduce the analysis effort, the analysis is split into major
and minor iterations. A major iteration analyses all calls
in the set of called methods. For the minor iterations, the
called methods are placed into separate age groups. If the
analysis of a call causes the call or value set to grow, the

1the analysis actually starts with the virtual machine initial-
isation code that is called before the main method. For Ja-
maicaVM, this means that an internal constructor of Thread
and the static initialiser of class System is also initially
added to the set of invocations



next iteration is restricted to the methods in the same or
younger age groups. This means that repeated analysis of
invocations that had now effect on the analysis results are
avoided in minor iterations. This analysis also distinguishes
object initialisation and object use which significantly im-
proves the analysis accuracy for object oriented applications.
Specific properties such as singleton instances and embed-
ded instances are also detected to further improve analysis
accuracy.

This is the output of the the analysis run on a HelloWorld
application:

>jamaica -dfa HelloWorld
Jamaica Builder Tool 2.9 Release 5
DFA ITERATION 1.1.1 CALLS: 490 methods: 183 (2s, 67MB)
DFA ITERATION 1.2.15 CALLS: 1215 methods: 251 (4s, 70MB)
DFA ITERATION 1.3.27 CALLS: 2014 methods: 287 (7s, 73MB)
DFA ITERATION 1.4.3 CALLS: 2206 methods: 323 (8s, 80MB)
DFA ITERATION 1.5.9 CALLS: 2332 methods: 341 (9s, 82MB)
DFA ITERATION 1.6.4 CALLS: 2332 methods: 341 (10s, 86MB)
DFA ITERATION 1.7.1 CALLS: 2332 methods: 341 (11s, 89MB)
DFA ITERATION 1.8.1 CALLS: 2332 methods: 341 (11s, 92MB)
DFA DONE: 11583ms TRACED 302 VALUES, 847 VALUE SETS 2332
INVOCATIONS.

Even though a HelloWorld is very small, the analysis has to
analyse all the code that is executed during startup of the
virtual machine, which leads to a total of 341 methods that
in this case. Each line that is printed by the analysis shows
the state after one major iteration. The analysis stabilises
after 8 major iterations, while at most 27 minor iterations
where needed (in major iteration 3).

During the analysis, 2332 invocations where found for 341
methods, i.e., there are 2332 different calling contexts even
though there are only 341 different methods that may be
called. 302 different reference values where detected and
847 different sets of these values were created to store the
values of variables. The total analysis time was less than 12
seconds, a time short enough that enables regular use of the
analysis tool, e.g., as part of the normal build process of an
application.

4. APPLICATION OF POINTER
ANALYSIS RESULTS

Pointer analysis results are used for four purposes: the ab-
sence of runtime exceptions such as null pointer uses and
illegal casts, the correctness of synchronisation, the correct-
ness of the region-based memory management available in
the RTSJ and the determination of worst-case memory al-
location and worst-case stack use.

4.1 Runtime Error Detection
The runtime errors detected by the presented analysis are
null pointer dereferencing, type cast and array store errors.

4.2 null pointer usage errors
Making null a special value for references, that is traced
by the data flow analysis, also enables proving the absence
of null pointer dereferencing. The detection of a potential
presence of a null pointer use is straightforward: At any

point in the program that dereferences a pointer, if the null

value is part of the value set of the dereferenced variable,
there is a potential null pointer use. Since all instance and
static reference fields in Java are initialised with the null

value, for a useful null pointer use analysis it is essential
that the presence of initialisation code that overwrites this
null value is detected reliably.

4.3 Type cast errors
A type cast in Java performs a runtime check that ensures
that the casted reference is assignable to the target type. If
this is not the case, a ClassCastException is thrown. The
availability of the exact value sets enables the detection of
potential class cast exception. When for every cast the set
of values that is casted contains only values assignable to
the destination type, it is proven that the cast will succeed.

4.4 Array store errors
Java permits the assignment of reference arrays to array
variables of a more general element type. To ensure that
storing an element in an array does not store a value of an
incompatible element type into an array of a more specific
element type, a runtime check is performed on every array
store. The following code illustrates a code sequence that
causes such a runtime check to fail.

1: Object[] a = new Object[10];
2: String[] b = new String[10];
3:
4: a[0] = "A String"; // ok
5: a[1] = new Integer(3); // ok
6: a = b; // ok
7: a[2] = "Another String" // ok
8: a[3] = new Integer(3); // error!

