J S Camier

C Aussagues

M Lemerre

V David

A Toolchain For Designing And Implementing Efficient, Flexible And Safety-Critical Applications

Keywords: Safety critical real time systems, toolchain, embedded application design

Safety-critical embedded real-time applications have strong needs for both safety and performance. This paper presents a complete method and associated tools for developing this kind of applications. We have developed a complete safety oriented toolchain which is a correct and determinist implementation of a new concurrent model where applications' behaviour is both predictable and reproducible. The model expresses the behaviour and interactions of time-triggered concurrent tasks. This both simplifies comprehension of the application and is the basis for its determinism. Applications are written using an extension to generic languages, which specifies the real-time behaviour of the tasks. Information such as the task's control graph or buffer sizing is computed automatically; then binary code is outputted using a standard compiler; finally the linking stage creates the memory protection tables. At runtime, safety is ensured by different mechanisms: each task is separated into two memory protection domains: one for its own code, and one for the kernel responsible for communications and temporal controls. A microkernel in another memory protection domain is responsible for scheduling and monitoring the tasks' temporal behaviour. Designing and building a toolchain resulted in a complete, industrial-strength development environment which combines ease of use, safety and high performances.

Introduction

Since 1994, CEA, with EDF and AREVA-NP, have worked out a plan of R&D, which mainly deals with the dependability of complex safety critical real time embedded systems. The agreement between dependability concerns and designing, implementing or executing methods has to be demonstrated, thanks to determinism and predictability of the systems' behaviour. The focus is the use of parallelism techniques in the design and the implementation steps of safety critical systems, while still ensuring strong safety properties, such as deterministic behaviour. The goal is to build safety critical systems where the system behaviour is independent from the asynchrony that is allowed during the execution of an application with several different rhythms. It is a major difficulty to conciliate determinism of a whole safety-critical real-time system and a multitask model in order to remain in conformance with the safety requirements and to allow rigorous and flexible design and development which includes verification and validation. OASIS allows a level of performances and flexibility not reached by synchronous languages where detection and confining mechanisms during execution can not be found, whereas OASIS is structured around this objectives. Our contribution leads to the definition of a method and its toolchain for designing and implementing deterministic, fault-tolerant, safety-critical real-time system architectures on standard hardware. Their behaviour is then unvarying, unique, and independent from the realization on a target computer. Indeed, our aim is to cut down the development, qualification and architecture costs by facilitating the design, implementation, oversizing reduction, testing, validation and qualification of such systems. The OASIS model of multitasking design environment is in fact well suited to implement such deterministic real-time systems on embedded architectures while improving dependability and performance.

Complete safety-oriented design method

New concurrent design model

The use of parallelism techniques in the design and the implementation steps of safety critical systems, while still ensuring strong safety properties, is the main focus of the OASIS approach [START_REF] David | Safety properties ensured by the oasis model for safety critical real time systems[END_REF]. It proposes rules, formal methods and a set of tools for safety critical application engineering, allowing design and parallel programs implementation with fully deterministic and predictable behaviour and thus guaranteeing specified dependability properties. In the OASIS model, an application is viewed as a fixed set of communicating tasks that interact to achieve their goals.

A task is an autonomous entity that can be executed and is composed by a number of elementary activities executed in sequences and that have specified temporal execution windows. Their execution is managed in a time-triggered way. Few assumptions are made about the nature of the tasks: their rhythms can be periodic or not, regular or not. This point is essential: OA-SIS facilitates the design, because it does not induce constraints on the decomposition of an application in tasks. The OASIS framework allows the design of real time multitasking systems which are entirely deterministic through its capability of handling tasks with multiple constraints for their processing. Its implementation is based on a time synchronized parallel running principle. It guarantees responses in specified times using a safety-oriented multitasking execution, and has predictable and reproducible behaviours. The main idea of the OASIS approach is, first of all to develop multitask programs which are sporadic or cyclic, regular or irregular and then to demonstrate that some properties of well functioning that come from the specifications of the system can be proved and are in accordance with the constraints of qualification.

