
HAL Id: hal-02270091
https://hal.science/hal-02270091

Submitted on 23 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Adaptive Fault Tolerance in Embedded Systems
Thomas Pareaud, Jean-Charles Fabre, Marc-Olivier Killijian

To cite this version:
Thomas Pareaud, Jean-Charles Fabre, Marc-Olivier Killijian. Towards Adaptive Fault Tolerance in
Embedded Systems. Embedded Real Time Software and Systems (ERTS2008), Jan 2008, Toulouse,
France. �hal-02270091�

https://hal.science/hal-02270091
https://hal.archives-ouvertes.fr

 Page 1/9

Towards Adaptive Fault Tolerance in Embedded Systems

Thomas PAREAUD1, Jean-Charles FABRE1, Marc-Olivier KILLIJIAN1

1: LAAS-CNRS, 7 av. du Colonel Roche, 31077 Toulouse Cedex 4, France

Abstract: Dynamic systems become more and more
widespread in many application fields. This
observation highlights the trend that systems are no
more considered as running in a static, predefined
environment. Evolution has to be taken into account
and fault tolerance does not make an exception.
When the executive or environmental context has
changed, hypothesis or fault model may become
outdated or invalid. On-line adaptation of fault
tolerance has to be tackled.
This paper deals with the design of fault tolerance for
its on-line adaptation. It describes a reflective
architecture, suitable for modifying fault tolerance at
runtime. Then it shows how fault tolerance may be
componentized into small components to enable its
runtime modification.

Keywords: Fault tolerance adaptation, Reflective
architecture, Component Models

1. Introduction

Many systems, critical or not, may see their
environment changed during service delivery. On-
line fault tolerance adaptation becomes necessary
for many systems. Thus, it may concern either
embedded critical systems, ubiquitous or mobile
systems. On-line adaptation of fault tolerance
mechanisms depends on two different factors. The
first one is the evolution of fault hypothesis: several
fault models have to be taken into account according
to current context of execution (context-aware fault
tolerant computing). The second one is the variation
of available resources (resource-aware fault
tolerance computing).

From the architectural point of view, a classic
approach to implement fault tolerance consists in
designing a dedicated middleware which provides
the fault tolerance mechanisms, such as the Delta-4
system [1]. The goal of our work is to provide a fault
tolerance middleware with adaptive capabilities that
enables to modify fault tolerance at runtime to fit
executive constrains (resources, context). To this
aim, our approach relies on reflective technologies
and open components models.

In order to adapt fault tolerance at runtime, we have
to deal with several issues. The first one concerns
the runtime supervision of operational context of the
system which triggers the adaptation. The second
one concerns the design of fault tolerance in order to
be able to modify it at runtime. The last one deals
with the executive constraints when modifications
are applied to the system.

In this paper, we focus on designing fault tolerance
for its runtime adaptation. We tackle this problem in
two ways. First, we propose a reflective multi-layered
architecture based on component technology that
separates the different issues of adaptive fault
tolerant system (separation of concerns). Secondly,
we provide guidelines for the decomposition of fault
tolerance strategies into components to facilitate
their modification at runtime. These guidelines are
illustrated by two well-known strategies that have
been implemented.

This paper is organized as follow. Section 2
describes the problem statement and introduces our
approach. Section 3 shows how to use components
technology to provide reflective mechanisms for the
reflective layer in charge of fault tolerance. The
guidelines for fault tolerance decomposition are
proposed in section 4, and examples of fault
tolerance components in section 5. Then, a case of
study is described section 6. Our conclusions and
perspective of this work are given in section 7.

2. Problem statement and approaches

2.1. Problem statement and motivations

The adaptation of a fault tolerance strategy attached
to an application means that, under some new
operational conditions, the current fault tolerant
strategy is to be modified. We assume that some on-
line assessment and/or runtime monitoring are able
to state when operational conditions change and
trigger the adaptation. On-line assessment is out of
the scope of this paper.

