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Abstract: Dynamic systems become more and more 
widespread in many application fields. This 
observation highlights the trend that systems are no 
more considered as running in a static, predefined 
environment. Evolution has to be taken into account 
and fault tolerance does not make an exception. 
When the executive or environmental context has 
changed, hypothesis or fault model may become 
outdated or invalid. On-line adaptation of fault 
tolerance has to be tackled.  
This paper deals with the design of fault tolerance for 
its on-line adaptation. It describes a reflective 
architecture, suitable for modifying fault tolerance at 
runtime. Then it shows how fault tolerance may be 
componentized into small components to enable its 
runtime modification.  

Keywords: Fault tolerance adaptation, Reflective 
architecture, Component Models 

1. Introduction 

Many systems, critical or not, may see their 
environment changed during service delivery. On-
line fault tolerance adaptation becomes necessary 
for many systems. Thus, it may concern either 
embedded critical systems, ubiquitous or mobile 
systems. On-line adaptation of fault tolerance 
mechanisms depends on two different factors. The 
first one is the evolution of fault hypothesis: several 
fault models have to be taken into account according 
to current context of execution (context-aware fault 
tolerant computing). The second one is the variation 
of available resources (resource-aware fault 
tolerance computing). 

From the architectural point of view, a classic 
approach to implement fault tolerance consists in 
designing a dedicated middleware which provides 
the fault tolerance mechanisms, such as the Delta-4 
system  [1]. The goal of our work is to provide a fault 
tolerance middleware with adaptive capabilities that 
enables to modify fault tolerance at runtime to fit 
executive constrains (resources, context). To this 
aim, our approach relies on reflective technologies 
and open components models. 

In order to adapt fault tolerance at runtime, we have 
to deal with several issues. The first one concerns 
the runtime supervision of operational context of the 
system which triggers the adaptation. The second 
one concerns the design of fault tolerance in order to 
be able to modify it at runtime. The last one deals 
with the executive constraints when modifications 
are applied to the system. 

In this paper, we focus on designing fault tolerance 
for its runtime adaptation. We tackle this problem in 
two ways. First, we propose a reflective multi-layered 
architecture based on component technology that 
separates the different issues of adaptive fault 
tolerant system (separation of concerns). Secondly, 
we provide guidelines for the decomposition of fault 
tolerance strategies into components to facilitate 
their modification at runtime. These guidelines are 
illustrated by two well-known strategies that have 
been implemented. 

This paper is organized as follow. Section 2 
describes the problem statement and introduces our 
approach. Section 3 shows how to use components 
technology to provide reflective mechanisms for the 
reflective layer in charge of fault tolerance. The 
guidelines for fault tolerance decomposition are 
proposed in section 4, and examples of fault 
tolerance components in section 5. Then, a case of 
study is described section 6. Our conclusions and 
perspective of this work are given in section 7. 

2. Problem statement and approaches 

2.1. Problem statement and motivations 

The adaptation of a fault tolerance strategy attached 
to an application means that, under some new 
operational conditions, the current fault tolerant 
strategy is to be modified. We assume that some on-
line assessment and/or runtime monitoring are able 
to state when operational conditions change and 
trigger the adaptation. On-line assessment is out of 
the scope of this paper. 

We consider that adaptation leads to two kinds of 
modifications. The first one is the modification of 
fault tolerance algorithms. The second one is the 
modification of parameters of the fault tolerance 
algorithms. 

Let S1 and S2 be two fault tolerance strategies. Our 
goal is to modify algorithms and parameters to turn 
current strategy S1 into strategy S2, taking into 
account the functional specifications of the system 
and fault tolerance properties during adaptation. 
Whatever the solution is, clearly the application 
software must be separated from the fault tolerance 
software. This is a first objective of the proposed 
approach (objective 1).  

