
HAL Id: hal-02270223
https://hal.science/hal-02270223v1

Submitted on 5 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CASH Only: Constitutive Autonomy through
Motorsensory Self-Programming

Olivier L. Georgeon, Alexander Riegler

To cite this version:
Olivier L. Georgeon, Alexander Riegler. CASH Only: Constitutive Autonomy through Motorsensory
Self-Programming. Cognitive Systems Research, 2019, 58, pp.366-374. �10.1016/j.cogsys.2019.08.006�.
�hal-02270223�

https://hal.science/hal-02270223v1
https://hal.archives-ouvertes.fr

CASH Only: Constitutive Autonomy through

Motorsensory Self-Programming

Olivier L. Georgeon1 and Alexander Riegler2

1Université de Lyon, UCLy, EPHE/PSL, LBG UMRS 449, LIRIS CNRS UMR5205,

Lyon, France, ogeorgeon@univ-catholyon.fr

2Center for Logic and Philosophy of Science, VUB, Pleinlaan 2, 1050 Brussel, Belgium,

ariegler@vub.ac.be

Abstract: Constitutive autonomy is the capacity of an entity to perpetually develop its

individual constitution and coupling with its environment. We argue that computational

entities (i.e., entities that can perform computation) can gain constitutive autonomy

through motorsensory self-programming – a mechanism by which the entity acquires

new computational processes as a series of patterns of interaction that the entity can

learn through experience, simulate internally, and enact in the environment.

Motorsensory self-programming allows the evolution of the cognitive coupling between

the entity’s behavior selection mechanism and the environment as it appears from the

viewpoint of the behavior selection mechanism. Constitutive autonomy of

computational entities could lead to genuine agency.

Keywords: Autonomy, constructivist learning, enaction, self-motivation, cognitive

architectures.

1 Theory

Authors in the domain of artificial intelligence have been discussing the concept of

autonomy for a long time. David Vernon et al. (2015: 2) proposed the following broad

definition: “the degree of self-determination of a system, i.e., the degree to which a

system’s behavior is not determined by the environment and, thus, the degree to which a

system determines its own goals.” The question of how a system (natural or artificial)

constructs its own goals remains, however, an open question in philosophy and in the

cognitive sciences.

Vernon et al. (2015) as well as Ezequiel Di Paolo (2005), and Tom Froese & Tom

Ziemke (2009) distinguish two types of autonomy: behavioral autonomy and

constitutive autonomy:

“Behavioral autonomy focuses on the external characteristics of the system: the extent to

which the system sets its own goals and its robustness and flexibility in dealing with an

uncertain and possibly precarious environment.” (Vernon et al. 2015: 3)

“[C]onstitutive autonomy focuses on the internal organization and the organizational process

that keep the system viable and maintain itself as an identifiable autonomous entity.” (ibid)

Notably, Vernon et al. make a distinction between “setting goals” (behavioral

autonomy) and “determining goals” (autonomy in the broad sense). Our interpretation is

that, in the former case, goals are “set” within a pre-existing set of goals in a pre-

modeled domain, whereas in the latter case goals are “determined” in an open-ended

way as the system autonomously develops and learns about itself and the world.

Constitutive autonomy is considered inseparable from living beings. It is also an

indispensible concept in the cognitive domain because, as Froese and Ziemke (2009)

emphasize, “constitutive autonomy is necessary for sense-making.”

Artificial entities capable of constitutive autonomy could be envisioned in a multi-agent

modeling paradigm growing new “artificial cells” in analogy with the development of

biological multi-cellular organisms. However, by focusing on computational entities,

i.e., entities that can perform computation, we take the discussion to a higher conceptual

level independent of modeling paradigms such as the multi-agent modeling.

In the literature, the term “computation” is quite ambiguous (see, e.g., the discussion in

Riegler, Stewart & Ziemke 2013). Since notions such as “algorithm” and “program”

suggest the unchangeable and inflexible execution of deterministic rules we refrain from

defining computation in these terms. Rather, we use it pragmatically in a general and

intuitive sense: Computation is a formal sequence of processes that, through discrete

steps, transform a set of states into another or the same set states. This definition aligns

with the constructivist perspective on neuronal activity: “all states of neuronal activity

in the nervous system always lead to other states of activity in the nervous system”

(Maturana 1975: 318).