With the availability of complete value sets of all variables, it
is possible for each array store to check if all possibly stored
values are assignable to all possible target array element
types. When this is the case, no array store error may occur
at runtime, otherwise the assignment is a potential error.

4.5 Array index errors
To be able to analyse the validity of an array index vari-
able, the analysis follows integer values in a way similar to
pointer values. Additionally, for each array that is used by
the application, the array length provided to the array al-
location expression will be saved with the array reference,
such that the length will be available at all uses of exactly
this reference to the allocated array.

Furthermore, array accesses frequently occur using an index
variable that is incremented repeatedly in a loop. For the
analysis to be able to determine a useful maximum value for
the index variable, loop continuation conditions of the form
index < array.length must be detected by the analysis to
deduce that an access of the form array[index] is legal.

With this infrastructure, the analysis is able to prove that
the majority of array accesses in a typical application are
correct.



4.6 Negative array size errors
With the integer values taking part in the analysis, the run-
time error that would occur on the allocation or an array
with a negative size can be found trivially: If the array size
on any array allocation may be a negative value, such a
runtime error may occur.

4.7 Division by zero errors
Divisions by zero in Java cause an arithmetic exception. The
proof of the absence of such errors is trivial with the integer
value ranges: Only if zero is part of the values of the divisor,
a division by zero may occur.

4.8 Correctness of Synchronisation
The correctness of synchronisation in a Java application is
a hard problem. Errors such as deadlocks that result from
different locking orders between threads require an accurate
analysis to be detected statically, while these errors occur
only sporadically at runtime and are hard to reproduce.

To be able to verify the correctness of synchronisation, the
notion of a thread first needs to be available in the pointer
analysis. In Java, a thread is started via a call to method
start on a new instance of class Thread or a subclass of
Thread. When a new thread is started, the run method
is called on this thread instance. This thread instance is
used by the analysis to identify threads. The context of all
invocations contains the thread represented by its thread
instance. Whenever a call to Thread.start is detected by
the analysis, a corresponding invocation of the run method
using the new thread instance as thread context is added to
the set of invocations.

A call to Thread.start may spawn an arbitrary number of
threads if the target thread instance is not a singleton. To
be able to detect thread related errors between several such
threads with the same context, a second invocation of the
same thread is created using a copy of the value that repre-
sents the original thread instance (the same idea is used for
thread escape analysis by [18]). The copy is marked with a
flag isTwin such that results can later be filtered appropri-
ately.

In addition to the thread context, it is required to have in-
formation on the set of locks that a thread may hold at any
point of the analysis. The context of an invocation is there-
fore equipped with a set of locks that the thread may hold
at the invocation. Any synchronisation performed adds the
objects the thread synchronises on to the set of locks that
may be held at the current invocation context. Any invoca-
tion performed during the synchronised statement sequence
will use this set as its synchronisation context.

4.9 Absence of deadlocks
Since the set of locks that are held at each invocation is part
of the representation of invocations, the proper nesting of
synchronisation can be verified straightforwardly. Potential
deadlocks as the one illustrated in Figure 2 can be detected.
For this deadlock detection, the order in which locks are
entered is recorded for each thread. Then, it is checked if
other threads that synchronise on the same values do this
in exactly the same order. If other threads may synchronise

1: new Thread() {
2: public void run() {
3: synchronized (o1) {
4: synchronized (o2) {
5: }
6: }
7: }.start();
8: new Thread() {
9: public void run() {
10: synchronized (o2) {
11: synchronized (o1) {
12: }
13: }
14: }.start();

Figure 2: Potential deadlock between two threads.

1: class C {
2: synchronized void m() {
3: if (check()) {
4: dosomething();
5: }
6: }
7: synchronized boolean check() {
8: return state == OK;
9: }

Figure 3: Typical nested synchronisation pattern

on objects in a different order, there is a potential deadlock.
In this case, the innermost synchronisation that may cause
a deadlock is displayed as a potential error.

One important code pattern that occurs frequently in Java
code is a synchronised instance method that calls another
synchronised instance method as shown in Figure 3. Using
the plain pointer analysis results, we will get a false posi-
tive potential deadlock reported here since it is not obvious
from the pointer analysis results that check, when called
from m, will synchronise on exactly the same object and
hence may not cause a deadlock. The analysis therefore has
been extended to detect invocations within a synchronised
method that invoke another synchronised method on exactly
the same target object. In this case, the inner synchronisa-
tion will be ignored.