Now, to perform this change the first option is to stop 
S1 as a whole and restart S2 from some past history 
of S1. This implies mastering in deep the state and 
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the behaviour of the system. This is not easy if the 
strategy is seen as a single software component. 

Instead, we propose a solution that takes advantage 
of Component Based Software Engineering 
techniques. The idea is to design the strategies as a 
set of cooperating fine-grain software components. A 
set of small software components can be 
dynamically attached together to form a strategy. 
The adaptation can thus rely on the ability to attach 
and detach components (objective 2). 

The on-line adaptation itself can be seen as a 
software runtime entity responsible for changing the 
configuration of the fault tolerance software, taking 
care of synchronisation issues (w.r.t to the 
behavioural aspect) and of state issues (history of 
the previous strategy). The solution must exhibit the 
adaptation as independent from the fault-tolerance 
software, so that it makes easier the definition and 
the implementation of an adaptation strategy 
(objective 3). 

We expect the proposed approach to have the 
following benefits: 

• it enables mastering behavioural and state 
issues more easily since the connection 
between fine-grain software components can be 
controlled at runtime; 

• it saves memory space since many of these fine-
grain components can be shared between 
several strategies ; 

• the system performance can be increased as 
only few light-weight components need to be 
changed to switch to a new strategy 

• for a given set of fine-grain components, several 
strategies can be defined and modified at 
runtime by the adaptation software. 

In order to fulfil these objectives, the approach is 
based on separation of concerns architectural 
frameworks and open component models. 

2.2. Reflective architecture 

Reflection and more recently aspect oriented 
programming, have shown their efficiency to 
separate different crosscutting concerns, such as 
fault tolerance for instance. A software system can 
thus be conceived as multiple layers. These layers 
are called meta-level in contrast with the base layer 
that they control. A meta-model of the base layer is 
provided to the meta-level. Control is realized 
through the use of reflective mechanisms (reification, 
introspection and intercession). 

We propose to use a reflective multi-layered 
architecture (cf. Figure 1) in order to separate, on the 
one hand, the processing of the fault tolerance 
algorithms from functional ones, and on the other 
hand, the adaptation mechanisms from the rest of 
the system. 

The functional part of the system corresponds to the 
base layer. Then, the fault tolerance software is 
located in the first meta-level. Finally, fault tolerance 
adaptation is handled by the second meta-level. 

 

Figure 1 : Reflective architecture 

Although adaptation focuses on fault tolerance, it 
also needs to control the functional layer of the 
system. For example, adding a replica in a 
replication-based strategy involves, among other 
things, base level state manipulation. Thus, the 
second meta-level is a reflective layer of the whole 
fault tolerant system composed of the two lower 
layers. 

2.3. Componentized layers 

Separation of fault tolerance and functional 
algorithms is a first step to tackle fault tolerance 
adaptation, but it is not enough. We need 
mechanisms to manipulate algorithms. Component 
models seem to be a good way to deal with 
algorithms manipulation. We propose to use 
component models to implement both the base level 
and the fault tolerance layer.  

Indeed, a component is an abstraction of algorithms 
and its interface describes the service provided by 
the component. The content is the set of algorithms 
that implement the service specified through the 
interface. The notion of receptacle represents the 
dependencies with other algorithms, in fact the 
explicit link with other components needed to realize 
the service. By definition, a component model 
provides reflective mechanisms to load, unload, 
connect and disconnect components. These 
mechanisms are a foundation for the building of the 
meta-model to tackle adaptation issues. 

Because we need to decompose fault tolerance 
software into several small algorithms, the selected 
component model must provide means to define and 
manage small components. In our opinion, 
component models that best fit these constraints are 
Fractal [2] and OpenCOM [3]. In this work, we use 
OpenCOM essentially because it is more flexible 
from an implementation viewpoint. The same work 
may be done using Fractal as well. 

