Frederic Mondot
email: frederic.mondot@renault.com

Software Analysis: A point of view of a car manufacturer

Keywords: Static Analysis, software development rules, MISRA

This paper presents a point of view on the way and works that Renault considers as necessary to insure a good level of software quality through the application of solutions concerning static code analysis and intrusive control of the software development by quality requirements and software verification levels to the supplier.

Introduction

1.1 Solving software problems: the context in automotive market Embedded Software is a major actor of the automotive innovation but it is put under the spotlight for its good and its bad sides. Over the last few decades, the growth of automotive services containing software is becoming increasingly important.

Electronic services are increasingly complex, distributed and dependent on other electronic systems. These systems are also highly stressed by their environment (driver, passengers, external environment ...). The software that drives such systems is also constrained, especially in terms of dependability. As explained in a McKinsey report [1], Embeddedsoftware systems control a wide variety of automotive applications and handle a number of fundamentally different challenges […]. Unfortunately, embedded software has, at best, a varied record of quality: newspapers regularly report failures and recalls.

It is difficult for the customer of our vehicle to imagine that embedded electronic systems could fail or endanger him.

The press is full of examples of recall campaigns of vehicles following the discovery of electronic problems. This often leads to a realignment of embedded electronics with a focus on a software correction. Consequences of these software problems and campaigns are numerous:

• Discomfort of the client of a car (Potential failure of the vehicle, non-availability of services, immobilization of the car ...) • Economic aspects (cost of warranty, etc) most often shared between the manufacturer and the OEM.

• "Brand" aspect, in other words bad advertising (much more unfavorable for the car manufacturer than the supplier) For the customer, electronics in the vehicle has to be robust, reliable and free of defects. For this last aspect, how do we get there? How to be sure? Quality and reliability of the system are indirect leverage for customer trust and business improvement.

In this way, it represents a challenge for both car manufacturer and suppliers to address the following issue regarding software development: how deploying software products without defects. To do this, Renault shall be very involved in the development achieved by the supplier. That is why the process described above and implemented by the supplier is controlled, adjusted under a contractual quality plan. In this plan, the supplier agrees to respect among others a number of requirements in order to fulfill the Quality objectives (Requirements adequacy, Reliability, Testability, Traceability, Maintainability ...) The monitoring carried out by Renault throughout the development phase by the quality assurance activities intends to ensure the good organization of the process, the good use of techniques, methods and tools. Among these requirements that the supplier has to respect, we shall quote for example, the respect of the "Guidelines for the use of the C language in critical systems" published by MISRA [2].

2.2 A lever to insure confidence in software Everyone knows the exponential curve of cost of corrections of a bug. It is easy to claim that it is necessary to give the means to detect and to correct bugs as soon as possible but this task shall be accomplished within the constraints of model of development (Quality, Cost and Duration). Software bugs could be design defects (linked to the specification) or production defects (linked to the coding phase).

The classical activity of the V&V phase is test (unit and integration test). Unit test phase, for example, is very often the first activity done by the supplier after the coding phase. Based on the design elements, it is intended to verify that the product obtained at the coding step is consistent with the description given in the software design document. So, it is naturally in this phase where defects could be detected. But considering the flow of development of an automotive electronic application, the final and exhaustive functional content occurs late in the project.

Figure 3: exhaustive representative model come late in the development compared to the SW production and validation

The unit tests are also rather late and are of course costly to implement. They require an execution of the code and a dedicated operating environment. Thus, as the code is often modified to achieve the functional specification, unit test made on a specific software file version have to be redone on the updated software file and that is why suppliers could prefer doing these tests when the code is a little bit more mature.

Is there any activity to perform before unit tests phase? For what purpose?

Developers know that some coding constructions could lead to potential defects if they are misused or not controlled in an adequate way in the software architecture. So, development rules shall allow to impose a kind of watchdog during the production of code.

The check of these rules is not intended to validate the functional requirements of the application, but is intended to verify the proper use of language, the proper structure of the code. This analysis can be done as soon as the code is produced and whatever completeness of its functional content. This so-called static analysis is done without executing the code and does not require a complete operational environment.

Is it a guaranty of absence of defects?

The answer to this question is absolutely not. It is a mean to improve code quality, to detect defects sooner in the process but this remains a complement to other V&V activities established by the supplier and Renault. It is also a way to keep an eye on the evolution of the software development by monitoring for example software quality metrics.

Certification of automotive electronic applications is not yet mandatory in automotive domain but the position of Renault is to develop means to "qualify" the software. By this term "qualification" Renault means to give a level (a quality level or a risk level) for the software project. This level will let Renault for example to ask complementary activities to the suppliers.

That is why Renault wants to be even more intrusive in the coding phase and in the V&V phase.

3.

Detect and correct software defects: the sooner, the merrier

Requirements to suppliers

At the beginning of the project, the supplier receives a documentation of requirements concerning the policy of software quality assurance that Renault wishes to lead. In this documentation are notably included the requirements concerning the objectives and the means linked to the static code analysis as well as those linked to the dynamic code analysis. These requirements specify on the one hand the objectives, that is to say, the details about why Renault want the implementation of these kind of analysis, what are the results that Renault expects (reports, …) and on the other hand the means and process to realize these analyses.