Is human cognition computational? Can the motions of the planets be seen as

computation? Such questions allude to the distinction between computational and non-

computational process and how to apply it to observed systems. However, in this paper

we do not seek to computationally model observable cognitive systems (such as human

beings), i.e., identify observable states, and specific state transformations that are

needed to successfully map the observed system to the formal system (Cariani 1992).

Rather, we argue that evolving embodied computational entities can become

autonomous relative to their environment in their own right. If the criteria for autonomy

can be defined in a set of rules, we do not see why computational (i.e., formal) entities

could not meet these rules.

Some proponents of enactivism reject computationalism because, allegedly, it involves

representation (as used by realist correspondence theories of truth) and cannot

implement autonomy (i.e., according to one’s internal goals and history rather than

purely in terms of reacting to external stimuli). So while we certainly do not subscribe

to what is called computationalist cognitive science (equating the human mind with an

information-processing computer) we stress that from the constructivist perspective, the

notion of structure-determined systems (Maturana 1975) in particular suggests that any

such system is in principle equivalent to a Turing machine (see Villalabos & Dewhurst

2018): Structure determinism directly leads to cognitive closure and autonomy as well

as rejects representationalism, so we do not share the objections of those proponents of

enactivism.

How can computational entities gain constitutive autonomy? We propose the

Constitutive Autonomy through Self-programming Hypothesis (CASH) that holds that

constitutive autonomy of computational entities relates to their capacity to

autonomously construct new software throughout their existence. In computer-

engineering terms, in contrast to what most current machine-learning systems do, this

amounts to acquiring new executable code rather than data (including parameters,

symbols, weights in neural networks). Here we follow Terry Winograd and Fernando

Flores (1987) who distinguish between (a) parameter adjustment, (b) combinatorial

concept formation, and (c) evolution of structure. They argued that only when “the

initial system does not have a structure directly related to the task as seen by its

designer” (ibid: 102) a computational system can evolve a novel structure shaped by

interaction with its environment, i.e., when it is structurally coupled with it (Maturana

1975). As Winograd & Flores note, this holds for “any system whose internal structure

can change as a result of perturbations, and computer programs share this quality” as

long as computers are considered “plastic structure-determined systems” (ibid). Such

flexible software transcends the limitation of predefined programs and qualifies as

structure-determined system that can undergo structural coupling with its (software)

environment. Similarly, in Riegler (2002) it was argued that structural coupling (leading

to the embodiment of the system in question) is not necessarily limited to physical

domains, but rather that computer software can also become embodied and construct its

own goals that are novel with regard to the initial system of the human programmer.

One could be tempted to say that there is a fundamental difference between hardware

(populating the physical world) and software (as a specification of a process) in the

sense that we always have only partial incomplete access to the physical world (limited

by our senses and our measurements), whereas as designers of software, we always

have complete access to all aspects of its specification. This distinction is meaningless

for practical and theoretical reasons: (1) Learning will always take place from the

perspective of the entity and its limited perspective, and (2) given the sheer complexity

the software gains, any attempt of understanding and tracing (reverse-engineering) all

the processes will become impossible for the human designer due to the combinatory

explosion of the numbers of links among the primitives in the system (input values,

output values and internal states).

Also, note that we do not claim that the software could constitute the hardware in any

conceivable way. We do see the possibility, though, that a computational entity has the

capacity of perpetually developing the individual constitution of its software and its

coupling (which we call “cognitive coupling” below) with its environment.

The concept of self-modifying processes is not new. Already Allan Newell and Herbert

Simon (1976) anticipated it in their seminal Turing Award lecture. John Weng (2004)

proposed the idea of self-affecting cognitive architectures. More recently, Kristinn

Thórisson et al. (2013) have studied self-programming in specific tasks. The question of

how an entity can engage in open-ended life-long self-programming remains, however,

still open. From the discussion above it is clear that self-programming raises many

research questions including:

 Why should an entity acquire one particular new computational process rather than

another? This question is far from trivial as it relates to the entity’s intrinsic

purpose and self-motivation. It also challenges the widespread understanding of

input values as mere percepts upon which the entity is supposed to react.