The corner stone of any reflective architecture is the 
notion of meta-model. The meta-model captures the 
essential behavioural and state elements of the base 
level to perform some actions at the meta-level. In 

base-level – Functional System 

meta-level 1 – Fault Tolerance 

meta-level 2 – Adaptation 
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other words, the meta-model is an input of the meta-
level software to enable control over the base-level 
software. 

In order to be able to use such reflective 
mechanisms for adaptation, the meta-model of base 
level for fault tolerance has to be implemented using 
components technology and fault tolerance has to 
be componentized to enable adaptation layer to 
manipulate fault tolerance algorithms at runtime. 

The next section shows how the meta-model for fault 
tolerance can be realized with components. 
Section 4 provides guidelines for the fault tolerance 
componentization. 

3. Meta-model of base level for fault tolerance 

Several previous studies [4, 5] have shown the 
benefits of reflective mechanisms for implementing 
fault tolerance. We propose to use the same 
mechanisms to perform: 

• State handling through intercession and 
introspection mechanisms; 

• Behavioural control through: 

o Reification of incoming and outgoing calls; 

o Intercession of incoming and outgoing calls. 

Introspection is an observation of the base level on-
demand by the meta-level. Reification is an action 
carried out at the base level to spontaneously inform 
the meta-level of some event. Intercession consists 
in modifying the base level software either by 
invoking a method (behavioural intercession), or by 
modifying a part of the internal state (structural 
intercession). 

3.1. State handling 

State acquisition and restoration are necessary for 
checkpointing-based mechanisms used in many fault 
tolerance strategies like Primary Backup Replication 
or Recovery Blocks [6] for instance. Saving and 
restoring process’ state have been addressed in 
many works [7-9]. It is worth noting that such 
mechanisms can lead to major troubles when they 
are not designed and implemented correctly. 

Indeed, the state of a component can be a very 
complex notion. It is composed of local process data, 
process execution information, and state of 
operating system resources like opened files or 
sockets in use, etc. The component state is thus 
partially dependent on lower layers of the system 
such as the kernel and the middleware on top of 
which the application components are running. 

The acquisition and the restoration of the state can 
be realized by a third party [10] or implemented 
using traditional object-oriented facilities, like 
inheritance of abstract classes, overloaded by a 
programmer [11]. In our implementation we have 

used the second solution which suits component 
technology better. Every functional component has 
an interface named IState which defines the save 
and restoration mechanisms. The developer of the 
functional components has to implement this 
interface. By the way the management of state 
issues is delegated to the component developer. To 
do this job, the reflective capabilities of a language 
(AspectJ [12] or the java.lang.reflect library in Java) 
can be of great help, other mechanisms provided by 
the underlying  platform as well. 

3.2. Behaviour control 

As stated earlier, we need the component behaviour 
to be observable and controllable through incoming 
and outgoing calls. Incoming calls are the ones that 
the component user makes by calling the interface of 
the component. Outgoing calls are the ones that the 
component makes through one of its receptacles to 
a service on which it relies. 

Control mechanisms like reification of calls enable 
the insertion of fault-tolerance software both before 
and after functional processing. The reification 
mechanism routes the initial functional call to meta-
level as shown in Figure 2. Then some fault 
tolerance related actions can be performed before 
delegating the real call to the base level. The 
functional component is invoked and returns the 
result to the meta-level.  

Figure 2 does not illustrate the return execution path. 
Nevertheless, fault tolerance related actions should 
be realized before returning the result to the base 
level functional call. 

 

Figure 2 : Behaviour capture 

3.3. Implementation of meta-model 

In practice, the meta-model defined in the previous 
section must correspond to a real component able to 
provide control facilities for a given functional 
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component. We propose to implement this meta-
model as a wrapper of the functional component (a 
composite component in OpenCOM). This wrapper 
(cf. Figure 3) owns two interfaces that provide 
intercession mechanisms and two receptacles for 
reification mechanisms. It is named 
ApplicationController because it provides control 
facilities over the application composed of functional 
components. 