4.10 Correctness of region-based
memory management

To be able to verify the correctness of assignments of ob-
jects allocated in scoped memory and the absence of scope
cycles, the context information for invocations and types is
extended with the current allocation context. This alloca-
tion context is identified by the corresponding memory area
instance. On a call to enter of a memory area, the context
is set to that memory area for the invocation of run method
that executes in this area.



4.10.1 Absence of cycles between scopes
Verification of the absence of scope cycles is performed by
recording a ordering relation whenever a scoped memory
area is entered in a context that uses another scoped mem-
ory area as a surrounding allocation context. Whenever
a new relation is added to this order, DFA checks that
this new relation still respects the single parent rule de-
fined by the RTSJ. When this is not the case, a possible
ScopedCycleException is reported.

4.10.2 Verifying assignments
The value that represents an allocated object includes the
memory area context of the invocation that allocates the
object. This information can then be used to check for all
reference stores where an IllegalAssignmentError might
occur during runtime. When the assigned reference in the
store might be allocated in a memory area that is not equal
to or a parent of the target of the store, then a possible
IllegalAssignmentError is reported by the analysis.

When applying the analysis to the example from figure 1, the
illegal assignment is detected reliably. Figure 4 shows the
output of the data flow analysis tool when run on this exam-
ple. The first line of the output is a summary of the problem:
there is a potential illegal assignment to an array at line 530
in class V ector (at bytecode number 48). The following two
lines show the assignment that causes the problem: the tar-
get of the assignment is an array allocated in class V ector at
line 148, while the assigned value is a reference to a byte ar-
ray allocate in line 28 of Test.java. This array resided in the
scoped memory LTMemory created in line 7 of Test.java,
which is the scoped memory s2. Lines 4 through 10 give the
context information for the failing assignment instruction.
The context is the method V ector.addElement with the al-
location context being the LTMemory created in Test.java
in line 7, which is s2. Line 5 shows the current thread, which
is the RealtimeThread created in Test.java in line 11. Line
6 and 7 show the potential values passed to this routine.
Finally, to guide the user to the source of the problem, lines
9 through 17 show an example of call chain that leads to
the problem. Here, we can see that the call to V ector.add

in line 28 of Test.java is on the call chain.

Since the call chain is not used as context information by
the analysis becauuse this would lead to an explosion in the
number of invocations, several different call chains may lead
to the same invocation. This is why, for each invocation,
only one example call chain is shown.

4.11 Worst-case memory usage
The accurate invocation graph that is a result of the pre-
sented analysis can be used for automatic analysis of worst-
case memory demand of the threads that are part of one
application. A traversal of the invocation graph and sum-
ming of the memory demand of each invocation results in
the total memory demand of each method. For this analysis,
however, additional constraint information on maximum re-
cursion depths, maximum loop counts, and maximum sizes
of allocated arrays is required. This information is not avail-
able from the pointer analysis. Instead, the HIJA project
uses additional tools that require annotations in the source
code or in separate files to provide these constraints. The
correctness of these annotations needs to be verified. The

HIJA team hija is investigating the use of formal verification
based on the KeY verifier key03 for this.

4.12 Worst-case heap memory use
For worst case heap use, the amount of allocation needs to
be summed up recursively starting from the main method
of each thread. The sum of the memory allocated within
loops needs to be multiplied by the maximum loop count
and allocations in recursive methods can be determined by
multiplying the maximum recursion depth with the alloca-
tion performed within one recursive cycle.

4.13 Worst-case stack use
The maximum stack use can be determined by an algorithm
similar to the worst-case heap use, only the stack use does
not need to be summed up for different calls that originate in
the same method; rather it is sufficient to use the maximum
stack use of all called methods. Also, stack use is indepen-
dent of loop counts, but it strongly depends on maximum
recursion depths. This stack use in a recursive method is
the product of the stack use in one recursive cycle and the
maximum recursion depth.

4.14 First experience
First experience with worst-case memory use determination
show that the number of additional constraints that are re-
quired is limited such that this information can be provided
manually even for moderately complex applications. The
analysis itself is fast enough even for larger applications.

5. EXPERIMENTAL RESULTS

5.1 Performance
To measure the performance and accuracy of the presented
points-to analysis, the widely applied benchmarks from the
SPECjvm98 benchmark suite and a simple “Hello-World”
like application were used. Even though a “Hello-World”
sounds trivial, due to the complex startup code in Java even
such a minimal application requires the analysis of 340 meth-
ods. The applications in the SPECjvm98 benchmark suite
were not written to be easy to analyze, so they pose a much
harder test to the analysis framework than the safety-critical
applications for which specific coding guidelines will be de-
veloped that ease the analysis.