We consider that adaptation leads to two kinds of
modifications. The first one is the modification of
fault tolerance algorithms. The second one is the
modification of parameters of the fault tolerance
algorithms.

Let S1 and S2 be two fault tolerance strategies. Our
goal is to modify algorithms and parameters to turn
current strategy S1 into strategy S2, taking into
account the functional specifications of the system
and fault tolerance properties during adaptation.
Whatever the solution is, clearly the application
software must be separated from the fault tolerance
software. This is a first objective of the proposed
approach (objective 1).

Now, to perform this change the first option is to stop
S1 as a whole and restart S2 from some past history
of S1. This implies mastering in deep the state and

 Page 2/9

the behaviour of the system. This is not easy if the
strategy is seen as a single software component.

Instead, we propose a solution that takes advantage
of Component Based Software Engineering
techniques. The idea is to design the strategies as a
set of cooperating fine-grain software components. A
set of small software components can be
dynamically attached together to form a strategy.
The adaptation can thus rely on the ability to attach
and detach components (objective 2).

The on-line adaptation itself can be seen as a
software runtime entity responsible for changing the
configuration of the fault tolerance software, taking
care of synchronisation issues (w.r.t to the
behavioural aspect) and of state issues (history of
the previous strategy). The solution must exhibit the
adaptation as independent from the fault-tolerance
software, so that it makes easier the definition and
the implementation of an adaptation strategy
(objective 3).

We expect the proposed approach to have the
following benefits:

• it enables mastering behavioural and state
issues more easily since the connection
between fine-grain software components can be
controlled at runtime;

• it saves memory space since many of these fine-
grain components can be shared between
several strategies ;

• the system performance can be increased as
only few light-weight components need to be
changed to switch to a new strategy

• for a given set of fine-grain components, several
strategies can be defined and modified at
runtime by the adaptation software.

In order to fulfil these objectives, the approach is
based on separation of concerns architectural
frameworks and open component models.

2.2. Reflective architecture

Reflection and more recently aspect oriented
programming, have shown their efficiency to
separate different crosscutting concerns, such as
fault tolerance for instance. A software system can
thus be conceived as multiple layers. These layers
are called meta-level in contrast with the base layer
that they control. A meta-model of the base layer is
provided to the meta-level. Control is realized
through the use of reflective mechanisms (reification,
introspection and intercession).

We propose to use a reflective multi-layered
architecture (cf. Figure 1) in order to separate, on the
one hand, the processing of the fault tolerance
algorithms from functional ones, and on the other
hand, the adaptation mechanisms from the rest of
the system.

The functional part of the system corresponds to the
base layer. Then, the fault tolerance software is
located in the first meta-level. Finally, fault tolerance
adaptation is handled by the second meta-level.

Figure 1 : Reflective architecture

Although adaptation focuses on fault tolerance, it
also needs to control the functional layer of the
system. For example, adding a replica in a
replication-based strategy involves, among other
things, base level state manipulation. Thus, the
second meta-level is a reflective layer of the whole
fault tolerant system composed of the two lower
layers.

2.3. Componentized layers

Separation of fault tolerance and functional
algorithms is a first step to tackle fault tolerance
adaptation, but it is not enough. We need
mechanisms to manipulate algorithms. Component
models seem to be a good way to deal with
algorithms manipulation. We propose to use
component models to implement both the base level
and the fault tolerance layer.

Indeed, a component is an abstraction of algorithms
and its interface describes the service provided by
the component. The content is the set of algorithms
that implement the service specified through the
interface. The notion of receptacle represents the
dependencies with other algorithms, in fact the
explicit link with other components needed to realize
the service. By definition, a component model
provides reflective mechanisms to load, unload,
connect and disconnect components. These
mechanisms are a foundation for the building of the
meta-model to tackle adaptation issues.

Because we need to decompose fault tolerance
software into several small algorithms, the selected
component model must provide means to define and
manage small components. In our opinion,
component models that best fit these constraints are
Fractal [2] and OpenCOM [3]. In this work, we use
OpenCOM essentially because it is more flexible
from an implementation viewpoint. The same work
may be done using Fractal as well.