The ApplicationController exposes both functional 
interfaces and receptacles. This wrapper can been 
implemented with the OpenCOM component model 
using proxy components able to intercept incoming 
and outgoing calls and route them through reification 
receptacles to the connected component at the 
meta-level. 

 

Figure 3 Application Controller 

3.4. Framework for distribution 

Most of fault tolerance strategies which aim at 
tolerating hardware faults rely on replication: a 
functional component is replicated on several nodes 
of a distributed system. 

Clearly, distribution is part of the fault tolerance 
meta-model since it is a way to control interaction. 
We thus introduce distribution in the component 
model to manage the replication of components. To 
this aim, specific composite components have been 
introduced. These composite components provide 
an abstraction of distribution for implementing 
replication. Two types of composite components are 
required: 

• SingleReplica grouping functional and fault 
tolerance components but corresponding to a 
unique replica. 

• ReplicasGroup grouping all replicas of a 
replication strategy that can be called altogether. 

The distribution framework is illustrated in Figure 4. It 
enables considering the group of replicas as a 
unique component that behaves as a reliable 
functional component. Stub and skeletons in the 

picture act as in any distributed model, but hide 
remote interaction among replica groups. 

 

Figure 4 : Distribution framework 

This design is quite interesting for adaptation 
because it provides opportunities to address the 
functional synchronisation of replicas for fault 
tolerance adaptation at the ReplicasGroup level. It 
can be used to synchronise the state of all replicas. 
In addition, it can be more efficient to adapt the fault 
tolerance mechanisms attached to a functional 
component when the later is in a particular state, e.g. 
no request in progress. 

4. Fault tolerance componentization 

4.1. Problem analysis 

Our goal is to guide the componentization process of 
fault tolerance software in order to facilitate runtime 
adaptation. 

During runtime adaptation, two kinds of changes are 
applied to the system. The first one focuses on 
parameters of the system, and the second one 
focuses on algorithms.  

When component models are used to develop 
algorithms, the smaller piece of algorithm that can be 
changed is a component. This component’s 
boundaries are the interfaces it implements and the 
other interfaces it depends on. 

Thus, interface definition is a very important part of 
the componentization process of fault tolerance for 
its online adaptation. These interfaces reflect on the 
one hand, algorithms that may be dynamically 
changed, and on the other hand, algorithms that 
should never be modified because they provide 
generic services. 

Moreover, adaptation implies being able to: 
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• control execution of components in order to 
realize system adaptation when they are in a 
suitable state; 

• transfer data from previous existing components 
to newly inserted components. This transfer 
needs the introduction of translation function 
which converts the state from previous fault 
tolerance components to new ones. 

The same service can be provided by a set of fine 
grain cooperative components or by a single coarse 
one, depending on the choices of decomposition. 

De facto, dealing with several small components 
may increase the complexity of execution control 
whereas using a unique big component will make the 
state transfer functions be more complex. A trade-off 
has to be done during componentization process.  

4.2. Fault tolerance persistent state 

In a component based fault tolerance 
implementation, the state of the fault tolerance 
mechanisms is spread over every components 
involved in the fault tolerance strategy. This 
concerns both fault tolerance components and the 
wrapped functional components. 

When an adaptation occurs, the state of the current 
strategy has to be transferred to the new one. A part 
of this state is persistent during adaptation, that is to 
say, it remains identical before and after adaptation. 
To optimize the state transfer, persistence of this 
state has to be analyzed. 

This state is composed of values of internal 
variables, stored data, communication channels with 
transient messages, or timers. For instance, in 
primary-backup and leader-follower replication, 
group communication is generally used. Changing 
system configuration from the primary-backup 
strategy to the second one implies to transfer 
possible transient messages. This process may be 
quite complex. By using generic services like group 
communication services, it is thus possible to 
simplify the state transfer function. 

In our componentization process, we identify, in a 
first step, the generic services on which fault 
tolerance relies. Thereby, when possible, these 
services will be persistent, as well as their own state. 