Provable deterministic semantics

Extension to generic languages: As in OSEK [START_REF]Iso-17356 road vehicles -open interface for embedded automotive applications[END_REF], the OASIS approach has its own formal language (Ψ) which allows the developer to express the complete and formal behaviour of an application and where the pure algorithmic parts can still be written in native language. The goal of the Ψ language is to allow a formal description of the OASIS' elements (parallelism, temporal synchronizations, communications) without breaking the algorithm coding rules of the developer. In the Ψ language, there are only declarative specifications of the behaviour of the tasks: the system procedure call principle does not exist. After the code compilation and generation, one function is associated with each real time behavioural element. Their semantic is compiled in the runtime and their sequence is defined in state-transition diagrams that are controlled by the kernel. Problems connected with bad argument values or wrong code sequences of kernel call are avoided by construction. The Ψ compiler makes a complete lexical and grammatical analysis, manages the units by taking care of the source files structures and by controling their coherency. A line numbers management for errors reporting has been implemented, as well as coding recommendations verifications. Time-triggered concurrent tasks: In a time-triggered approach, the system observes its environment and initiates processing operations at recurring, predetermined instants in time [START_REF] Kopetz | The time-triggered approach to realtime system design[END_REF]. In OASIS, these instants can be viewed as points in the globally synchronized time of the time triggered system. As shown in Figure 1, a task is an autonomous execution entity consisting of a varying number of elementary actions (EA).

Figure 1: Each elementary action performed for this task takes place between two temporal synchronization points of the time-triggered system, not necessarily contiguously. Elementary action sequences complies with certain logical conditions.

It is deterministic for both logical and temporal aspects: the real-time system behaviour is always unique and invariant. This property is essential for testability: as soon as a schedulability proof is reached, implementations will have identical results, leading to predictability of the test scenarios and the reproducibility of their results. By construction, OASIS is a complete answer to demonstrate the system timeliness: all timing constraints of all activities are clearly expressed in the design phase. All these constraints are calculated on the same global real-time clock and ensured: no activity can be delayed or omitted, no activity can start before their earliest start date without being detected. A simple time-driven scheduling at run-time perfectly manages the temporal coherence of all these timetriggered activities. Contrary to most of actual systems, there is no asynchrony that could impact these basic and fundamental features of OASIS.

Real-time behaviour specifications: The proof that all activities meet their deadlines is connected with the sizing computer architecture problem which is equivalent to make a scheduling analysis. In the application domain we consider, each activity must have a bounded duration and an upper bound can be exhibited. From a safety point of view, an (non optimal) upper bound is simpler and safer than the better worst case execution time. So we can use the results of the deadline-driven scheduling techniques to schedule and execute these activities on the target computer. These techniques are efficient, rigorous and optimal if the programming model is adequate. An off-line verification of the processor load and the calculation of the maximum load of the dynamic scheduling can be performed for the whole system. The knowledge of the upper bounds is not used to tune the real-time system behaviour but is only used to size the targeted architecture. That's why the behaviour is unvarying regardless of its implementation and why OASIS is a formal approach.

Communication: Communication is strictly managed to keep the determinism communication and therefore independent from the implementation. There are two way for a task to declare and specify its communication means in the OASIS model. On one hand, there is an implicit communication mechanism: temporal variables. Each temporal variable is a real-time data flow: values are stored and updated by the unique writer, the owner task, at a predeterminated rhythm (see Figure 2). Other tasks can view only the past values of these variables. Figure 2: Real-time data flow: assuming that a task has a temporal variable X, regardless of the values between dates t start and t end , if another task observes the value of X at date t 0 , the X value "observed" is always its past value X(t 0 = X(t start).