 What is a suitable method to express the learned computational processes? In more

concrete terms: in which programming language should the entity program itself?

Is this programming language different from that used by the human designer?

While examining all these questions is clearly impossible in a single paper, in what

follows we focus on learning new programs using a predefined set of instructions and a

predefined execution engine.

2 Design

Before we continue let us define the terminology. We use “software,” “entity,”

“environment,” and “world” from the viewpoint of the human designer. The world is

the physical world or a “virtual world” (a computer implementation) as the designer

knows it. Within the world, the entity is interacting with its environment, i.e., entity +

environment = world. A robot is an example for an entity in the physical world.

The entity’s software is a specification of the implementation running in the entity. As a

specification, the entity’s software is an abstract representation in the head of the

designer. The entity’s software includes the program initially written by the designer

together with various memory structures storing the new computational processes that

have been learned over time through self-programming. In the rest of our paper, we use

the word software only to refer to the entity’s software.

From the perspective of the designer, the software sets output values in the entity’s

output registers and receives input values through the entity’s input registers. The output

values trigger changes in the world through the actuators, and the sensors set the input

values. From the perspective of the software, there is no distinction between external

and internal sensors: input values can come from sensors that are “external” or

“internal” to the entity, e.g., vision (external) or proprioception (internal).

The learned computational processes consist of patterns of interactions between the

entity and its environment. The software records new sequences of interactions1 as the

entity experiences them. The software can re-execute the learned sequences of

interactions by simulating them internally, and can control the entity to enact them

again in similar situations. This complies with what authors such as Germund Hesslow

(2002) argue, i.e., that cognition involves internal simulation of behaviors.

1 Note that this is not about merely collecting passive data but, rather, data can be

interpreted and executed, hence constituting software.

2.1 From sensorimotor to motorsensory cognition

In cognitive psychology and artificial intelligence, cognitive systems are typically

implemented in a way that the entity builds a representation of the environment through

input data, and that action can be subsequently determined on the basis of this

representation. For example, Gary Drescher’s (1986) seminal work formalized Piagetian

sensorimotor schemes into tuple <context, action, result>. The problem is that he then

mapped input values with context and with results, as if a representational state of the

environment was directly accessible in input. We concur with Marco Bettoni (1993:

240) that such mapping is not faithful to Piaget’s theory. It is also inconsistent with

philosophical foundations laid out by authors such as Humberto Maturana (1975),

Francisco Varela, Evan Thompson & Eleanor Rosch (1991), Ernst von Glasersfeld

(1995), and Maurice Merleau-Ponty (2005). These authors suggest to steer away from

“cognitive dogmatism” that considers cognitive agents as information-processing

entities in which perceptual stimulus unidirectionally leads to action. Vernon et al.

summarized their constructivist perspective as follows:

“perception and action are reciprocally coupled and mutually dependent. […] perception and

action form a joint process of making sense of the world in which the agent is embedded. This

‘sense’ captures the lawfulness of the agent’s environment as it relates to the agent’s

constitutive and behavioral autonomy. Since the agent is an organizationally closed system,

perception and action are perturbing forces rather than system inputs and outputs” (Vernon et

al. 2015: 6).

This goes beyond the insights of neuroscientists and psychologists who agree that there

is no simple unidirectional causal link between stimulus and action. Only when goals

are held constant, as in a controlled stimulus-reward situation, a reliable mapping

between stimulus and action emerges.

In contrast to that, CASH follows the paradigm that behavior is the control of

perception (Powers 1973; Porr, Egerton & Wörgötter 2006). In this view, input values

do not represent entity-independent features of the environment (Peschl & Riegler

1999) but consists of feedback resulting from action or perturbation in a control loop

(Georgeon & Guillermin 2018).