The corner stone of any reflective architecture is the
notion of meta-model. The meta-model captures the
essential behavioural and state elements of the base
level to perform some actions at the meta-level. In

base-level – Functional System

meta-level 1 – Fault Tolerance

meta-level 2 – Adaptation

 Page 3/9

other words, the meta-model is an input of the meta-
level software to enable control over the base-level
software.

In order to be able to use such reflective
mechanisms for adaptation, the meta-model of base
level for fault tolerance has to be implemented using
components technology and fault tolerance has to
be componentized to enable adaptation layer to
manipulate fault tolerance algorithms at runtime.

The next section shows how the meta-model for fault
tolerance can be realized with components.
Section 4 provides guidelines for the fault tolerance
componentization.

3. Meta-model of base level for fault tolerance

Several previous studies [4, 5] have shown the
benefits of reflective mechanisms for implementing
fault tolerance. We propose to use the same
mechanisms to perform:

• State handling through intercession and
introspection mechanisms;

• Behavioural control through:

o Reification of incoming and outgoing calls;

o Intercession of incoming and outgoing calls.

Introspection is an observation of the base level on-
demand by the meta-level. Reification is an action
carried out at the base level to spontaneously inform
the meta-level of some event. Intercession consists
in modifying the base level software either by
invoking a method (behavioural intercession), or by
modifying a part of the internal state (structural
intercession).

3.1. State handling

State acquisition and restoration are necessary for
checkpointing-based mechanisms used in many fault
tolerance strategies like Primary Backup Replication
or Recovery Blocks [6] for instance. Saving and
restoring process’ state have been addressed in
many works [7-9]. It is worth noting that such
mechanisms can lead to major troubles when they
are not designed and implemented correctly.

Indeed, the state of a component can be a very
complex notion. It is composed of local process data,
process execution information, and state of
operating system resources like opened files or
sockets in use, etc. The component state is thus
partially dependent on lower layers of the system
such as the kernel and the middleware on top of
which the application components are running.

The acquisition and the restoration of the state can
be realized by a third party [10] or implemented
using traditional object-oriented facilities, like
inheritance of abstract classes, overloaded by a
programmer [11]. In our implementation we have

used the second solution which suits component
technology better. Every functional component has
an interface named IState which defines the save
and restoration mechanisms. The developer of the
functional components has to implement this
interface. By the way the management of state
issues is delegated to the component developer. To
do this job, the reflective capabilities of a language
(AspectJ [12] or the java.lang.reflect library in Java)
can be of great help, other mechanisms provided by
the underlying platform as well.

3.2. Behaviour control

As stated earlier, we need the component behaviour
to be observable and controllable through incoming
and outgoing calls. Incoming calls are the ones that
the component user makes by calling the interface of
the component. Outgoing calls are the ones that the
component makes through one of its receptacles to
a service on which it relies.

Control mechanisms like reification of calls enable
the insertion of fault-tolerance software both before
and after functional processing. The reification
mechanism routes the initial functional call to meta-
level as shown in Figure 2. Then some fault
tolerance related actions can be performed before
delegating the real call to the base level. The
functional component is invoked and returns the
result to the meta-level.

Figure 2 does not illustrate the return execution path.
Nevertheless, fault tolerance related actions should
be realized before returning the result to the base
level functional call.

Figure 2 : Behaviour capture

3.3. Implementation of meta-model

In practice, the meta-model defined in the previous
section must correspond to a real component able to
provide control facilities for a given functional

C1 C2 C3

Meta-level

Base-level
1 5

6 8

9

2 4

1 – Functional call from C1 to C2
2 – Interface call reification to meta-level
3 – Fault tolerance treatments before calling
4 – Intercession of C2 by doing incoming call
5 – Functional treatment of C2, then call to C3
6 – Receptacle call reification to meta-level
7 – Fault tolerance treatments before calling
8 – Intercession of C2 by doing outgoing call
9 – C3 execution relative to outgoing call from C2

Component(s) for
fault tolerance of

C2

3 7

 Page 4/9

component. We propose to implement this meta-
model as a wrapper of the functional component (a
composite component in OpenCOM). This wrapper
(cf. Figure 3) owns two interfaces that provide
intercession mechanisms and two receptacles for
reification mechanisms. It is named
ApplicationController because it provides control
facilities over the application composed of functional
components.