4.3. Identified services and components 

In this section, we first propose several services that 
we identified as generic services. These services are 
persistent and thus, store state information that may 
remain valid for several fault tolerance strategies. 
Their interfaces are not detailed in this paper, 
because it focuses on the method of decomposition 
of fault tolerance software. 

Generic services 

We identified five groups of generic services which 
can be useful in a fault tolerant system: 
communication service (messages sending/receiving 
and group management), election services, storage 
services (distributed, local, stable or unstable), clock 
services and timer services. 

These services may correspond to several 
components providing different properties. For 
example, a clock service may be implemented by 
either a local clock, a global clock or a logical clock. 
Communication services can be implemented by a 
peer-to-peer communication component, or a 
reliable group multicast component. 

Moreover, depending on the underlying hardware, a 
reliable distributed storage can be implemented 
using a reliable data bus to a shared disk or using 
the reliable group multicast component and a set of 
local non-reliable disks. 

Fault tolerance services 

Our componentization process of fault tolerance 
relies on  the taxonomy of dependability [13]. 

Fault tolerance consists in using core mechanisms to 
build a fault tolerance strategy. This strategy is 
based on a fault model for the considered system. 

Fault tolerance mechanisms fall into three 
categories: 

• Error detection mechanisms, which detect when 
the service provided by a component in the 
system deviates from the specified correct 
service. Each component of this category 
provides the same service which is an error 
notification service. A detection component has 
a receptacle connected to a component which 
provides the notification of some detection; 

• Error recovery mechanisms, which eliminate 
errors from the system. Each component of this 
category provides the same service, which is an 
error recovery service; 

• Fault recovery mechanisms, which prevents fault 
from being reactivated again. They can be 
divided into four services which are: 

o Diagnosis, which identifies the possible 
origins of the detected errors in terms of both 
location and type; 

o Isolation, which performs physical and logical 
exclusion of the faulty components of the 
system from further participation in service 
delivery; 

o Reconfiguration, which either switches to 
spare components or reassigns tasks among 
non-failed components; 

o Reinitialization, which checks, updates and 
records the new configuration and updates 
systems tables and records. 
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The recovery mechanisms consist in reconfiguring 
functional components as a response to error 
detection. However, in this work, reconfiguration 
refers to modification of the fault tolerance software 
(algorithms and parameters) induced by contextual 
adaptation reasons.  

A strategy consists in using these different services 
to react to error detection. Thus, a strategy has a 
core component, to which errors are notified. Then 
this core component recovers the detected errors 
and handles the faults of the system by calling the 
services provided by recovery mechanisms. The 
core component necessarily implements the error 
notification interface to be notified of error detection. 
Moreover, it has receptacles connected to recovery 
mechanisms on which it depends. 

Some more generic fault tolerance services have 
been defined. They are: 

• Checkpointing that consists in saving 
functional state into a storage; 

• Logging that keeps a trace of execution into 
a log; 

• Inter Replica Protocols, which is a 
synchronisation protocol between the 
replicas. 

5. Components examples 

5.1. Generic services 

Group communication 

We have implemented a multi-threaded 
communication group component based on 
Spread [14]. This component provides asynchronous 
message transfer services based on a 
publish/subscribe approach. This component has 
two receptacles which are connected to Info-
MessagesListener and RegularMessagesListener 
interfaces. They realize spontaneous message 
delivery to connected components. These messages 
are of two kinds: regular messages are messages 
sent by third party and information messages are 
group information messages which signal join and 
leave operations.  

The Spread communication library provides a 
multicast protocol which insures messages delivery 
and order. This component implements a Group 
interface which enables to know the current user 
identifier, the groups it belongs to and members of 
each of these groups. The members are totally 
ordered and consistent into a group. 

Another non-threaded communication group 
component has been realized. It implements 
blocking RegularMessagesReceive and Info-
MessagesReceive interfaces instead of listener 
receptacles. 