Since this control loop must not be confused with the perception-action loop in the

cognitive science literature we avoid the term “sensorimotor,” and use instead the term

“motorsensory” proposed by Donald Laming (2001). At first glance “motorsensory”

may sound rather awkward and clumsy but reversing the order in this compound word

emphasizes the primacy of output over input. One might be tempted to argue that not

all cognition can be defined in this way. For example, the “simple perception” of an

object does not involve simulation of possible actions. However, there is no such thing

as simple perception, as the recognition of an object emerges from one’s experiential

background that involves having intermodally interacted with this or similar objects in

the past. We call self-programming the process by which an entity learns patterns of

interaction, simulates them, and re-enacts them in the appropriate situations.

It should be noted that despite the primacy of output over input, motorsensory learning

remains capable of handling “alert signals” (i.e., input in the absence of previous output)

since defining primitive motorsensory schemes that do not use output values remains

possible.

2.2 Primitive motorsensory schemes and motorsensory processes

We design the core of the entity’s software as a cognitive architecture responsible for

controlling the entity’s behavior and learning. This cognitive architecture uses primitive

motorsensory schemes (PMSs) as its primitive elements of knowledge instead of

disjoint primitive percepts and actions as other cognitive architectures do. The human

designer programs each PMS to involve output values, input values, or both. In a robot,

a PMS controls any kind of actuators while processing any kind of sensory feedback,

for example, moving a touch sensor during a predefined period of time while receiving

a touch feedback signal within a certain range.2 The designer specifies the whole set of

PMSs, which amounts to defining the entity’s primitive experiential domain.

2.3 Interaction

The cognitive architecture interacts only with the interface between cognitive

architecture and world; Figure 1 shows the coupling between those two parts of the

entity’s software called the primitive coupling. On each interaction cycle, the cognitive

architecture selects a PMS and sends it to the primitive controller, and receives an

enacted PMS in return. The primitive controller controls the enaction of the PMS by the

entity (for example, by controlling the trajectory of the touch senor using touch

feedback), and then determines the enacted PMS. If the cognitive architecture made a

correct anticipation, the enacted PMS will be the same as the originally selected PMS, if

not, the enacted PMS will be another PMS from among the set of predefined PMSs. For

example the cognitive architecture may select a PMS consisting of controlling the

trajectory of the touch sensor while maintaining the feedback signal within a certain

range that corresponds to feeling an object. If the object is indeed present, the enacted

PMS will correspond to the selected PMS. If the object is absent, the feedback signal

will belong to a different range corresponding to another PMS. The cognitive

architecture has no notion of the object in itself but uses the set of PMSs that were just

enacted to estimate the possibility of enacting further PMSs. Therefore the cognitive

architecture remains agnostic towards the world “in itself” (noumenal world) and only

knows the “experienced world” (phenomenal world) (Riegler 2001; Georgeon, Bernard

& Cordier 2015), which complies with constructivist theories of knowledge (Glasersfeld

1995).

2 The feedback signal never stops; even feedback equal to zero is feedback.

As the entity goes through repetitive series of interactions with the environment, the

cognitive architecture records motorsensory processes (MPs) that consist of a series of

PMSs. From a computational perspective, the MPs are the learned programs and PMSs

are their primitive instructions. MPs differ from traditional sensorimotor chaining (e.g.,

Drescher 1986) in that MPs do not correspond to successions of environmental states.

Instead, MPs represent regularities of interaction that have been experienced and which

could be experienced again.3 The entity is not solving a predefined problem or seeking a

final goal state but only constructing increasingly higher-level behaviors. Since there is

no predefined problem, there is no problem complexity. The architecture just records

new MPs as long as it finds new regularities of interaction and has enough memory to

record them.

Once an MP has been recorded, the cognitive architecture can select it and let the entity

try it in the environment as a whole sequence of interaction (see Section 2.5 for more

details on the selection criteria). On each decision cycle, the MP selector sends the

selected MP to the MP controller. Figure 1 shows the coupling between the MP selector

and the MP controller called the cognitive coupling. The MP controller sequentially

sends the PMSs that compose the selected MP to the primitive controller so that the

entity enacts them in the environment. In return, the MP controller receives the enacted

PMSs. If an enacted PMS differs from the selected PMS, the enaction of the MP is

interrupted. The MP controller then records a different enacted MP made of the

sequence of PMSs enacted until the interruption, and sends it back to the MP selector.