On the other hand, there is an explicit message passing mechanism (see Figure 3). In addition to common message attributes, the sender indicates the message type and its visibility instant. It specifies the date, beyond which the message can be consumed by the recipient task. Each task has message storage queues. Messages are checked during compilation and their visibility date is specified by the sender. A recipient task has queues for receiving purposes which can only accommodate messages of the same type and has an associated time limit. To achieve determinism, the sequence of messages sorted by visibility date is made to be total. Figure 3: Real-time messages: if message M is sent by the second task with a visibility date t 1 , then it cannot be consumed before the t end date, since t 1 > t start

The temporal consistency of exchanged data between tasks is ensured by the fact that it takes place at the transition of two consecutive processing of the consumer side. This strict observation principle is mastered: data on which a processing takes place are not sensitive between the beginning date t start and the ending date t end .

Execution control graphs: From the abstract syntactical tree obtained during the first Ψ compilation stage, control graphs of each task are automatically generated. They are built with different types of primary nodes that meet real-time features. Their oriented edges reveal the congruency between themselves and code lines that can be executed. It is important to notice that edges could never be walked over because of the conditional branching logic, but an edge can however include several logical branches. All of the possible temporal paths of a task are in fact embedded in its execution control graph which represents an autonomous and independent element that is animated within a true execution in simulated time without the target machine or used to control the system execution on the target machine. The temporal behaviour analysis of one task can be refined when limited loops including temporal constraints are met or when synchronizations on a specific real-time clock have been declared. A construction based on temporal states congruency with loop analysis can be computed from the control graph that are unfolded on the real time basis: all temporal synchronization points are then obtained. These results are used to validate specified temporal features at design stage and to automatically size the communication buffers.

Determinism: Determinism is one of the basic properties of OASIS. Determinism means that the behaviour is single and unvarying. Each task has a behaviour independent of the target architecture. Due to unvarying behaviour, adding or deleting a task which has no direct interaction with other tasks, does not affect the application behaviour.

Offline development tools

Statically computed runtimes information: To perform a successful appliance of our method and approach in the industry, all necessary support tools have been defined and realized. They deal with the following aspects: design, compilation, code generation, execution, simulation, analyses and safe sizing of the communication buffers. From the Ψ design, the code production chain is entirely automatic, operational and includes the:

• compilation of the tasks and of their associated state-transition diagrams, • the interface of the tasks with the system kernel,

• the calculation of each buffer worst case sizes, • the link edition for each task, between the tasks and with the system layer, • the generation of static memory protection tables to enable the protection of the whole application,

The temporal dependencies are calculated on temporal graphs and the buffer sizing is automatically performed too. OASIS also focused on the tool quality (size of the considered case studies, compilation modularity, documentation and trace generation, error code report in the original source code) and on the portability and perennial principles of the developments.

Distributed model: The OASIS environment is geared by an extension to provide distributed safetycritical real-time systems with the same properties.

The objective is to increase performances and modularity while satisfying compliance to the safety requirements. In order to design a distributed safetycritical system with the OASIS chain of development, the model for single processor has been extended to distributed ones with the two following constraints:

• The distributed system remains in conformance with the OASIS model, in particular with the determinism property, • The underlying hardware architecture (e.g. network topology) must be as transparent as possible for application designer.

For distributed architecture, OASIS focuses on the reuse of pre-developed networking solutions. For example, the time-triggered basement of OASIS at runtime makes easier the management of integrated solutions like time-triggered networks, that are nowadays available. Another solution that proposes OASIS is to reuse the Ethernet hardware layer and to pilot it with a time division multiple access strategy. In this case, OA-SIS sets the global time basis of the system. Hence, all communications are deterministic [START_REF] Chabrol | Deterministic distributed safetycritical real-time systems within the oasis approach[END_REF]. Connected to this work, additional works for automatic and safe mapping of real-time tasks and communications among a distributed architecture have been performed.

Correct implementation

Embedded real-time execution model

Graph-execution control: The OASIS kernel architecture is composed of:

• a generic runtime wrapping that interfaces the tasks and the micro kernel, • a real-time determinism and dependability-oriented micro kernel which implements data exchanges for the communications and a graph-execution control of each task code sequences.

