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Abstract: Constitutive autonomy is the capacity of an entity to perpetually develop its 

individual constitution and coupling with its environment. We argue that computational 

entities (i.e., entities that can perform computation) can gain constitutive autonomy 

through motorsensory self-programming – a mechanism by which the entity acquires 

new computational processes as a series of patterns of interaction that the entity can 

learn through experience, simulate internally, and enact in the environment. 

Motorsensory self-programming allows the evolution of the cognitive coupling between 

the entity’s behavior selection mechanism and the environment as it appears from the 

viewpoint of the behavior selection mechanism. Constitutive autonomy of 

computational entities could lead to genuine agency. 

Keywords: Autonomy, constructivist learning, enaction, self-motivation, cognitive 

architectures. 

1 Theory 

Authors in the domain of artificial intelligence have been discussing the concept of 

autonomy for a long time. David Vernon et al. (2015: 2) proposed the following broad 

definition: “the degree of self-determination of a system, i.e., the degree to which a 

system’s behavior is not determined by the environment and, thus, the degree to which a 

system determines its own goals.” The question of how a system (natural or artificial) 

constructs its own goals remains, however, an open question in philosophy and in the 

cognitive sciences.  

Vernon et al. (2015) as well as Ezequiel Di Paolo (2005), and Tom Froese & Tom 

Ziemke (2009) distinguish two types of autonomy: behavioral autonomy and 

constitutive autonomy:  

“Behavioral autonomy focuses on the external characteristics of the system: the extent to 

which the system sets its own goals and its robustness and flexibility in dealing with an 

uncertain and possibly precarious environment.” (Vernon et al. 2015: 3)  

“[C]onstitutive autonomy focuses on the internal organization and the organizational process 

that keep the system viable and maintain itself as an identifiable autonomous entity.” (ibid)  

Notably, Vernon et al. make a distinction between “setting goals” (behavioral 

autonomy) and “determining goals” (autonomy in the broad sense). Our interpretation is 



 

 

that, in the former case, goals are “set” within a pre-existing set of goals in a pre-

modeled domain, whereas in the latter case goals are “determined” in an open-ended 

way as the system autonomously develops and learns about itself and the world. 

Constitutive autonomy is considered inseparable from living beings. It is also an 

indispensible concept in the cognitive domain because, as Froese and Ziemke (2009) 

emphasize, “constitutive autonomy is necessary for sense-making.” 

Artificial entities capable of constitutive autonomy could be envisioned in a multi-agent 

modeling paradigm growing new “artificial cells” in analogy with the development of 

biological multi-cellular organisms. However, by focusing on computational entities, 

i.e., entities that can perform computation, we take the discussion to a higher conceptual 

level independent of modeling paradigms such as the multi-agent modeling. 

In the literature, the term “computation” is quite ambiguous (see, e.g., the discussion in 

Riegler, Stewart & Ziemke 2013). Since notions such as “algorithm” and “program” 

suggest the unchangeable and inflexible execution of deterministic rules we refrain from 

defining computation in these terms. Rather, we use it pragmatically in a general and 

intuitive sense: Computation is a formal sequence of processes that, through discrete 

steps, transform a set of states into another or the same set states. This definition aligns 

with the constructivist perspective on neuronal activity: “all states of neuronal activity 

in the nervous system always lead to other states of activity in the nervous system” 

(Maturana 1975: 318).  

Is human cognition computational? Can the motions of the planets be seen as 

computation? Such questions allude to the distinction between computational and non-

computational process and how to apply it to observed systems. However, in this paper 

we do not seek to computationally model observable cognitive systems (such as human 

beings), i.e., identify observable states, and specific state transformations that are 

needed to successfully map the observed system to the formal system (Cariani 1992). 

Rather, we argue that evolving embodied computational entities can become 

autonomous relative to their environment in their own right. If the criteria for autonomy 

can be defined in a set of rules, we do not see why computational (i.e., formal) entities 

could not meet these rules.  

Some proponents of enactivism reject computationalism because, allegedly, it involves 

representation (as used by realist correspondence theories of truth) and cannot 

implement autonomy (i.e., according to one’s internal goals and history rather than 

purely in terms of reacting to external stimuli). So while we certainly do not subscribe 

to what is called computationalist cognitive science (equating the human mind with an 

information-processing computer) we stress that from the constructivist perspective, the 

notion of structure-determined systems (Maturana 1975) in particular suggests that any 

such system is in principle equivalent to a Turing machine (see Villalabos & Dewhurst 

2018): Structure determinism directly leads to cognitive closure and autonomy as well 

as rejects representationalism, so we do not share the objections of those proponents of 

enactivism. 