The MP selector uses the set of MPs that where just enacted as a characterization of the

current situation to select the next MP to try. The cognitive coupling thus delineates the

MP selector from the “world as it appears to the MP selector”.

2.4 Hierarchical structure

The cognitive architecture organizes MPs in a sequential hierarchy where higher-level

MPs are made of sequences of lower-level MPs all the way up from PMSs. This

hierarchy is reminiscent of William Powers’s (1973) model of hierarchically arranged

feedback systems, which “is based on the claim that living organisms behave to control

perceptions, and thus suggests that organisms construct their experiential world”

(Richards & Glasersfeld 1979: 37). In our case, though, the cognitive architecture

autonomously builds the hierarchy without a preset top-level reference signal as it

perpetually constructs new levels recursively from the bottom up. Higher-levels pile up

on top of previous levels like mere “sedimentation of habitudes” contingent to the

entity’s individual experience. From the viewpoint of the MP selector, the world

3 Cf. von Glasersfeld according to whom “the function of cognition is adaptive and

serves the organization of the experiential world, not the discovery of ontological

reality” (Glasersfeld 1995: 18)

appears to offer increasingly higher possibilities of experiences as the cognitive

architecture learns higher-level MPs.

2.5 Selection process

Figure 2 illustrates the MP learning and selection mechanism. The cognitive

architecture maintains a set of MPs that were just enacted. This set works as short-term

memory to characterize the current situation. When some MPs in this set match the

beginning of a higher-level MP learned previously, then this higher-level MP is

activated. The lower-level MPs corresponding to the parts of the activated MPs that

have not yet been enacted are then proposed. Similar proposed MPs constitute possible

cognitive actions. The software selects a particular MP to try to enact on the basis of the

possible cognitive actions.

The human designer can implement different MP selection criteria depending on the

kind of behaviors she wishes the entity to generate. For example, if the MP selector

selects the MP that has the least been tried in a given situation then, for the human

observer, the entity will appear to be curious. If the MP selector selects the MP that has

the highest probability to succeed, then the entity will appear to prefer being “in the

flow” (autotelic principle, Steels 2004). The designer can also associate a predefined

Figure 1. The software implemented in the entity. The large gray frame

(software/world coupling) delineates the software coupled with the world (entity +

environment) through the output and input registers. The light gray line (primitive

coupling) delimits the cognitive architecture (above) from the interface (below). The

interface controls the enaction of primitive motorsensory schemes (PMS) through

motor commands and sensor feedback, and then returns the enacted primitive

motorsensory schemes. The cognitive coupling links the motorsensory process

selector (above) with the motorsensory process controller (below) responsible for

sequentially sending the selected primitive motorsensory schemes to the primitive

controller. As the cognitive architecture learns higher-level MPs, one round of the

cognitive coupling corresponds to several rounds of the primitive coupling.

numerical valence with PMSs and implement a selector that selects MPs that have the

highest cumulative valence of their PMSs. The entity will appear to enjoy enacting

interactions that have a positive valence and to dislike enacting interactions that have a

negative valence (interactional motivation, Georgeon, Marshall & Gay 2012).

Figure 2. The MP learning and selection. 1) The primitive motorsensory timeline shows

the series of PMSs enacted over time represented by geometrical shapes. 2) The short-

term memory of enacted MPs shows the hierarchy of MPs that have been just enacted.

3) An MP represented by a half-circle activates several previously-learned higher-level

MPs (stored in long-term memory) that begin with this MP. 4) Activated MPs generate

a set of afforded MPs that consist of continuing to enact the activated MPs. 5) Afforded

MPs are categorized in possible cognitive actions (gray shapes). 6) The cognitive

timeline shows selected MPs and enacted MPs passed through the cognitive coupling.

Based on possible cognitive actions, the software selects an MP to try to enact (Gray

arrow on the cognitive timeline). 7) The entity tries to enact the PMSs that constitute the

selected MP and returns the enacted MP (white arrow). 8) Higher-level MPs can be

learned on the basis of enacted MPs.

Figure 3. Demonstration of motorsensory self-programming (Georgeon & Ritter 2012).