Election 

The election component has been realized using the 
Group interface of the communication component. It 
implements the Election interface. Then, the replica 
is elected if it is the first in the totally ordered list of 
the replicas group. 

Storage 

Several storage components have been realized. All 
of these components implement the Storage 
interface. The first one is a local unsafe storage, 
which does not insure write atomicity. The second 
one is a local atomic storage, which insures 
atomicity on write. The third one is a distributed safe 
storage. This storage service relies on a group 
communication service and on a local atomic 
storage. It insures that data stored on each node of 
the system is the same and that it was written 
atomically. 

5.2. Fault tolerance generic services 

Log 

The log component implements the Log interface. It 
uses a storage service to create log pages that can 
be accessed through its interface. The reliability of 
the log service depends on the type of storage used. 

Some client components can be designed. For 
instance, there could be client components which log 
incoming or outgoing requests and returned 
responses. 

Checkpointing 

The checkpointing component implements 
Checkpointing interface. It gets the state of 
functional component and logs it using the log 
service. 

We have considered two client components for the 
checkpointing service. The first one requests 
checkpointing for each incoming call. The second 
requests periodic checkpointing (using a timer). 

Inter replicas protocol 

The inter replica protocols use the group 
communication to provide synchronization among 
replicas. This component implements the 
InterReplicaProtocol interface and a receptacle 
where InterReplicaProcolEventListener interfaces 
can be connected. This component synchronises a 
given event on replicas. Components to be 
synchronised implements the InterReplicaProtocol-
EventListener interface and are connected to the 
receptacle. A synchronised event is then signalled to 
the listening components by calling the method 
corresponding to the event. 
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5.3. Error detection 

Crash detection 

We implement a node crash detection component 
using the InfoMessagesListener interface of 
communication component, assuming that a crash 
always makes the node to leave the replicas group. 
This component has a receptacle which is connected 
to an error notification service. When a crash of a 
node is detected, the error is notified by this 
component to the one connected to this receptacle. 

5.4. Error handling 

Rollback 

Rollback consists in putting the functional 
component in an error-free state obtained before 
failure. Our rollback component reads previously 
logged requests, responses and checkpoints. Then, 
it restores the state of functional component from the 
checkpoint. At last, it replays incoming requests, and 
replaces responses of outgoing request by the 
logged ones. 

This component is an error handler. So it implements 
the ErrorRecovery interface which is called to 
recover when an error has been notified and has to 
be recovered. 

Compensation 

Compensation is an error handling mechanism. It 
consists in using execution redundancy to mask 
errors. It may be used in several strategies, like 
leader-follower replication or triple modular 
replication for instance. Moreover, this compensation 
may be realized at the replica side or at the client 
side. 

In the case of leader-follower compensation 
mechanism at a replica side, the results of incoming 
requests are returned only by the leader replica, the 
outgoing requests are only sent by leader replica, 
and the result is then provided to all replicas. 

6. Case study 

6.1. Functional level description 

We now propose a case study (Figure 5) that is 
composed of four functional components which are 
sensor, actuator, automatic controller and the 
command console. The command console captures 
a reference (for instance from a keyboard) and 
applies it to the controller. The controller tries to 
make the system to behave as the reference 
specifies it. It periodically reads measures from the 
physical system using the sensor and calculates 
control outputs to be applied to the system through 
the actuator.  

We aim at making the controller reliable by inserting 
fault tolerance strategies at its meta-level. The fault 

model considered here is the crash fault model of 
nodes. We want controller to tolerate ‘n’ crashes. 
Then, functional software is replicated among ‘n+1’ 
different nodes. We propose to study two classic 
strategies which are leader-follower replication 
strategy and primary backup replication strategy. 