 

 

How can computational entities gain constitutive autonomy? We propose the 

Constitutive Autonomy through Self-programming Hypothesis (CASH) that holds that 

constitutive autonomy of computational entities relates to their capacity to 

autonomously construct new software throughout their existence. In computer-

engineering terms, in contrast to what most current machine-learning systems do, this 

amounts to acquiring new executable code rather than data (including parameters, 

symbols, weights in neural networks). Here we follow Terry Winograd and Fernando 

Flores (1987) who distinguish between (a) parameter adjustment, (b) combinatorial 

concept formation, and (c) evolution of structure. They argued that only when “the 

initial system does not have a structure directly related to the task as seen by its 

designer” (ibid: 102) a computational system can evolve a novel structure shaped by 

interaction with its environment, i.e., when it is structurally coupled with it (Maturana 

1975). As Winograd & Flores note, this holds for “any system whose internal structure 

can change as a result of perturbations, and computer programs share this quality” as 

long as computers are considered “plastic structure-determined systems” (ibid). Such 

flexible software transcends the limitation of predefined programs and qualifies as 

structure-determined system that can undergo structural coupling with its (software) 

environment. Similarly, in Riegler (2002) it was argued that structural coupling (leading 

to the embodiment of the system in question) is not necessarily limited to physical 

domains, but rather that computer software can also become embodied and construct its 

own goals that are novel with regard to the initial system of the human programmer.  

One could be tempted to say that there is a fundamental difference between hardware 

(populating the physical world) and software (as a specification of a process) in the 

sense that we always have only partial incomplete access to the physical world (limited 

by our senses and our measurements), whereas as designers of software, we always 

have complete access to all aspects of its specification. This distinction is meaningless 

for practical and theoretical reasons: (1) Learning will always take place from the 

perspective of the entity and its limited perspective, and (2) given the sheer complexity 

the software gains, any attempt of understanding and tracing (reverse-engineering) all 

the processes will become impossible for the human designer due to the combinatory 

explosion of the numbers of links among the primitives in the system (input values, 

output values and internal states).  

Also, note that we do not claim that the software could constitute the hardware in any 

conceivable way. We do see the possibility, though, that a computational entity has the 

capacity of perpetually developing the individual constitution of its software and its 

coupling (which we call “cognitive coupling” below) with its environment. 

The concept of self-modifying processes is not new. Already Allan Newell and Herbert 

Simon (1976) anticipated it in their seminal Turing Award lecture. John Weng (2004) 

proposed the idea of self-affecting cognitive architectures. More recently, Kristinn 

Thórisson et al. (2013) have studied self-programming in specific tasks. The question of 

how an entity can engage in open-ended life-long self-programming remains, however, 

still open. From the discussion above it is clear that self-programming raises many 

research questions including:  



 

 

 Why should an entity acquire one particular new computational process rather than 

another? This question is far from trivial as it relates to the entity’s intrinsic 

purpose and self-motivation. It also challenges the widespread understanding of 

input values as mere percepts upon which the entity is supposed to react. 

 What is a suitable method to express the learned computational processes? In more 

concrete terms: in which programming language should the entity program itself? 

Is this programming language different from that used by the human designer? 

While examining all these questions is clearly impossible in a single paper, in what 

follows we focus on learning new programs using a predefined set of instructions and a 

predefined execution engine. 

2 Design 

Before we continue let us define the terminology. We use “software,” “entity,” 

“environment,” and “world” from the viewpoint of the human designer. The world is 

the physical world or a “virtual world” (a computer implementation) as the designer 

knows it. Within the world, the entity is interacting with its environment, i.e., entity + 

environment = world. A robot is an example for an entity in the physical world.  

The entity’s software is a specification of the implementation running in the entity. As a 

specification, the entity’s software is an abstract representation in the head of the 

designer. The entity’s software includes the program initially written by the designer 

together with various memory structures storing the new computational processes that 

have been learned over time through self-programming. In the rest of our paper, we use 

the word software only to refer to the entity’s software. 

From the perspective of the designer, the software sets output values in the entity’s 

output registers and receives input values through the entity’s input registers. The output 

values trigger changes in the world through the actuators, and the sensors set the input 

values. From the perspective of the software, there is no distinction between external 

and internal sensors: input values can come from sensors that are “external” or 

“internal” to the entity, e.g., vision (external) or proprioception (internal).  