The ApplicationController exposes both functional
interfaces and receptacles. This wrapper can been
implemented with the OpenCOM component model
using proxy components able to intercept incoming
and outgoing calls and route them through reification
receptacles to the connected component at the
meta-level.

Figure 3 Application Controller

3.4. Framework for distribution

Most of fault tolerance strategies which aim at
tolerating hardware faults rely on replication: a
functional component is replicated on several nodes
of a distributed system.

Clearly, distribution is part of the fault tolerance
meta-model since it is a way to control interaction.
We thus introduce distribution in the component
model to manage the replication of components. To
this aim, specific composite components have been
introduced. These composite components provide
an abstraction of distribution for implementing
replication. Two types of composite components are
required:

• SingleReplica grouping functional and fault
tolerance components but corresponding to a
unique replica.

• ReplicasGroup grouping all replicas of a
replication strategy that can be called altogether.

The distribution framework is illustrated in Figure 4. It
enables considering the group of replicas as a
unique component that behaves as a reliable
functional component. Stub and skeletons in the

picture act as in any distributed model, but hide
remote interaction among replica groups.

Figure 4 : Distribution framework

This design is quite interesting for adaptation
because it provides opportunities to address the
functional synchronisation of replicas for fault
tolerance adaptation at the ReplicasGroup level. It
can be used to synchronise the state of all replicas.
In addition, it can be more efficient to adapt the fault
tolerance mechanisms attached to a functional
component when the later is in a particular state, e.g.
no request in progress.

4. Fault tolerance componentization

4.1. Problem analysis

Our goal is to guide the componentization process of
fault tolerance software in order to facilitate runtime
adaptation.

During runtime adaptation, two kinds of changes are
applied to the system. The first one focuses on
parameters of the system, and the second one
focuses on algorithms.

When component models are used to develop
algorithms, the smaller piece of algorithm that can be
changed is a component. This component’s
boundaries are the interfaces it implements and the
other interfaces it depends on.

Thus, interface definition is a very important part of
the componentization process of fault tolerance for
its online adaptation. These interfaces reflect on the
one hand, algorithms that may be dynamically
changed, and on the other hand, algorithms that
should never be modified because they provide
generic services.

Moreover, adaptation implies being able to:

:ReplicasGroup

rep1:Replica

rep2:Replica

:ReplicasGroup

rep1:Replica

:Application
Controller

:Skeleton

Logical view

Real view

Functional
interface

:ReplicasGroup

rep1:Replica

rep2:Replica

:ReplicasGroup

rep1:Replica

:Application
Controller

:Stub
Functional
receptacle

rep3:Replica rep3:Replica

Fault tolerance components Fault tolerance components

Reflective
mechanisms

Base-level
C2

Component for fault
tolerance of C2 Meta-level

Functional
Interfaces

Functional
Receptacles

Incom
ing calls

reification

Intercession of
incom

ing calls

Intercession of
 outgoing calls

O
utgoing calls
reification

ApplicationController

 Page 5/9

• control execution of components in order to
realize system adaptation when they are in a
suitable state;

• transfer data from previous existing components
to newly inserted components. This transfer
needs the introduction of translation function
which converts the state from previous fault
tolerance components to new ones.

The same service can be provided by a set of fine
grain cooperative components or by a single coarse
one, depending on the choices of decomposition.

De facto, dealing with several small components
may increase the complexity of execution control
whereas using a unique big component will make the
state transfer functions be more complex. A trade-off
has to be done during componentization process.

4.2. Fault tolerance persistent state

In a component based fault tolerance
implementation, the state of the fault tolerance
mechanisms is spread over every components
involved in the fault tolerance strategy. This
concerns both fault tolerance components and the
wrapped functional components.