The kernel has been realized to satisfy all the previously stated properties: real time, determinism, genericity and dependability. It implements data exchanges for communications and a graph-execution control of each task code sequencing. The kernel is not a classic real time monitor. It manages real time and processor sharing, verifies online all execution times with a time watchdog and it also controls deadlines. The kernel does not require any internal synchronisation (e.g. no semaphores), nor any atomic section, except the processor single instruction atomicity. Time management is also based on a defensive programming in order to detect incoherencies on the speed of the hardware time flow.

Memory protection:

The kernel which ensures an early fault detection and confinement and the runtime are segmented and put in place according to a patented process [START_REF] David | [END_REF]. The implemented mechanisms ensure that any applicative error, regardless of location, will have a deterministic impact on the system. In opposition to most current systems, the asynchronisms of the execution do not have any impact on the determinism.

The memory is split in segments with necessary and sufficient access rights depending of the execution context. This allows detection and confining of operational anomalies (e.g. referencing fault) between the tasks, between a task and the kernel, inside the kernel and its microkernel. As far as we are aware of works in the safety-critical real time domain, no solution has incorporated such a precise partitioning of memory access rights. With these principles and with a specific organization of the memory segments, we are able to guarantee unvarying execution contexts for elementary activities, even in the presence of undetected anomalies (undetected because they could occur inside the right segment memory). The MMU is statically initialized with constant tables generated at the end of the linking edition. The use of cache memory is managed by these tools.

Optimal online scheduling and sizing

Efficiency of real-time systems can be measured by the size of the hardware needed to perform a task. Namely, if the same functionnality can be accomplished by two different systems on two different hardware, the more performant system is the one that can run on the slower hardware. OASIS has many advantages with regard to performance. Thanks to its simple task model (no mutex or lock, no synchronous communication), all tasks are really independent, their behaviour is deterministic, and studying their behaviour is tractable. Thus at compile-time, all the possible deadline, start times and execution paths of the tasks are extracted from source code, forming possible execution graphs. From these graphs, different kinds of information can be computed.

Computation of all buffers' size: We should point out that in OASIS, all messages are sent asynchronously, meaning that they have to be buffered for the duration between the sending of the message and its reception.

Computing the size of these buffers is a difficult problem in most real-time systems.

In the best cases, a size large enough can be proven, but it is rarely also the necessary size, which leads to buffer oversizing. This is because computing the buffer size is intractable in classical fixed-priority systems and sufficient approximations have to be used instead. If there are many communications in the system, a large amount of memory can be wasted, increasing the cost of the system.

In OASIS, the unfolded graphs, carrying all the temporal informations of the processings in the tasks, can be used to extract such informations in more complex cases. The result is a perfectly sized buffer, whose size is sufficient for holding all messages in every configuration, and for which there is at least one configuration in which the buffer is perfectly full. This allows the system designer to minimize the amount of memory needed.

Computation of the needed processor's speed: The load of the architecture and the processor's speed can also be automatically computed. From the execution graphs of the tasks, we can compute a "synchronous product" that represents in a single graph all possible executions interleaves between the tasks; every path represent the parallel execution of several tasks. When coupled to the quotas of all elementary actions, the synchronous product allows to find out whether the application is schedulable or not. The technique cuts all jobs to be done among several intervals and computes for each possible execution interleave the existing constraints under the form of a set of equalities and inequalities. These constraints are then solved using a numeric linear programming solver such as lpsolve, and give a possible schedule of the system for each possible execution path [START_REF] Aussagu | A method and a technique to model and ensure timeliness in safety critical real-time systems[END_REF]. We then simply schedule the system using a deadline driven algorithm: since this algorithm is optimal [7], i.e. can correctly schedule every schedulable job set, and we proved that the job set is schedulable, all deadlines are guaranteed to be met.Still, we perform online monitoring that all the jobs finish before their deadlines for safety reasons. So as to find out the cause of a deadline miss, we also monitor the fact that each job does not exceed its quota. A slight change of the technique allows not only to perform feasibility analysis, but also the required processor's speed. The idea is to divide all the given quotas by a formal factor k, and find the minimal k such that the system remains schedulable. The found k is the maximum load of the system, a measurement of the required processing power. It is helpful to give an idea of the safety margin, but can also help choosing the processor's speed. The processor is perfectly sized when the load of the system is of 1. Assuming that the quotas are reached, the sizing of the processor is again optimal.