 

Figure 5 : Case study 

6.2. Leader Follower Replication strategy 

The leader follower replication strategy (LFR) 
consists in replicating execution on more than two 
replicas. One of these replicas is the leader. The 
others are the followers. All of them are active in the 
sense that they execute requests. 

The leader provides the answers for incoming 
requests, and is the only one sending outgoing 
requests to other components. The responses of 
outgoing requests are then provided to the followers. 

When the leader fails, one of the followers is elected 
as the new leader replica. 

Thus, this strategy is based on crash detection, 
election and compensation. Compensation uses the 
inter replica protocol service, which depends on the 
group communication service. We focus on error 
recovery and do not consider fault handling. The 
componentized strategy is presented Figure 6. 

 

Figure 6 : A replica in LFR strategy 
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6.3. Primary Backup Replication strategy 

In the primary backup replication strategy (PBR), a 
replica is the primary and the others are the 
backups. The primary is active and processes 
incoming requests. Others are passive. The state of 
the primary replica is saved into a stable shared 
storage. On primary failure, a backup is elected as 
new primary. Its state is then restored from 
checkpoints stored before the primary failed. 

There are many ways to implement this strategy. In 
the work reported in this paper, we choose to save 
the state when an incoming call occurs on a stable 
storage, shared among the alive replicas. Then, the 
incoming call is logged. Outgoing calls do not have 
to be logged in this example because the controller 
needs the most recent measures of sensors and 
applies directly computed outputs to the system. The 
components architecture of a replica is depicted in 
Figure 7. 

 

Figure 7 : A replica in PBR strategy 

7. Conclusion 

Several operational constraints involve mastering 
dependable system on-line evolutions. These 
evolutions, induced by resource variations, changes 
of model or evidences of non-respect of hypothesis, 
are currently discussed in the ResIST1 network of 
excellence. Fault tolerance mechanisms are 
naturally spotlighted. This evolution is of interest in 
                                                      
1 Resilience for Survivability in IST 

embedded systems with constrained resources but 
also in systems with a natural environment 
variability.  

In this paper we have dealt with a key issue of 
dynamic fault tolerance adaptation: design for 
adaptation. Firstly, we have proposed a reflective 
architecture which separates functionalities of the 
system, fault tolerance mechanisms and algorithms 
responsible for on-line adaptation. Secondly, we 
have proposed a componentization method of fault 
tolerance to enable its modification at runtime. 

We have built some foundations of the adaptive fault 
tolerance middleware. 

Our current work deals with the two other issues of 
adaptation: the first one is the assessment leading to 
the modification of fault tolerance mechanisms, and 
the second one is the runtime meta-model of the 
system to apply modification during its service 
delivery. In other words, these two issues are the 
content of the meta-layer dedicated to the adaptation 
processing at runtime. 

Based on the componentization of fault tolerance, 
our approach to dynamically adapt fault tolerance 
addresses two questions: “when” and “how”. 

The “when” refers to the execution state of the fault 
tolerance software where the modification on the 
components is valid. This means that the 
modification does not make inconsistent neither the 
fault tolerance software processing nor the functional 
one. 

The “how” refers to the modifications to perform. It 
firstly concerns architectural changes of the system 
which has to insure architectural dependencies. 
Secondly, the issue of knowledge (past activity) 
transfer from the old to the new fault tolerance 
software version has to be taken into account. This 
state transfer must insure the data value consistency 
among components after the system adaptation. 

8. References 

[1] D. Powell: "Delta-4: A Generic Architecture for 
Dependable Distributed Computing", vol. 1: 
SpringerVerlag, 1991. 

[2] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, 
and J.-B. Stefani: "The Fractal Component Model 
and Its Support in Java", Software Practice and 
Experience,  vol. 36 (11-12)(Experiences with Auto-
adaptive and Reconfigurable Systems), 2006. 