When an adaptation occurs, the state of the current
strategy has to be transferred to the new one. A part
of this state is persistent during adaptation, that is to
say, it remains identical before and after adaptation.
To optimize the state transfer, persistence of this
state has to be analyzed.

This state is composed of values of internal
variables, stored data, communication channels with
transient messages, or timers. For instance, in
primary-backup and leader-follower replication,
group communication is generally used. Changing
system configuration from the primary-backup
strategy to the second one implies to transfer
possible transient messages. This process may be
quite complex. By using generic services like group
communication services, it is thus possible to
simplify the state transfer function.

In our componentization process, we identify, in a
first step, the generic services on which fault
tolerance relies. Thereby, when possible, these
services will be persistent, as well as their own state.

4.3. Identified services and components

In this section, we first propose several services that
we identified as generic services. These services are
persistent and thus, store state information that may
remain valid for several fault tolerance strategies.
Their interfaces are not detailed in this paper,
because it focuses on the method of decomposition
of fault tolerance software.

Generic services

We identified five groups of generic services which
can be useful in a fault tolerant system:
communication service (messages sending/receiving
and group management), election services, storage
services (distributed, local, stable or unstable), clock
services and timer services.

These services may correspond to several
components providing different properties. For
example, a clock service may be implemented by
either a local clock, a global clock or a logical clock.
Communication services can be implemented by a
peer-to-peer communication component, or a
reliable group multicast component.

Moreover, depending on the underlying hardware, a
reliable distributed storage can be implemented
using a reliable data bus to a shared disk or using
the reliable group multicast component and a set of
local non-reliable disks.

Fault tolerance services

Our componentization process of fault tolerance
relies on the taxonomy of dependability [13].

Fault tolerance consists in using core mechanisms to
build a fault tolerance strategy. This strategy is
based on a fault model for the considered system.

Fault tolerance mechanisms fall into three
categories:

• Error detection mechanisms, which detect when
the service provided by a component in the
system deviates from the specified correct
service. Each component of this category
provides the same service which is an error
notification service. A detection component has
a receptacle connected to a component which
provides the notification of some detection;

• Error recovery mechanisms, which eliminate
errors from the system. Each component of this
category provides the same service, which is an
error recovery service;

• Fault recovery mechanisms, which prevents fault
from being reactivated again. They can be
divided into four services which are:

o Diagnosis, which identifies the possible
origins of the detected errors in terms of both
location and type;

o Isolation, which performs physical and logical
exclusion of the faulty components of the
system from further participation in service
delivery;

o Reconfiguration, which either switches to
spare components or reassigns tasks among
non-failed components;

o Reinitialization, which checks, updates and
records the new configuration and updates
systems tables and records.

 Page 6/9

The recovery mechanisms consist in reconfiguring
functional components as a response to error
detection. However, in this work, reconfiguration
refers to modification of the fault tolerance software
(algorithms and parameters) induced by contextual
adaptation reasons.

A strategy consists in using these different services
to react to error detection. Thus, a strategy has a
core component, to which errors are notified. Then
this core component recovers the detected errors
and handles the faults of the system by calling the
services provided by recovery mechanisms. The
core component necessarily implements the error
notification interface to be notified of error detection.
Moreover, it has receptacles connected to recovery
mechanisms on which it depends.

Some more generic fault tolerance services have
been defined. They are:

• Checkpointing that consists in saving
functional state into a storage;

• Logging that keeps a trace of execution into
a log;

• Inter Replica Protocols, which is a
synchronisation protocol between the
replicas.

5. Components examples

5.1. Generic services

Group communication

We have implemented a multi-threaded
communication group component based on
Spread [14]. This component provides asynchronous
message transfer services based on a
publish/subscribe approach. This component has
two receptacles which are connected to Info-
MessagesListener and RegularMessagesListener
interfaces. They realize spontaneous message
delivery to connected components. These messages
are of two kinds: regular messages are messages
sent by third party and information messages are
group information messages which signal join and
leave operations.