Computation of an optimal multiprocessor schedule:

The previously presented technique of feasibility analysis can be adapted for multiprocessor systems using the scheduling theory developed in [START_REF] Lemerre | Equivalence between schedule representations: theory and applications[END_REF]. But even if this allows to know that the system is schedulable, it does not allow to schedule it directly because the deadline driven algorithm is no longer optimal on multiple processor systems. It is worth noting that few optimal multiprocessor real-time scheduling algorithms are known (the only known are the Pfair algorithms [START_REF] Baruah | Proportionate progress: a notion of fairness in resource allocation[END_REF], and they are limited only to periodic tasks).

In order to get an optimal multiprocessor schedule, the results of the feasibility analysis have to be used directly. This is one focus of our current research. Many problems have to be solved, such has the practical storage of the synchronous product (which consumes a lot of memory) in an embedded system, or ways to find weights such that the fewest possible migrations occur. The theoretical gain of using an optimal scheduling algorithm over a deadline driven or a partitionned solution is of two, meaning that we can use processors that are two times less powerful to schedule the system using the optimal scheduling algorithm.

Efficient implementation

As seen in the previous paragraph, the simple task model of OASIS (no mutex, no locks) allows to perform exact feasibility analysis and to schedule tasks optimally, improving the processor use a lot compared to fixed-priority and lock-based solutions. We can also note that the time-triggered nature of OASIS also occur much fewer preemptions than interrupt-based systems; and these preemptions occur only at known time. This also helps in tightening the computation of quotas [START_REF] Louise | A new paradigm for cache related wcet computation[END_REF].

Scalability: The lock-free solution of OASIS also makes it perfect for symmetric multiprocessing systems. Indeed, we can examine the effect of using locks in a computer system:

• On a uniprocessor system, if a thread tries to acquire a lock when it is already hold, an extra preemption occurs so that the thread holding the lock finishes its computation. • On a multiprocessor system, the lock can be already hold by a thread that is running on another processor. Two solutions arise: either the holding thread is migrated, either the waiting thread must wait for the other processor to run the holding thread and release the lock. Both are real efficiency bottlenecks.

Moreover, locks also are unsecure, since a buggy thread may hold a lock indefinitely, thus blocking all the system. On the contrary, the wait-free nature of OASIS makes it extremely scalable and is very performant on symmetric multiprocessing and distributed systems.

Distributed communication: In order to use temporal variable or message mechanisms, it is necessary to indicate respectively the updating period date or the visibility date. The updating date and the visibility date indicate the instant when the data should be available for consumers. It also represents the last instant for receiving the data. By this way, in the OASIS approach, the communication latencies are never considered as insignificant. These temporal parameters provide a way of integrating temporal constraints and communication latencies due to the network at the design level.

No change of the design model is required. The underlying target hardware architecture is transparent for the application designers. Since TDMA brings a static network scheduling, its behaviour is therefore reproducible in temporal and logical domain. To ensure the timeliness, the network scheduling must be computed in order to set each time slot before the deadline where transmitted data must be available for distant consumers. Network fault tolerance begins from the ability to detect errors coming from the network. The error detection is simple and efficient. Since the network scheduling is static, each unit has a perfect knowledge of the network behaviour. The error detection is therefore based on a qualitative approach where missing or swapping of packets are critical errors. Moreover, network is supervised in order to detect disregarded execution and sizing hypothesis such as the absence of collision or the bounded clock synchronization accuracy.