The performance was measured on a Mobile Intel Pentium
4 - M CPU at 1.8GHz running Linux kernel version 2.4.27
(SuSE 8.2). Figure 5 illustrates the analysis performance:
The analysis of these tests took between 5 and 710 seconds
and required between 34 and 204MB of memory. The num-
ber of distinct reference values that where found during the
analysis was between 326 and 2298, the number of invoca-
tions was between 1989 and 9353, the number of analyzed
Java methods was between 340 and 1755.

Four tests exceeded the set analysis time budget of 30 sec-
onds and had the accuracy of some types reduced. For jess,
very frequent uses of class StringBuffer lead to a reduction
in accuracy for this class, while raytrace and mtrt have two
classes ObjNode and OctNode that are used in too many
different contexts. Somewhat exceptional is the behavior of
javac, which has a complex recursive use of many different



1: POTENTIALLY ILLEGAL ASSIGNEMT: to array at java/util/Vector.java:530[48]
2: java/lang/Object[][ONEINSTANCE]:5846:5811:1830 (Vector.java:148[18])
3: <== byte[]:5994:5814:1830 (Test.java:26[34])

{IN: javax/realtime/LTMemory[SINGLETON]:1357 (Test.java:7[13])}
4: IN METHOD method java/util/Vector.addElement(Ljava/lang/Object;)V

[MemoryArea: javax/realtime/LTMemory[SINGLETON]:1357 (Test.java:7[13])]
5: in thread: javax/realtime/RealtimeThread:1829 (Test.java:10[0])
6: (arg[0] : java/util/Vector:5811:1830 (Test.java:15[0]),
7: arg[1] : byte[]:5994:5814:1830 (Test.java:26[34])

{IN: javax/realtime/LTMemory[SINGLETON]:1357 (Test.java:7[13])})
8:
9: 1: method java/util/Vector.addElement(Ljava/lang/Object;)V (Vector.java:530)

10: 2: method java/util/Vector.add(Ljava/lang/Object;)Z (Vector.java:680)
11: 3: method Test$1.run()V (Test.java:28)
12: 4: method javax/realtime/MemoryArea.enter(Ljava/lang/Runnable;Z)V (MemoryArea.java:1126)
13: 5: method javax/realtime/MemoryArea.enter(Ljava/lang/Runnable;)V (MemoryArea.java:1092)
14: 6: method javax/realtime/ScopedMemory.enter(Ljava/lang/Runnable;)V (ScopedMemory.java:274)
15: 7: method Test.run()V (Test.java:19)

Figure 4: Detailed output of the data flow analysis when run on the example from figure 1.

classes for expressions that cause an explosion in the analy-
sis effort. So the accuracy was reduced for these expression
classes.

The number of source code positions for which potential
errors were found are illustrated in Figure 6. Between 82%
and 100% of all pointer uses could be proven not to use a
null pointer in these tests. For type casts, for all tests except
one more than 85% of the casts could be proven not to fail at
runtime, the one exception is javac where the reduction of
accuracy lead to being able to verify only 40% of the casts.
Very good results where achieved for array stores, at most
8% of the array stores could not be proven correct. Finally,
about 66% of synchronization could be proven not to cause
a deadlock.

In summary, a very high percentage of runtime error condi-
tions could be verified with this analysis. First inspections
have shown that many of the remaining false positives can be
eliminated by simple coding guidelines or by enhancements
of the analysis. An example is the frequent code pattern
that calls a method on a field f with an explicit null check:

if (f != null) {
f.m();

}

This code is dangerous if null may be assigned to f by an-
other thread. The current analysis does not record which
threads perform assignments to fields, so a potential null
pointer use will be reported here. A simple code restructur-

ing using a local variable solves the problem:

C local_f = f;
if (local_f != null) {
local_f.m();

}

Now, there is no potential null pointer use. For HIJA, we
are collecting these kinds of restructuring to form coding
guidelines for safety-critical applications. Of course, the ap-
proach of extending the accuracy of the analysis to cover
such code without modifications in the application is also
being followed.