The Spread communication library provides a
multicast protocol which insures messages delivery
and order. This component implements a Group
interface which enables to know the current user
identifier, the groups it belongs to and members of
each of these groups. The members are totally
ordered and consistent into a group.

Another non-threaded communication group
component has been realized. It implements
blocking RegularMessagesReceive and Info-
MessagesReceive interfaces instead of listener
receptacles.

Election

The election component has been realized using the
Group interface of the communication component. It
implements the Election interface. Then, the replica
is elected if it is the first in the totally ordered list of
the replicas group.

Storage

Several storage components have been realized. All
of these components implement the Storage
interface. The first one is a local unsafe storage,
which does not insure write atomicity. The second
one is a local atomic storage, which insures
atomicity on write. The third one is a distributed safe
storage. This storage service relies on a group
communication service and on a local atomic
storage. It insures that data stored on each node of
the system is the same and that it was written
atomically.

5.2. Fault tolerance generic services

Log

The log component implements the Log interface. It
uses a storage service to create log pages that can
be accessed through its interface. The reliability of
the log service depends on the type of storage used.

Some client components can be designed. For
instance, there could be client components which log
incoming or outgoing requests and returned
responses.

Checkpointing

The checkpointing component implements
Checkpointing interface. It gets the state of
functional component and logs it using the log
service.

We have considered two client components for the
checkpointing service. The first one requests
checkpointing for each incoming call. The second
requests periodic checkpointing (using a timer).

Inter replicas protocol

The inter replica protocols use the group
communication to provide synchronization among
replicas. This component implements the
InterReplicaProtocol interface and a receptacle
where InterReplicaProcolEventListener interfaces
can be connected. This component synchronises a
given event on replicas. Components to be
synchronised implements the InterReplicaProtocol-
EventListener interface and are connected to the
receptacle. A synchronised event is then signalled to
the listening components by calling the method
corresponding to the event.

 Page 7/9

5.3. Error detection

Crash detection

We implement a node crash detection component
using the InfoMessagesListener interface of
communication component, assuming that a crash
always makes the node to leave the replicas group.
This component has a receptacle which is connected
to an error notification service. When a crash of a
node is detected, the error is notified by this
component to the one connected to this receptacle.

5.4. Error handling

Rollback

Rollback consists in putting the functional
component in an error-free state obtained before
failure. Our rollback component reads previously
logged requests, responses and checkpoints. Then,
it restores the state of functional component from the
checkpoint. At last, it replays incoming requests, and
replaces responses of outgoing request by the
logged ones.

This component is an error handler. So it implements
the ErrorRecovery interface which is called to
recover when an error has been notified and has to
be recovered.

Compensation

Compensation is an error handling mechanism. It
consists in using execution redundancy to mask
errors. It may be used in several strategies, like
leader-follower replication or triple modular
replication for instance. Moreover, this compensation
may be realized at the replica side or at the client
side.

In the case of leader-follower compensation
mechanism at a replica side, the results of incoming
requests are returned only by the leader replica, the
outgoing requests are only sent by leader replica,
and the result is then provided to all replicas.

6. Case study

6.1. Functional level description

We now propose a case study (Figure 5) that is
composed of four functional components which are
sensor, actuator, automatic controller and the
command console. The command console captures
a reference (for instance from a keyboard) and
applies it to the controller. The controller tries to
make the system to behave as the reference
specifies it. It periodically reads measures from the
physical system using the sensor and calculates
control outputs to be applied to the system through
the actuator.

We aim at making the controller reliable by inserting
fault tolerance strategies at its meta-level. The fault

model considered here is the crash fault model of
nodes. We want controller to tolerate ‘n’ crashes.
Then, functional software is replicated among ‘n+1’
different nodes. We propose to study two classic
strategies which are leader-follower replication
strategy and primary backup replication strategy.

Figure 5 : Case study

6.2. Leader Follower Replication strategy

The leader follower replication strategy (LFR)
consists in replicating execution on more than two
replicas. One of these replicas is the leader. The
others are the followers. All of them are active in the
sense that they execute requests.