The agent has three possible output values corresponding to touch front, step forward,

turn right, turn left and a single bit input value, forming 6 PMSs. Over time, a hierarchy

of MPs is learned from the bottom up in a pairwise manner. Various two-step MPs are

enacted during cognitive cycle 44, 45, 68, 74. A six-step MP is enacted four times in a

row during cognitive cycles 87, 88, 89, 90. It consists of the sequence: touch front

nothing – step forward – touch front something – turn right – touch front nothing – step

forward. This MP captures a regularity afforded by the agent–environment interactional

domain consisting in turning around in a box without bumping into the walls.

Figure 4. Spatio-temporal motorsensory cognitive architecture (adapted from

Georgeon, Marshall & Manzotti 2013). Bottom: The primitive motorsensory timeline

shows the stream of PMSs enacted over time. PMSs are represented as 3D cubes and

cylinders to highlight that they specify the control of actuators with feedback within the

presupposed 3D world. Top: The long-term hierarchical memory of MPs implements

CASH. Center: The egocentric spatial memory tracks the position of enacted MPs

relative to the entity over the short term. It is also used to simulate the enaction of future

MPs before selecting them. Left: The phenomenal ontology records models of

phenomena (spatio-temporal arrangements of MPs) constructed from spatial memory.

Models of phenomena are how the software represents entities experienced in the 3D

world (the entity that the software is controlling and other entities with which it is

interacting). Activated instances of phenomena in spatial memory propose the MPs that

they afford. Right: Selection of the next MP to try to enact in the environment.

3 Examples

Over the past years, we have investigated different approaches to implementing

motorsensory cognitive architectures and demonstrate the applicability of CASH.

Some of these demonstrations can be seen in videos, in which primitive motorsensory

schemes were called primitive interactions, and motorsensory processes were called

composite interactions.

 Video 1 (https://youtu.be/LVZ0cPpmSu8) demonstrates the hierarchical self-

programming in a simple grid world, see also Figure 3.

 Video 2 (https://youtu.be/t1RO5S4mBEY) demonstrates the same algorithm

implemented in an e-puck robot (Georgeon, Wolf & Gay 2013).

 Video 3 (https://youtu.be/91kKzybt8XY) demonstrates the same algorithm used to

control distal motorsensory schemes (Georgeon, Cohen & Cordier 2011).

 Video 4 (https://youtu.be/vSUEoh-sjwU) demonstrates more complex learning of a

proto ontology of phenomena in the grid world (Georgeon, Marshall & Manzotti

2013).

 Video 5 (https://youtu.be/HCDf3Vzl7GM) explains the learning of a proto

ontology of phenomena in a continuous and dynamic simulation.

 Video 6 (https://youtu.be/_5HUb6AvSLg) shows internal simulation of MPs in

spatial memory.

The architecture used in Videos 4, 5, and 6 is illustrated in Figure 4.

4 Conclusion

In CASH, the development of the hierarchical MPs through self-programming and

through model generation is the mechanism by which the agent contributes to the

maintenance of its autonomy and, in that sense, it is a process of constitutive autonomy.

The learned executable code is made of patterns of interaction, and the execution engine

is an emulator of the entity’s body. Motorsensory self-programming allows the

evolution of the cognitive coupling between two parts of the software that controls the

entity: the cognitive part (including the MP selector and various memory structures) and

the executive part (including the MP controller). As the entity develops, the cognitive

part sees its environment in the form of increasingly sophisticated possibilities of

interactions.

Computational entities and robots in particular equipped with such a system are driven

by intrinsic preferences and can learn in an open-ended fashion rather than seek a final

goal or perform a predefined task. As such they will enjoy constitutive autonomy.

4.1 Open design questions

So far, we have only implemented motorsensory self-programming in simple entities

and environments. The next challenge will be designing entities with increasingly

sophisticated effectors and sensors, and software capable of developing increasingly

intelligent behaviors as they control these entities in the open world. Since the software

is in control of the input values, and not trying to reach a goal-state of a pre-modeled

problem, it is not facing information overload or problem-solving combinatorial

explosion (Riegler 2007). Yet, making it more intelligent remains an open topic of

research. We must not only find technical solutions but we must also specify more

clearly what autonomous intelligent behavior is, how to demonstrate it and to measure

it.