The learned computational processes consist of patterns of interactions between the 

entity and its environment. The software records new sequences of interactions1 as the 

entity experiences them. The software can re-execute the learned sequences of 

interactions by simulating them internally, and can control the entity to enact them 

again in similar situations. This complies with what authors such as Germund Hesslow 

(2002) argue, i.e., that cognition involves internal simulation of behaviors.  

                                                 

 

1 Note that this is not about merely collecting passive data but, rather, data can be 

interpreted and executed, hence constituting software. 



 

 

2.1 From sensorimotor to motorsensory cognition 

In cognitive psychology and artificial intelligence, cognitive systems are typically 

implemented in a way that the entity builds a representation of the environment through 

input data, and that action can be subsequently determined on the basis of this 

representation. For example, Gary Drescher’s (1986) seminal work formalized Piagetian 

sensorimotor schemes into tuple <context, action, result>. The problem is that he then 

mapped input values with context and with results, as if a representational state of the 

environment was directly accessible in input. We concur with Marco Bettoni (1993: 

240) that such mapping is not faithful to Piaget’s theory. It is also inconsistent with 

philosophical foundations laid out by authors such as Humberto Maturana (1975), 

Francisco Varela, Evan Thompson & Eleanor Rosch (1991), Ernst von Glasersfeld 

(1995), and Maurice Merleau-Ponty (2005). These authors suggest to steer away from 

“cognitive dogmatism” that considers cognitive agents as information-processing 

entities in which perceptual stimulus unidirectionally leads to action. Vernon et al. 

summarized their constructivist perspective as follows:  

“perception and action are reciprocally coupled and mutually dependent. [… ] perception and 

action form a joint process of making sense of the world in which the agent is embedded. This 

‘sense’ captures the lawfulness of the agent’s environment as it relates to the agent’s 

constitutive and behavioral autonomy. Since the agent is an organizationally closed system, 

perception and action are perturbing forces rather than system inputs and outputs” (Vernon et 

al. 2015: 6).  

This goes beyond the insights of neuroscientists and psychologists who agree that there 

is no simple unidirectional causal link between stimulus and action. Only when goals 

are held constant, as in a controlled stimulus-reward situation, a reliable mapping 

between stimulus and action emerges.  

In contrast to that, CASH follows the paradigm that behavior is the control of 

perception (Powers 1973; Porr, Egerton & Wörgötter 2006). In this view, input values 

do not represent entity-independent features of the environment (Peschl & Riegler 

1999) but consists of feedback resulting from action or perturbation in a control loop 

(Georgeon & Guillermin 2018).  

Since this control loop must not be confused with the perception-action loop in the 

cognitive science literature we avoid the term “sensorimotor,” and use instead the term 

“motorsensory” proposed by Donald Laming (2001). At first glance “motorsensory” 

may sound rather awkward and clumsy but reversing the order in this compound word 

emphasizes the primacy of output over input.  One might be tempted to argue that not 

all cognition can be defined in this way. For example, the “simple perception” of an 

object does not involve simulation of possible actions. However, there is no such thing 

as simple perception, as the recognition of an object emerges from one’s experiential 

background that involves having intermodally interacted with this or similar objects in 

the past. We call self-programming the process by which an entity learns patterns of 

interaction, simulates them, and re-enacts them in the appropriate situations.  



 

 

It should be noted that despite the primacy of output over input, motorsensory learning 

remains capable of handling “alert signals” (i.e., input in the absence of previous output) 

since defining primitive motorsensory schemes that do not use output values remains 

possible. 

2.2 Primitive motorsensory schemes and motorsensory processes 

We design the core of the entity’s software as a cognitive architecture responsible for 

controlling the entity’s behavior and learning. This cognitive architecture uses primitive 

motorsensory schemes (PMSs) as its primitive elements of knowledge instead of 

disjoint primitive percepts and actions as other cognitive architectures do. The human 

designer programs each PMS to involve output values, input values, or both. In a robot, 

a PMS controls any kind of actuators while processing any kind of sensory feedback, 

for example, moving a touch sensor during a predefined period of time while receiving 

a touch feedback signal within a certain range.2 The designer specifies the whole set of 

PMSs, which amounts to defining the entity’s primitive experiential domain.  