Objectives:

• Check of development rules For that purpose, Renault bases its thinking on Misra Rules. The compliance of these rules is asked to the supplier. Violation of these rules shall be analyzed and justified or corrected by the supplier. The goal is to avoid systematic coding errors in order to correct them at lower cost. Misra rules also allow structuring the code by avoiding potentially dangerous programming constructions.

• Software metrics Code measurement is needed to monitor the evolution of the coding phase throughout the deliveries. Also, the various collected metrics shall allow to identify some "shaded areas". These areas represent in fact part of code with complex structure, which could be potentially poorly controlled by developers, and then, potentially problematic (coding error, no maintainable code…) for this project or for future project. The identification of these areas shall allow the introduction of additional tests or the introduction of oriented tests at the initiative of the supplier or Renault.

• Detection of runtime errors Most Static Verification tools only provide an analysis of the complexity of the software. They look for constructions, which may be potentially dangerous, but some tools provide deep-level analysis by identifying almost all run-time errors and possible access conflicts on global shared data. These errors are linked to the implementation; it is of interest to check them in a static way. No need to have the whole environment development.

The goal is still here to detect as soon as possible coding errors.

Means:

In the point of view of Renault, it is important to insist on the "automatic" aspect of the analysis. Therefore, a dedicated tool shall perform the analysis.

It is also important to insist on the conditions of performing the analysis for several reasons:

• The configuration options of tools are numerous

• The conformity of the code under analysis in term of execution and structure compared to the mass production code. For example, control flow and data flow shall be the same. • The consideration of the functional information of the data for example through the data dictionary. • The analysis perimeter of the tool. Tools have distinct functionalities and then, shall be used only for their purpose

Renault has developed internal competencies on the use of such static analysis tools. Renault has a good view of how to use them. Global requirements and deep level requirements (for example, best configuration options) have been built concerning the process of analysis and the use of the tools.

Results:

The supplier performs the V&V tests and reports the results in an internal document. It is necessary for Renault to get access to these results and reports. As a consequence, requirements also concern analysis reports. A typical report is required to supply to Renault at each software delivery or each major V&V milestone. Information documented in the report (and then, the requirements supplied by Renault) are various. It concerns configurations option, information about experience of the person in charge of the check, justification and details of warnings or violations identified by tools.

The activity of justification of the non-conformities is important. By justification, Renault wishes not only the supplier position about the potential problem (the answer to the question is there a problem or not) but also elements that let the supplier conclude on the potential problem. Moreover, the fact to ask a written justification and illustration is a good strategy for the soundness of the analysis. Indeed, the level of details asked by Renault for the justification of non-conformity helps the person in charge of the analysis to perform good checks. This justification concerns not only the confirmed problems but also the justification of the warnings not considered as problematic. This shall be done to keep the reasons of these choices (traceability) and capitalize them at each software delivery but also in the case of carry-over on another project (execution conditions may have changed and then effect and root causes of the deviation also).

Tools to support the activities

Tools shall support the achievement of the objectives.

As mentioned in sections above, Renault has developed competencies on tools. It is not the goal in this section to mention name of tools but to give some elements on tool categories.

• Misra Rules Tools in this category shall check the whole set of rules that could automatically be checked.

• Software metrics A lot of metrics are available. We have to take into account on the one hand metrics proposed by tools and on the other hand we have to build specific metrics linked to the objectives. An example of this built metrics could be a metric which measure the evolution of the violation of some Misra rules along the software deliveries or metrics based on the review of the warnings.

• Runtime errors

The number of tools realizing this type of analysis is more limited. Typical errors which could de checked are:

division by zero out of bound array index bad use of pointers non initialized variables shared variables conflict unreachable code -etc… A process shall be defined to correctly use tools and analyze the results. Such a process was built by Renault and suggested to the supplier. The process covers various items:

• the configuration of the tool : best configuration… • the analysis sequence: this covers the analysis by the tool and also the analysis of the results which is mainly manual. Renault proposes good process practices to obtain best defects detection and best results review. • the required report: all information needed by Renault to have a good overview of the performed activity and to have all the elements to evaluate a quality level This process is discussed with the supplier, adapted if necessary, collectively accepted.

Benefits for car manufacturer and supplier

The quality of the analysis by tools is important but the quality of the analysis of the results is also very important.

It is one of the Renault requirements on which it is necessary to insist. Indeed, the justification of the choices which allowed to say or not that it is a defect which can lead to a failure represents the main part of the analysis. It is also capitalized information for future versions or when the code is carried over a new project.

For the supplier, this activity shall demonstrate to the car manufacturer through the use of the mentioned type of tools that the product does not present defects and that it is of a good quality level.