To develop more intelligent behaviors in the open three-dimensional world, we expect

that the encoding, the transformation, and the execution of spatio-temporal

motorsensory processes must be generalized. In addition to egocentric memory shown

in Figure 4, the cognitive architecture may need other spatial memory structures based

on different coordinate systems (egocentric, allocentric) to represent temporal and

spatial interactions, with the possibility of performing spatial transformations across

these structures.

4.2 Open theoretical questions

In the introduction we wrote that in its pursue of constitutive autonomy computer

software should construct its own goals that are novel with regard to the initial software

designed by the human. In the implementations we presented here this is done by

recombining pre-defined primitive components (the PMSs). Philosophically, however,

this may not be sufficient for genuine novelty.

Cariani (2012) argued that there are two ways to creating novelty: (1) combinations of

existing primitives, and (2) creating new primitives which are then subject to

combinations. Here, a primitive is meant to be an “element in a system that [has] no

internal parts or structure of its own in terms of their functional role in that system”

(ibid: 387). For Cariani, creative systems need to follow (2) because the mere

combination of existing primitives means that their set of possibilities is closed.

The creation of new primitives, however, requires new structural frameworks, which

can only be brought about in more extensive processes of self-modification. In the

physical world for Cariani this means creating new hardware. But what are new

primitives in software? One interpretation is that this amounts to changing the execution

engine that interprets the software’s code and to creating new programming

instructions. By doing so the entity may be able to change its internal organization more

profoundly than by self-programming with a predefined set of programming

instructions.

But how can the entity evolve its execution engine? Should the human designer impose

constraints on the evolution of the execution engine to accelerate the learning process?

So while these theoretical considerations have a lot of appeal the details are still unclear,

in particular from a designing perspective.

Acknowledgements

This paper greatly benefitted from discussions with Peter Cariani, David Vernon, and

Tom Ziemke. Alexander Riegler acknowledges financial support by the Research

Foundation - Flanders (FWO) under Grant No. G023018N. Olivier Georgeon

acknowledges financial support by ANR under contract ANR-11-DPBS-0001.

References

Bettoni M. (1993) Made-Up Minds: A Constructivist Approach to Artificial Intelligence –

A book review. AI Communications 6(3–4): 234–240. https://cepa.info/5785

Cariani P. (2012) Creating new informational primitives in minds and machines. In:

McCormack J. & D’Inverno M. (eds.) Computers and creativity. Springer, New York:

383–417. https://cepa.info/4135

Di Paolo E. (2005) Autopoiesis, adaptivity, teleology, agency. Phenomenology and the

Cognitive Sciences 4(4): 429-452. https://cepa.info/2269

Drescher G. L. (1986) Genetic AI: Translating Piaget into Lisp. Instructional Science

14(3): 357–380. https://cepa.info/2296

Froese T. & Ziemke T. (2009) Enactive artificial intelligence: Investigating the systemic

organization of life and mind. Artificial Intelligence 173(3–4): 466–500.

https://cepa.info/279

Georgeon O. & Guillermin M. (2018) Mastering the laws of feedback contingencies is

essential to constructivist artificial agents. Constructivist Foundations 13(2): 300–301.

https://constructivist.info/13/2/300

Georgeon O., Bernard F., & Cordier A. (2015) Constructing phenomenal knowledge in an

unknown noumenal reality. Procedia Computer Science 71: 11-16.

Georgeon O., Wolf C. & Gay S. (2013) An enactive approach to autonomous agent and

robot learning. In: Third Joint International Conference on Development and Learning

and on Epigenetic Robotics, Osaka, Japan: 1-6.

Georgeon O., Marshall J. & Manzotti R (2013) ECA: An enactivist cognitive architecture

based on sensorimotor modeling. Biologically Inspired Cognitive Architectures 6: 46–

57. https://cepa.info/1009

Georgeon O., Marshall J. & Gay S. (2012) Interactional motivation in artificial systems:

Between extrinsic and intrinsic motivation. In: Proceedings of the 2012 IEEE

International Conference on Development and Learning and Epigenetic Robotics

(ICDL). IEEE, Piscataway NJ: 101-102.