[3] G. Coulson, P. Grace, G. S. Blair, L. Mathy, D. 
Duce, C. Cooper, W. K. Yeung, and W. Cai: 
"Towards a Component-based Middleware 
Architecture for Flexible and Reconfigurable Grid 
Computing", Workshop on Emerging Technologies 
for Next generation Grid (ETNGRID-2004), 13th 
IEEE International Workshops on Enabling 
Technologies: Infrastructures for Collaborative 
Enterprises, Italy, 2004. 

RcpCall 
Intercession 

ItfCall 
Reification 

 

Automatic 
Controller 

Stub Skeleton 

Strategy 
Core 

Group 
Communication 

Crash 
Detection 

Inter Replica 
Protocol 

Default Interface 
Caller 

Default 
Receptacle 

Election 

ApplicationController 

Functional 
Receptacl

es 

Functional 
Interface 

MetaSkeleto
nReification 

MetaStub 
Reification 

InterReplica 
Protocol 

InterReplica 
Signal 

Send 
Regular 
Message 
Listener 

Group 

Info 
Message 
Listener 

Error 
Notification 

Election 

Error 
Recovery 

RcpCall 
Reification 

ItfCall 
Reification 

RcpCall 
Reification 

ItfCall 
Intercession 

On Call Log 
Client 

On Call 
Checkpoint Client 

Log 

Storage 

Checkpointing 

Rollback 



 Page 9/9 

[4] M.-O. Killijian, J.-C. Fabre, J. C. Ruiz-Garcia, and 
S. Chiba: "A Metaobject Protocol For Fault-Tolerant 
CORBA Applications", 17th IEEE Symposium on 
Reliable Distributed Systems (SRDS'98), West 
Lafayette, Indiana, USA, 1998. 

[5] F. Taïani and J.-C. Fabre: "A Multi-Level Meta-
Object Protocol for Fault-Tolerance in Complex 
Architectures," in Proceedings of the 2005 
International Conference on Dependable Systems 
and Networks (DSN'05). Washington, DC, USA: 
IEEE Computer Society, 2005, pp. 270-279. 

[6] B. Randell: "System structure for software fault 
tolerance", IEEE Transactions on Software 
Engineering,  vol. 1(2), 1975. 

[7] R. Koo and S. Toueg: "Checkpointing and rollback-
recovery for distributed systems", IEEE Transaction 
on Software Engineering,  vol. 13, 1987. 

[8] K. M. Chandy and L. Lamport: "Distributed 
snapshots: determining global states of distributed 
systems", ACM Transaction on Computer Systems,  
vol. 3, 1985. 

[9] D. B. Johnson and W. Zwaenepoel: "Recovery in 
Distributed Systems Using Optimistic Message 
Logging and Checkpointing", Journal of Algorithms,  
vol. 11(3), 1990. 

[10] J. S. Plank, M. Beck, G. Kingsley, and K. Li: 
"Libckpt: Transparent Checkpointing under UNIX", 
USENIX Winter, 1995. 

[11] S. K. Shrivastava, G. N. Dixon, and G. D. 
Parrington: "An Overview of the Arjuna Distributed 
Programming System", IEEE Software,  vol. 8(1), 
1991. 

[12] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. 
Palm, and W. G. Griswold: "An Overview of 
AspectJ", Proceedings of the 15th European 
Conference on ObjectOriented Programming 
(Ecoop'01), London, UK, 2001. 

[13] A. Avizienis, J.-C. Laprie, B. Randell, and C. 
Landwehr: "Basic Concepts and Taxonomy of 
Dependable and Secure Computing", IEEE 
Transactions on Dependable and Secure 
Computing,  vol. 1(1), 2004. 

[14] Y. Amir, C. Danilov, and J. R. Stanton: "A Low 
Latency, Loss Tolerant Architecture and Protocol 
for Wide Area Group Communication", 2000 
International Conference on Dependable Systems 
and Networks, New York, NY, USA, 2000. 

9. Glossary 

LFR:  Leader Follower Replication 

PBR:  Primary Backup Replication 

 