The leader provides the answers for incoming
requests, and is the only one sending outgoing
requests to other components. The responses of
outgoing requests are then provided to the followers.

When the leader fails, one of the followers is elected
as the new leader replica.

Thus, this strategy is based on crash detection,
election and compensation. Compensation uses the
inter replica protocol service, which depends on the
group communication service. We focus on error
recovery and do not consider fault handling. The
componentized strategy is presented Figure 6.

Figure 6 : A replica in LFR strategy

Automatic
Controller

Sensor

Actuator

Sensor

Actuator

Runnable

Command
Console

Command

Console
Node

Regulator
Node 0

Physical
System

n+1 nodes

Automatic
Controller

Stub Skeleton

Strategy
Core

Group
Communication

Crash
Detection

Inter Replica
Protocol

Default Interface
Caller

Default
Receptacle

Election

Compensation

ApplicationController

Functional
Receptacl

es

Functional
Interface

MetaSkeleto
nReification

MetaStub
Reification

InterReplica
Protocol

InterReplica
Signal

Send
Regular
Message
Listener

Group

Info
Message
Listener

Error
Notification

Election

Error
Recovery

ItfCall
Reification

RcpCall
Reification

ItfCall
Reification

RcpCall
Reification

RcpCall
Intercession

ItfCall
Intercession

 Page 8/9

6.3. Primary Backup Replication strategy

In the primary backup replication strategy (PBR), a
replica is the primary and the others are the
backups. The primary is active and processes
incoming requests. Others are passive. The state of
the primary replica is saved into a stable shared
storage. On primary failure, a backup is elected as
new primary. Its state is then restored from
checkpoints stored before the primary failed.

There are many ways to implement this strategy. In
the work reported in this paper, we choose to save
the state when an incoming call occurs on a stable
storage, shared among the alive replicas. Then, the
incoming call is logged. Outgoing calls do not have
to be logged in this example because the controller
needs the most recent measures of sensors and
applies directly computed outputs to the system. The
components architecture of a replica is depicted in
Figure 7.

Figure 7 : A replica in PBR strategy

7. Conclusion

Several operational constraints involve mastering
dependable system on-line evolutions. These
evolutions, induced by resource variations, changes
of model or evidences of non-respect of hypothesis,
are currently discussed in the ResIST1 network of
excellence. Fault tolerance mechanisms are
naturally spotlighted. This evolution is of interest in

1 Resilience for Survivability in IST

embedded systems with constrained resources but
also in systems with a natural environment
variability.

In this paper we have dealt with a key issue of
dynamic fault tolerance adaptation: design for
adaptation. Firstly, we have proposed a reflective
architecture which separates functionalities of the
system, fault tolerance mechanisms and algorithms
responsible for on-line adaptation. Secondly, we
have proposed a componentization method of fault
tolerance to enable its modification at runtime.

We have built some foundations of the adaptive fault
tolerance middleware.

Our current work deals with the two other issues of
adaptation: the first one is the assessment leading to
the modification of fault tolerance mechanisms, and
the second one is the runtime meta-model of the
system to apply modification during its service
delivery. In other words, these two issues are the
content of the meta-layer dedicated to the adaptation
processing at runtime.

Based on the componentization of fault tolerance,
our approach to dynamically adapt fault tolerance
addresses two questions: “when” and “how”.

The “when” refers to the execution state of the fault
tolerance software where the modification on the
components is valid. This means that the
modification does not make inconsistent neither the
fault tolerance software processing nor the functional
one.

The “how” refers to the modifications to perform. It
firstly concerns architectural changes of the system
which has to insure architectural dependencies.
Secondly, the issue of knowledge (past activity)
transfer from the old to the new fault tolerance
software version has to be taken into account. This
state transfer must insure the data value consistency
among components after the system adaptation.

8. References

[1] D. Powell: "Delta-4: A Generic Architecture for
Dependable Distributed Computing", vol. 1:
SpringerVerlag, 1991.