Georgeon O. & Ritter F. (2012) An intrinsically-motivated schema mechanism to model

and simulate emergent cognition. Cognitive Systems Research 15–16: 73–92.

Georgeon O., Cohen M. & Cordier A. (2011). A model and simulation of early-stage

vision as a developmental sensorimotor process. In: International Conference on

Artificial Intelligence Applications and Innovations (AIAI 2011) Corfu, Greece: 11-16.

Glasersfeld E. von (1995) Radical constructivism: A way of knowing and learning.

Falmer Press, London. https://cepa.info/1462

Hesslow G. (2002) Conscious thought as simulation of behavior and perception. Trends

in Cognitive Sciences 6(6): 242-247.

Laming D. (2001) On the distinction between “sensorimotor” and “motorsensory”

contingencies. Behavioral and Brain Sciences 24(5): 992.

Maturana H. R. (1975) The organization of the living: A theory of the living organization.

International Journal of Man-Machine Studies 7(3): 313–332. https://cepa.info/547

Merleau-Ponty M. (2005) Phenomenology of perception. Translated by Colin Smith.

Routledge, London. Originally published in French as: Merleau-Ponty M. (1945)

Phénoménologie de la perception. Callimard, Paris.

Newell A. & Simon H. (1976) Computer science as empirical inquiry: Symbols and

search. ACM Turing Award Lecture. Communications of the ACM 19(3): 113–126.

Powers W. T. (1973) Behavior: The control of perceptions. Aldine, Chicago.

Richards J. & Glasersfeld E. von (1979) The control of perception and the construction of

reality. https://cepa.info/1345

Peschl M. F. & Riegler A. (1999) Does representation need reality? In: Riegler A., Peschl

M. F. & Stein A. von (eds.) (1999) Understanding representation in the cognitive

sciences. Kluwer Academic / Plenum Publishers: New York: 9–17.

https://cepa.info/2419

Porr B., Egerton A. & Wörgötter F. (2006) Towards closed loop information: Predictive

information. Constructivist Foundations 1(2): 83–90. https://constructivist.info/1/2/083

Riegler A. (2001) Towards a radical constructivist understanding of science. Foundations

of Science 6(1–3): 1–30. https://cepa.info/1860

Riegler A. (2002) When is a cognitive system embodied? Cognitive Systems Research

3(3): 339–348. https://cepa.info/1862

Riegler A. (2007) Superstition in the machine. In: Butz M. V., Sigaud O., Pezzulo G. &

Baldassarre G. (eds.) Anticipatory behavior in adaptive learning systems: From brains

to individual and social behavior. Lecture Notes in Artificial Intelligence. Springer,

New York: 57–72. https://cepa.info/4214

Riegler A., Stewart J. & Ziemke T. (2013) Computation, cognition and constructivism:

Introduction to the special issue. Constructivist Foundations 9(1): 1–6.

https://constructivist.info/9/1/001

Steels L. (2004) The autotelic principle. In: Fumiya I., Pfeifer R., Steels L. & Kunyoshi

K. (eds.) Embodied artificial intelligence. Springer Verlag: 231-242.

Thórisson K., Nivel E., Sanz R. & Wang P. (2013) Approaches and assumptions of self-

programming in achieving artificial general intelligence. Journal of Artificial General

Intelligence 3(3): 1–10.

Vernon D., Lowe R., Thill S. & Ziemke T. (2015) Embodied Cognition and circular

causality: on the role of constitutive autonomy in the reciprocal coupling of perception

and action. Frontiers in Psychology 6: 1660.

Varela F. J., Thompson E. & Rosch E. (1991) The embodied mind: Cognitive science and

human experience. MIT Press, Cambridge MA.

Villalobos M. & Dewhurst J. (2018) Enactive autonomy in computational systems.

Synthese 195(5): 1891–1908. Available at https://cepa.info/5561

Weng J. (2004) Developmental robotics: Theory and experiments. International Journal of

Humanoid Robotics 1(2): 199-236.

Winograd T. & Flores F. (1987) Computation and intelligence. Chapter 8 in:

Understanding computers and cognition: A new foundation for design. Addison-

Wesley, Reading MA: 93–106. https://cepa.info/5787