2.3 Interaction 

The cognitive architecture interacts only with the interface between cognitive 

architecture and world; Figure 1 shows the coupling between those two parts of the 

entity’s software called the primitive coupling. On each interaction cycle, the cognitive 

architecture selects a PMS and sends it to the primitive controller, and receives an 

enacted PMS in return. The primitive controller controls the enaction of the PMS by the 

entity (for example, by controlling the trajectory of the touch senor using touch 

feedback), and then determines the enacted PMS. If the cognitive architecture made a 

correct anticipation, the enacted PMS will be the same as the originally selected PMS, if 

not, the enacted PMS will be another PMS from among the set of predefined PMSs. For 

example the cognitive architecture may select a PMS consisting of controlling the 

trajectory of the touch sensor while maintaining the feedback signal within a certain 

range that corresponds to feeling an object. If the object is indeed present, the enacted 

PMS will correspond to the selected PMS. If the object is absent, the feedback signal 

will belong to a different range corresponding to another PMS. The cognitive 

architecture has no notion of the object in itself but uses the set of PMSs that were just 

enacted to estimate the possibility of enacting further PMSs. Therefore the cognitive 

architecture remains agnostic towards the world “in itself” (noumenal world) and only 

knows the “experienced world” (phenomenal world) (Riegler 2001; Georgeon, Bernard 

& Cordier 2015), which complies with constructivist theories of knowledge (Glasersfeld 

1995).  

                                                 

 

2 The feedback signal never stops; even feedback equal to zero is feedback. 



 

 

As the entity goes through repetitive series of interactions with the environment, the 

cognitive architecture records motorsensory processes (MPs) that consist of a series of 

PMSs. From a computational perspective, the MPs are the learned programs and PMSs 

are their primitive instructions. MPs differ from traditional sensorimotor chaining (e.g., 

Drescher 1986) in that MPs do not correspond to successions of environmental states. 

Instead, MPs represent regularities of interaction that have been experienced and which 

could be experienced again.3 The entity is not solving a predefined problem or seeking a 

final goal state but only constructing increasingly higher-level behaviors. Since there is 

no predefined problem, there is no problem complexity. The architecture just records 

new MPs as long as it finds new regularities of interaction and has enough memory to 

record them. 

Once an MP has been recorded, the cognitive architecture can select it and let the entity 

try it in the environment as a whole sequence of interaction (see Section 2.5 for more 

details on the selection criteria). On each decision cycle, the MP selector sends the 

selected MP to the MP controller. Figure 1 shows the coupling between the MP selector 

and the MP controller called the cognitive coupling.  The MP controller sequentially 

sends the PMSs that compose the selected MP to the primitive controller so that the 

entity enacts them in the environment. In return, the MP controller receives the enacted 

PMSs. If an enacted PMS differs from the selected PMS, the enaction of the MP is 

interrupted. The MP controller then records a different enacted MP made of the 

sequence of PMSs enacted until the interruption, and sends it back to the MP selector. 

The MP selector uses the set of MPs that where just enacted as a characterization of the 

current situation to select the next MP to try. The cognitive coupling thus delineates the 

MP selector from the “world as it appears to the MP selector”. 

2.4 Hierarchical structure 

The cognitive architecture organizes MPs in a sequential hierarchy where higher-level 

MPs are made of sequences of lower-level MPs all the way up from PMSs. This 

hierarchy is reminiscent of William Powers’s (1973) model of hierarchically arranged 

feedback systems, which “is based on the claim that living organisms behave to control 

perceptions, and thus suggests that organisms construct their experiential world” 

(Richards & Glasersfeld 1979: 37). In our case, though, the cognitive architecture 

autonomously builds the hierarchy without a preset top-level reference signal as it 

perpetually constructs new levels recursively from the bottom up. Higher-levels pile up 

on top of previous levels like mere “sedimentation of habitudes” contingent to the 

entity’s individual experience. From the viewpoint of the MP selector, the world 

                                                 

 

3 Cf. von Glasersfeld according to whom “the function of cognition is adaptive and 

serves the organization of the experiential world, not the discovery of ontological 

reality” (Glasersfeld 1995: 18) 



 

 

appears to offer increasingly higher possibilities of experiences as the cognitive 

architecture learns higher-level MPs. 

2.5 Selection process 

Figure 2 illustrates the MP learning and selection mechanism. The cognitive 

architecture maintains a set of MPs that were just enacted. This set works as short-term 

memory to characterize the current situation. When some MPs in this set match the 

beginning of a higher-level MP learned previously, then this higher-level MP is 

activated. The lower-level MPs corresponding to the parts of the activated MPs that 

have not yet been enacted are then proposed. Similar proposed MPs constitute possible 

cognitive actions. The software selects a particular MP to try to enact on the basis of the 

possible cognitive actions. 