5.2 Graphical User Interface
To improve the usability of the analysis, a graphical front-
end was developed that permits browsing through the tree
of source code files while potential errors detected by the
analysis will be displayed. An example of this graphical
output is shown in Figure 7: Here, a potential dead-lock
is shown that was detected by the analysis. The displayed
hierarchy starts with the packages of the application, then
the classes within a package, the methods in a selected class
and the method code itself. Any element that contains none
of the selected error kinds will be displayed in green, while
elements with potential errors are shown in orange.

6. RELATED WORK
Pointer analysis algorithms have been subject of research
for over 25 years [8, 12]. Among the list of open issues that
where identified by Michael Hind [8] are scalability, precision
of results, addressing client’s needs, and the support for Java
and object oriented languages. In general, the problem is to
obtain suffficient accuracy for practical use without incur-
ring state explosion during execution.

Efficient points-to analysis implementations that scale well
to real world applications were originally restricted to con-



Application Analysis Memory # of values # of # of # of types with
time, sec demand, MB invocations methods reduced accuracy

check 9 32 505 1989 489 0
compress 12 34 529 3084 506 0
jess 196 204 1748 6016 1005 1
raytrace 103 106 847 7765 691 2
db 18 38 671 3885 592 0
javac 710 188 1454 6986 1755 47
mpegaudio 27 57 2095 6312 692 0
mtrt 102 106 847 7765 691 2
jack 45 70 2298 9353 757 0
hello 5 34 326 1192 340 0

Figure 5: Experimental results: Analysis performance

Application potential null potential illegal potential array potential deadlocks
pointers uses / total casts / total # store error / total / total # of

# of pointer uses of ref type casts # of array stores synchronizations
check 10 / 1953 (1%) 3 / 49 (7%) 0 / 45 (0%) 0 / 48 (0%)
compress 33 / 1813 (2%) 4 / 54 (8%) 1 / 43 (3%) 5 / 43 (12%)
jess 552 / 5265 (11%) 16 / 120 (14%) 1 / 105 (1%) 5 / 60 (9%)
raytrace 452 / 3398 (14%) 5 / 58 (9%) 2 / 57 (4%) 20 / 60 (34%)
db 102 / 2370 (5%) 5 / 73 (7%) 1 / 39 (3%) 5 / 56 (9%)
javac 1726 / 9884 (18%) 213 / 360 (60%) 18 / 457 (4%) 17 / 87 (20%)
mpegaudio 112 / 9605 (2%) 9 / 60 (15%) 1 / 944 (1%) 5 / 42 (12%)
mtrt 452 / 3400 (14%) 5 / 58 (9%) 2 / 59 (4%) 20 / 60 (34%)
jack 286 / 5103 (6%) 8 / 141 (6%) 1 / 99 (1%) 5 / 45 (12%)
hello 0 / 1012 (0%) 0 / 41 (0%) 0 / 21 (0%) 0 / 35 (0%)

Figure 6: Experimental results: Numbers of potential runtime error conditions found. The numbers are given in number
of source code positions, i.e., without context information. The actual contexts that lead to a potential error are nevertheless
available in a detailed output of the analysis tool

Figure 7: Graphical representation of DFA results.



text-insensitive and flow-insensitive analysis. The first context-
insensitive and scalable implementation was provided by
Steensgard [15]. More recently, context-sensitive points-to
analysis that scales well to large C applications has been pre-
sented by Fähndrich et al [5, 4]; however, these approaches
are either flow-insensitive or unification based. A unifica-
tion based algorithm regards assignments as bidirectional
such that the source and target variable of an assignment
has the same value set, which leads to significantly reduced
precision compared to the inclusion based approach that is
presented here. Furthermore, these earlier approaches dif-
fer from the presented approach in that they are not field-
independent, whereas the approach presented here main-
tains separate value sets for each field.

7. CONCLUSION
The presented pointer analysis can prove the absence of
pointer and integer related errors such as null pointer use or
array index errors, but also errors related to the use of region
based memory management using the mechanisms available
in the Real-Time Specification for Java. The analysis serves
as a basis for worst-case memory use analysis enabling static
analysis to avoid resource related runtime errors. This is of
particular interest for safety-critical code that needs to be
certified.

It has been shown that this approach scales well to medium
size real-world applications and can prove the correctness of
a high percentage of statements that are potential sources
of runtime errors.

Future work needs to focus on the development of coding
guidelines that ensure a more accurate analysis and that
avoid certain obvious problems. Also, enhancements in the
analysis accuracy may be achieved by recording additional
information such as the set of threads that modify a field.
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