Clock synchronisation: One of the biggest problems in a multiprocessor system is to maintain clock synchronization between the different processors. As OA-SIS rely on time for all its synchronizations, if different tasks use non-synchronized clocks then a message could not be received by another task on time, thus not respecting the execution model. One way to deal with this problem is to have a maximum synchronization drift δ and to force all deadlines to be reached before the actual deadline minus δ. This is what is done on distributed systems, where drifts cannot be avoided; but this has some impact on performances.

We have thus organized the system so that δ = 0. The solution is conceptually simple: instead of using one clock per processor, only one processor has an interrupt routine that updates a clock, puts its value in shared memory, and awakes the other processors at certain dates. The cache coherency mechanisms impose a unique view of the system's memory, thereby ensuring that δ = 0. Compared to a multiple timer solution (for instance [START_REF] Calandrino | Quantum support for multiprocessor pfair scheduling in linux[END_REF]), our approach is architectureindependent, fault-tolerant, and more efficient.

An application: dependable IA32-based display system

4.1 Overview of the system architecture Requirements: The application taken as a case study aims at displaying user-data on a touch-screen, in a flexible and safe way, using the OASIS framework. The execution architecture is a off the shelf Intel IA-32 based hardware (PC-AT/Pentium M computer). This displaying system must be able:

• To retrieve data transmitted by one or several external I/O units through Ethernet links, • To process these input data,

• To display the elaborated information to users through a graphical interface defined by some external HMI-designers, • And to process user inputs such as set points or other parameters.

The main requirement is to achieve HMI functionalities with high dependability. Real time performances deal with the data storage capacities and rhythms, the response times of the display and the validity of displayed information. Hence, up to few thousands analog or binary values can be recorded each second during 30 minutes or 24 hours. The time between the acquisition of data and its subsequent display on the screen shall not exceed one second and an HMI event must be taken into account in less than 200 milliseconds. All information on a screen must also be time consistent.

Hardware/Software organization: The hardware aris a standard, widespread and portable one. The target is a Pentium M architecture, with DDRAM that could implement hardware error-checkand-correction mechanisms, with static memory, with a graphic processing unit, Ethernet-based communication devices. OASIS generic layer and kernel ensures all system functions, including hardware configuration control. The software is organized in two main layers: an applicative one and a generic one. The OASIS method ensures some important features for the safety: the modularity of the developed software, the temporal and logical determinism of the application execution. The software applicative layer consists of user tasks that manage the application displaying policy (e.g. the data management, some graphical item representations, actions triggered by user inputs). It is related to functional treatments that have to be done to the acquired data before displaying them. It is also compounded of external static tables that describe both the HMI screens and the acquired data disposition inside. The generic software layer implements the hardware management of the display. This layer consists of tasks that manage the main physical devices and the communication interfaces with the applicative layer. As presented in the Figure 4, the software is compounded of the following nine tasks:

• agApl: the applicative task that implements the functional treatments on the acquired data. • agScreen: screen display management, in order to display the current image and its components on the screen, by first preparing the image to be displayed and then transmitting it to the screen. • agTouch: RS232 interface and associated touchscreen pointing device management. • agKbdPs2: PS/2 interface and associated keyboard and backup pointing device management. • agNet: low-level network management and protocol implementation for data exchanges. • agMgt: high-level network management, building the I/O functional dataflow for the application layer. • agMem: static memory management.

• agStatus: maintenance management, including the Ethernet one. On maintenance requests, it transmits a monitoring and error buffer. • agSelfTests: hardware self-tests performing and collecting.