The human designer can implement different MP selection criteria depending on the 

kind of behaviors she wishes the entity to generate. For example, if the MP selector 

selects the MP that has the least been tried in a given situation then, for the human 

observer, the entity will appear to be curious. If the MP selector selects the MP that has 

the highest probability to succeed, then the entity will appear to prefer being “in the 

flow” (autotelic principle, Steels 2004). The designer can also associate a predefined 

 

Figure 1. The software implemented in the entity. The large gray frame 

(software/world coupling) delineates the software coupled with the world (entity + 

environment) through the output and input registers. The light gray line (primitive 

coupling) delimits the cognitive architecture (above) from the interface (below). The 

interface controls the enaction of primitive motorsensory schemes (PMS) through 

motor commands and sensor feedback, and then returns the enacted primitive 

motorsensory schemes. The cognitive coupling links the motorsensory process 

selector (above) with the motorsensory process controller (below) responsible for 

sequentially sending the selected primitive motorsensory schemes to the primitive 

controller. As the cognitive architecture learns higher-level MPs, one round of the 

cognitive coupling corresponds to several rounds of the primitive coupling. 

 



 

 

numerical valence with PMSs and implement a selector that selects MPs that have the 

highest cumulative valence of their PMSs. The entity will appear to enjoy enacting 

interactions that have a positive valence and to dislike enacting interactions that have a 

negative valence (interactional motivation, Georgeon, Marshall & Gay 2012). 

 

Figure 2. The MP learning and selection. 1) The primitive motorsensory timeline shows 

the series of PMSs enacted over time represented by geometrical shapes. 2) The short-

term memory of enacted MPs shows the hierarchy of MPs that have been just enacted. 

3) An MP represented by a half-circle activates several previously-learned higher-level 

MPs (stored in long-term memory) that begin with this MP. 4) Activated MPs generate 

a set of afforded MPs that consist of continuing to enact the activated MPs. 5) Afforded 

MPs are categorized in possible cognitive actions (gray shapes). 6) The cognitive 

timeline shows selected MPs and enacted MPs passed through the cognitive coupling. 

Based on possible cognitive actions, the software selects an MP to try to enact (Gray 

arrow on the cognitive timeline). 7) The entity tries to enact the PMSs that constitute the 

selected MP and returns the enacted MP (white arrow). 8) Higher-level MPs can be 

learned on the basis of enacted MPs. 



 

 

 

Figure 3. Demonstration of motorsensory self-programming (Georgeon & Ritter 2012). 

The agent has three possible output values corresponding to touch front, step forward, 

turn right, turn left and a single bit input value, forming 6 PMSs. Over time, a hierarchy 

of MPs is learned from the bottom up in a pairwise manner. Various two-step MPs are 

enacted during cognitive cycle 44, 45, 68, 74. A six-step MP is enacted four times in a 

row during cognitive cycles 87, 88, 89, 90. It consists of the sequence: touch front 

nothing – step forward – touch front something – turn right – touch front nothing – step 

forward. This MP captures a regularity afforded by the agent–environment interactional 

domain consisting in turning around in a box without bumping into the walls. 



 

 

 

Figure 4. Spatio-temporal motorsensory cognitive architecture (adapted from 

Georgeon, Marshall & Manzotti 2013). Bottom: The primitive motorsensory timeline 

shows the stream of PMSs enacted over time. PMSs are represented as 3D cubes and 

cylinders to highlight that they specify the control of actuators with feedback within the 

presupposed 3D world. Top: The long-term hierarchical memory of MPs implements 

CASH. Center: The egocentric spatial memory tracks the position of enacted MPs 

relative to the entity over the short term. It is also used to simulate the enaction of future 

MPs before selecting them. Left: The phenomenal ontology records models of 

phenomena (spatio-temporal arrangements of MPs) constructed from spatial memory. 

Models of phenomena are how the software represents entities experienced in the 3D 

world (the entity that the software is controlling and other entities with which it is 

interacting). Activated instances of phenomena in spatial memory propose the MPs that 

they afford. Right: Selection of the next MP to try to enact in the environment. 

3 Examples 

Over the past years, we have investigated different approaches to implementing 

motorsensory cognitive architectures and demonstrate the applicability of CASH.   

Some of these demonstrations can be seen in videos, in which primitive motorsensory 

schemes were called primitive interactions, and motorsensory processes were called 

composite interactions. 