On the other side, the car manufacturer want to be sure that everything has been done to "purify" the application of any anomalies. These opposite points of view associated with this citation of Dijkstra [3] "Program testing can be a very effective way to show the presence of bugs, but is hopelessly inadequate for showing their absence" shows that even for a static analysis, it is difficult to define a stop criterion allowing to give or to reach a quality level at a given moment. Nevertheless, the static analysis activity properly integrated into the software development process and properly supervised by the monitoring of the software development of the supplier shall be able to identify or to guarantee an absence of certain defects types very early in the V&V phase. A single method is not sufficient. It is the combination of the techniques and tools through the three defined objectives that let to reach this criterion. It is of course a complement of other V&V activity (dynamic test…)

For the car manufacturer, the systematic introduction at the supplier of a static analysis activity associated with specific requirements (process of the analysis by the tool, process of the analysis of the results, justification of the non-conformity …) is a mean to reach quickly a good quality level for the project.

The formalization of the results and their provision to the car manufacturer allows to follow the evolution of the code quality over the deliveries and to capitalize on defects found (enrichment of the specification, enrichment of the requirements related to the static analysis activity …) For the supplier, this practice will enable him to capitalize on the problems found by enriching its internal rules of development as well as its development process.

A part of the unit test may be covered by the static analysis of the runtime errors (bound analysis, errororiented test …), so the supplier can orient its test campaign in order to avoid areas already covered by this type of analysis. Also with the detection of the unreachable code, the construction of test cases for dynamic tests is facilitated.

Finally and hopefully of course, the use of these various tools allow before the dynamic test campaign to have a code free from some defects. Some Renault projects are using this process since beginning of 2007. For these projects, there were suppliers who already used this type of tools and also novices suppliers in the use of these tools. For these suppliers, the accompaniment of Renault through the requirements was beneficial.

Results are coming and globally three of them could be pointed out:

• a better relation with supplier concerning V&V activities (objectives, share of experience with process and tools) • a good visibility of the results (raised of defects, justification, action plan, capitalization for future developments) • a fast minimization of defects detected by the mentioned tool types.

Another way of progress has to be considered: a change of mindset. Indeed, the supplier sees this new approach as a sanction and not as a mean of software quality improvement and as a collaboration between OEM and supplier towards the objective of producing software of better quality.

Next steps

An improvement of this process will be conducted based on the first results and on the acquisition of skills at Renault on other tools. A strengthening of requirements is also planned as well as greater transparency and communication with the supplier in order to transform the feeling of sanction into an opportunity of collaboration and success.

Conclusion

As exposed in this paper, confidence in the quality of the software is a great challenge for car manufacturer and supplier. This approach by using static analysis close to the production of the source code and the associated process based on the Renault SQA is interesting to tackle the issue of making better software and in a "win win" approach between the car manufacturer and the supplier. The static analysis is of course not the ultimate answer to the problematic of detection of defects. It remains one of the mean in a global V&V process to reach this objective.

The knowing of the analysis results and the reported evolution over the software deliveries must be able to Renault to identify a quality level or a quality risk of the project.

Deployment of this strategy is still in progress but results are already on the good way and will be strengthened by the coming of new standards in future Renault projects (Autosar, ISO26262…).

[1] McKinsey Wolfgang Huhn and Marcus Schaper, Getting better software into manufactured products, March 2006 [2] MISRA : Guidelines for the Use of the C Language in Critical Systems, October 2004 [3] Dijkstra : Humble Programmer, ACM Turing Lecture, 1972

Glossary

Autosar: Automotive open system architecture ECU:

Electronic Control Unit MISRA:

Motor Industry Software Reliability Association SQA:

Software Quality Assurance V&V:

Verification and Validation

Figure 1 :

 1 Figure 1: A representation of electronics defects and their cost to repair (source McKinsey)

Work share between Renault & suppliers in the software development cycle

	1.2 ECU Development: Renault Business model
	Today Renault model of working on ECU (Electronic
	Control Unit) and embedded software is mainly
	based on sub-contracting. Both are currently
	subcontracted to automotive suppliers.
	The figure below shows a usual V-cycle illustration
	for software product development and present the
	phases of which Renault and sub-contractors are in
	charged of.
	Figure 2: Renault makes totally, partially or sub-contracts
	functional specifications based on customer benefits
	and functionality requirements. Suppliers are in
	charged of the whole software product development
	and testing.
	At the end of this development cycle Renault
	achieves functional and system validation testing on
	the ECU.

This modus operandi between Renault and its suppliers cause many exchanges of information at all levels of development and particularly for the software quality monitoring. In this area, exchanges can take the form of audit, review, test report … 2.

Static Software Analysis: a mean to reach full quality?

	2.1 Software Quality Assurance
	The quality of the software relies heavily on the
	quality of its development. The production of the
	software requires the establishment of methods,
	techniques and tools.
	To control this production, we must implement a
	process model that defines:
	• The development phases: definitions of
	requirements, specifications, planning, design,
	coding, testing activities ...
	• Productions: prototype, documentation ...
	• The criteria for phase change,
	• A framework for project management.
	The Renault development model of an ECU involves
	a software development by one or more suppliers.
	This business model involves a technical fact: from
	Renault's side, software product could appear as a
	black box. That is exactly what Renault wants to
	avoid.