Displaying principles: The GPU is configured in a linear frame buffer mode: the video memory is mapped as a raw set of bytes at a dedicated memory location and displayed as this. The display is managed by only one task, agScreen which builds and sends the whole memory bitmap to the video memory at one time. This guarantees the consistency of the graphic elements that are displayed on screen in one image. HMI definition is based on high-level graphic objects that have static features and dynamic ones. agScreen gets the graphic items description in two locations: one in file(s) that define static parts and the other in the communication interfaces (temporal variables) between agScreen and an applicative task that updates cyclically the values of the dynamic parts. For the preparation of the screen memory bitmap, high-level functions are provided in a dedicated library. These functions take the static and dynamic parts of a high-level item and update in accordance the screen memory bitmap.

Hardware management

The goal is to check that the developed software will run on its actual target hardware and that the so-far achieved configuration of the hardware is in conformity with the specified hardware nominal configuration and settings. In order to reach this objective, the kernel probes the entire PCI buses and compares all the relevant registers of all other devices. This order of hardware checking is strictly followed and any failure is considered and processed as an error. After the start-up phase and the low-level hardware initialization phase, tasks managing specific hardware perform a high-level initialization and checking phase. Moreover, self-tests of any hardware component are performed by the task that manages it. They are performed in order to detect any main hardware failure when the system is operational. They are collected by the agSelfTests task that provides an overall synthesis of the self-test results.

The only component that is tested but for which the results are not taken into account is the Ethernet chipset dedicated to the maintenance. The monitored hardware components are the Ethernet chipset dedicated to the I/O network, the touchscreen pointing device, the keyboard, the backup pointing device, the IDE/ATA static memory device and the ALU&FPU. The ECC-RAM provides a hardware-based permanent detection and correction. An overall status is elaborated from all self-test results and attached with each data going outside the displaying system. Self-test results are displayed in a dedicated self-test page and may be sent on the maintenance network. Any hardware fault detected by the kernel (e.g. execution control graph non conformity) leads to an error management procedure that can be taken into account since design phase.

Efficiency and dependability level

Within the OASIS framework, nine parallel tasks are executed in a PC-AT/Intel IA32 single-processor computer with time scales ranging from the millisecond to few seconds, allowing the full control of a configurable graphical HMI with up to 50 pages, 100 24h-curves, 100 30min-curves and 150 items per graphic object type, data storage on 24h and calculations for millions of measure points, network communication management (around 40000 data per second), application downloading and monitoring. It has been easily demonstrated that in all cases during execution:

• The displaying rate is of 20 images per second (an image is compounded of 1024x768 pixels of 16bpp and entirely built by the generic layer). • Data received through an I/O network are displayed in a consistent way in less than 1 second. • Any input (pressed keys, pressed buttons, pointing device movement) entered by the user is detected and taken into account in less than 200ms. • Any action triggered by the user is processed in less than 1 second.

As the execution of the application is monitored by the OASIS kernel, any violation of the hypotheses that contribute to the demonstration of these temporal properties are detected. The temporal and logical determinism of the safe-by-construction OASIS approach guarantees that the whole application behaviour is reproducible and that it totally fulfills its specifications. Thanks to OASIS, even in case of a failure, the application behaviour is also deterministic, i.e. reproducible.

Conclusion

The OASIS model and tools ensure most important safety properties as the data coherence, an unvarying and deterministic real time behaviour, and in depth fault-detecting and fault-confining hardened mechanisms. The absolute determinism is necessary to the pertinence of the tests, and OASIS meets this goal to make easier test and analysis works to qualify a safetycritical system. This formal approach of real-time design avoids many difficulties and traps encountered with standard multitasking ideas. Hence, it will significantly reduce the cost of safety-critical system. OASIS provides a major technological break that improves both dependability and performances of safety-critical real-time embedded systems. It allows implementing efficient advanced real-time functionalities without any safety loss, compared to traditional programming techniques. It also greatly increases their perenniality. A real-time system designed with OASIS is a system without any unreproducible defects. Moreover, R&D works are in progress to provide additional extensions towards heterogeneous hardware and software architectures and to carry on facilitating the system level design.

Figure 4 :

 4 Figure 4: Software architecture of the dependable IA32-based display system