 Video 1 (https://youtu.be/LVZ0cPpmSu8) demonstrates the hierarchical self-

programming in a simple grid world, see also Figure 3.  



 

 

 Video 2 (https://youtu.be/t1RO5S4mBEY) demonstrates the same algorithm 

implemented in an e-puck robot (Georgeon, Wolf & Gay 2013).  

 Video 3 (https://youtu.be/91kKzybt8XY) demonstrates the same algorithm used to 

control distal motorsensory schemes (Georgeon, Cohen & Cordier 2011).  

 Video 4 (https://youtu.be/vSUEoh-sjwU) demonstrates more complex learning of a 

proto ontology of phenomena in the grid world (Georgeon, Marshall & Manzotti 

2013).  

 Video 5 (https://youtu.be/HCDf3Vzl7GM) explains the learning of a proto 

ontology of phenomena in a continuous and dynamic simulation.   

 Video 6 (https://youtu.be/_5HUb6AvSLg) shows internal simulation of MPs in 

spatial memory. 

The architecture used in Videos 4, 5, and 6 is illustrated in Figure 4.   

4 Conclusion 

In CASH, the development of the hierarchical MPs through self-programming and 

through model generation is the mechanism by which the agent contributes to the 

maintenance of its autonomy and, in that sense, it is a process of constitutive autonomy. 

The learned executable code is made of patterns of interaction, and the execution engine 

is an emulator of the entity’s body. Motorsensory self-programming allows the 

evolution of the cognitive coupling between two parts of the software that controls the 

entity: the cognitive part (including the MP selector and various memory structures) and 

the executive part (including the MP controller). As the entity develops, the cognitive 

part sees its environment in the form of increasingly sophisticated possibilities of 

interactions.  

Computational entities and robots in particular equipped with such a system are driven 

by intrinsic preferences and can learn in an open-ended fashion rather than seek a final 

goal or perform a predefined task. As such they will enjoy constitutive autonomy.  

4.1 Open design questions 

So far, we have only implemented motorsensory self-programming in simple entities 

and environments. The next challenge will be designing entities with increasingly 

sophisticated effectors and sensors, and software capable of developing increasingly 

intelligent behaviors as they control these entities in the open world. Since the software 

is in control of the input values, and not trying to reach a goal-state of a pre-modeled 

problem, it is not facing information overload or problem-solving combinatorial 

explosion (Riegler 2007). Yet, making it more intelligent remains an open topic of 

research. We must not only find technical solutions but we must also specify more 

clearly what autonomous intelligent behavior is, how to demonstrate it and to measure 

it.  

To develop more intelligent behaviors in the open three-dimensional world, we expect 

that the encoding, the transformation, and the execution of spatio-temporal 



 

 

motorsensory processes must be generalized. In addition to egocentric memory shown 

in Figure 4, the cognitive architecture may need other spatial memory structures based 

on different coordinate systems (egocentric, allocentric) to represent temporal and 

spatial interactions, with the possibility of performing spatial transformations across 

these structures.  

4.2 Open theoretical questions 

In the introduction we wrote that in its pursue of constitutive autonomy computer 

software should construct its own goals that are novel with regard to the initial software 

designed by the human. In the implementations we presented here this is done by 

recombining pre-defined primitive components (the PMSs). Philosophically, however,  

this may not be sufficient for genuine novelty. 

Cariani (2012) argued that there are two ways to creating novelty: (1) combinations of 

existing primitives, and (2) creating new primitives which are then subject to 

combinations. Here, a primitive is meant to be an “element in a system that [has] no 

internal parts or structure of its own in terms of their functional role in that system” 

(ibid: 387). For Cariani, creative systems need to follow (2) because the mere 

combination of existing primitives means that their set of possibilities is closed. 

The creation of new primitives, however, requires new structural frameworks, which 

can only be brought about in more extensive processes of self-modification. In the 

physical world for Cariani this means creating new hardware. But what are new 

primitives in software? One interpretation is that this amounts to changing the execution 

engine that interprets the software’s code and to creating new programming 

instructions. By doing so the entity may be able to change its internal organization more 

profoundly than by self-programming with a predefined set of programming 

instructions. 

But how can the entity evolve its execution engine? Should the human designer impose 

constraints on the evolution of the execution engine to accelerate the learning process? 

So while these theoretical considerations have a lot of appeal the details are still unclear, 

in particular from a designing perspective. 
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