[2] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma,
and J.-B. Stefani: "The Fractal Component Model
and Its Support in Java", Software Practice and
Experience, vol. 36 (11-12)(Experiences with Auto-
adaptive and Reconfigurable Systems), 2006.

[3] G. Coulson, P. Grace, G. S. Blair, L. Mathy, D.
Duce, C. Cooper, W. K. Yeung, and W. Cai:
"Towards a Component-based Middleware
Architecture for Flexible and Reconfigurable Grid
Computing", Workshop on Emerging Technologies
for Next generation Grid (ETNGRID-2004), 13th
IEEE International Workshops on Enabling
Technologies: Infrastructures for Collaborative
Enterprises, Italy, 2004.

RcpCall
Intercession

ItfCall
Reification

Automatic
Controller

Stub Skeleton

Strategy
Core

Group
Communication

Crash
Detection

Inter Replica
Protocol

Default Interface
Caller

Default
Receptacle

Election

ApplicationController

Functional
Receptacl

es

Functional
Interface

MetaSkeleto
nReification

MetaStub
Reification

InterReplica
Protocol

InterReplica
Signal

Send
Regular
Message
Listener

Group

Info
Message
Listener

Error
Notification

Election

Error
Recovery

RcpCall
Reification

ItfCall
Reification

RcpCall
Reification

ItfCall
Intercession

On Call Log
Client

On Call
Checkpoint Client

Log

Storage

Checkpointing

Rollback

 Page 9/9

[4] M.-O. Killijian, J.-C. Fabre, J. C. Ruiz-Garcia, and
S. Chiba: "A Metaobject Protocol For Fault-Tolerant
CORBA Applications", 17th IEEE Symposium on
Reliable Distributed Systems (SRDS'98), West
Lafayette, Indiana, USA, 1998.

[5] F. Taïani and J.-C. Fabre: "A Multi-Level Meta-
Object Protocol for Fault-Tolerance in Complex
Architectures," in Proceedings of the 2005
International Conference on Dependable Systems
and Networks (DSN'05). Washington, DC, USA:
IEEE Computer Society, 2005, pp. 270-279.

[6] B. Randell: "System structure for software fault
tolerance", IEEE Transactions on Software
Engineering, vol. 1(2), 1975.

[7] R. Koo and S. Toueg: "Checkpointing and rollback-
recovery for distributed systems", IEEE Transaction
on Software Engineering, vol. 13, 1987.

[8] K. M. Chandy and L. Lamport: "Distributed
snapshots: determining global states of distributed
systems", ACM Transaction on Computer Systems,
vol. 3, 1985.

[9] D. B. Johnson and W. Zwaenepoel: "Recovery in
Distributed Systems Using Optimistic Message
Logging and Checkpointing", Journal of Algorithms,
vol. 11(3), 1990.

[10] J. S. Plank, M. Beck, G. Kingsley, and K. Li:
"Libckpt: Transparent Checkpointing under UNIX",
USENIX Winter, 1995.

[11] S. K. Shrivastava, G. N. Dixon, and G. D.
Parrington: "An Overview of the Arjuna Distributed
Programming System", IEEE Software, vol. 8(1),
1991.

[12] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J.
Palm, and W. G. Griswold: "An Overview of
AspectJ", Proceedings of the 15th European
Conference on ObjectOriented Programming
(Ecoop'01), London, UK, 2001.

[13] A. Avizienis, J.-C. Laprie, B. Randell, and C.
Landwehr: "Basic Concepts and Taxonomy of
Dependable and Secure Computing", IEEE
Transactions on Dependable and Secure
Computing, vol. 1(1), 2004.

[14] Y. Amir, C. Danilov, and J. R. Stanton: "A Low
Latency, Loss Tolerant Architecture and Protocol
for Wide Area Group Communication", 2000
International Conference on Dependable Systems
and Networks, New York, NY, USA, 2000.

9. Glossary

LFR: Leader Follower Replication

PBR: Primary Backup Replication

