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Abstract

In this paper we reveal that the mathematical discrete model of Hencky-type, introduced in [1], is appropri-
ate for describing the mechanical behavior of micro-metric pantographic elementary modules. This behavior
does not differ remarkably from what has been observed for milli-metric modules, as we prove with suitably
designed experiments. Therefore, we conclude that the concept of pantographic microstructure seems feasi-
ble for micro-metrically architected microstructured (meta)materials as well. These results are particularly
indicative of the possibility of fabricating materials that can have an underlying pantographic microstruc-
ture at micrometric scale, so that its unique behavior can be exploited in a larger range of technological
applications.
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1. Introduction

One of the frontiers of modern mechanics is the
design of the so-called metamaterials or materials
with architected properties. The scientific chal-
lenges are formidable, as competencies in a variety5

of fields of mechanical sciences are required. First,

∗Corresponding author
Email addresses: francesco.dellisola@uniroma1.it

(Francesco dell’Isola), emilio.turco@uniss.it (Emilio
Turco), amisra@ku.edu (Anil Misra),
zvaggelatos@gmail.com (Zacharias Vangelatos),
cgrigoro@berkeley.edu (Costas Grigoropoulos),
melvas@iesl.forth.gr (Vasileia Melissinaki),
mfarsari@iesl.forth.gr (Maria Farsari)

the mathematical model which is the most conve-
nient for the designed metamaterial must be estab-
lished. The mechanical properties of potentially
conceivable metamaterials can, then, be determined10

thoroughly. The established a priori mathematical
model can, thus, be used to conceive the metamate-
rial of desired mechanical properties. The conceived
metamaterials, with the a priori selected evolution
equations, can then be fabricated by using either 3D15

printing or stereolithography. In other words, this
stage includes the solution of the so called synthe-
sis problem, see some details in [2, 3, 4, 5]. Finally,
experiments must be designed to measure the rel-
evant quantities and establish relationships which20
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have been predicted theoretically.
In this paper we consider a metamaterial which

preserves its elastic properties under relatively large
deformations. We hypothesize that the mechanical
behavior of such a metamaterial can be described25

by the discrete Hencky-type model introduced in
[1] for pantographic modules. The numerical code
developed in [6] was also adapted to serve as a guid-
ance to the design of the experimental procedure
in the presented study. A key point to consider30

relates to the smallest length scale at which the
pantographic effect could be utilized. The question
that needs to be elucidated is whether these ge-
ometries can be used as elementary substructures
in 3D printed metamaterials. Through comparison35

of experimental measurements we show here that
micro-metric pantographic elementary modules ex-
hibit nearly the same pantographic effect as that
shown by milli-metric modules. Images were cap-
tured using a Scanning Electron Microscope to re-40

veal the deformation mechanism of the structure
during the nanoindentation experiments. Compari-
son of these with similar images for milli-metric pan-
tograph provide further evidence of the congruity
in the behavior at the these disparate scales. What45

is even more remarkable is that the micro-metric
elementary modules have been fabricated using a
completely different 3D printing method in con-
trast to the milli-metric modules. We also show
that the experimentally measured behavior of the50

micro-metric elementary modules can be efficiently
described using the Hencky-type model.

On the basis of the presented results we can
conclude that: the concept of pantographic micro-
structure, which allows for the design of metamate-55

rials undergoing large elastic deformations, is also
feasible to micro-structures having characteristic
length of 50 micrometers. Therefore, we are con-
vinced that these elementary modules can be used
for the microscopic architecture of novel metama-60

terials. The obtained results can undoubtedly pave
the way to some interesting fields of research having
relevant technological applications.

In the following sections we briefly describe the
3D printing process of micro-pantographs and their65

mechanical tests, see Sec. 2; then, in Sec. 3, we
discuss the numerical results obtained from the
Hencky-type numerical model introduced in [1, 6]
comparing its results with those obtained from the
corresponding experimental test. Finally, we dis-70

cuss the key findings and their implications as part
of the concluding remarks and future challenges in

Sec. 4.

2. 3D printing process of micro-pantographs

Micro-pantographs can be built by using the di-75

rect laser writing using multi-photon polymeriza-
tion technology.1 Figure 1 shows an image of
the fabricated micro-metric pantograph elementary
module obtained with the scanning electron mi-
croscope. With direct laser writing it is possi-80

ble to print a 3D micro-pantograph using a beam
of an ultrafast laser focused into the volume of
a photo-sensitive material. A high-resolution 3D
structure is obtained by moving the focus of the
beam. After this printing, a proper solvent is85

used to dissolve the unscanned and the unpolymer-
ized area revealing the 3D printed structure, see
[8] for a detailed description of the complete pro-
cess. All the chemicals used in this work were ob-
tained from Sigma-Aldrich. The material used for90

the fabrication of the 3D structures is based on
the organic-inorganic hybrid described in [9]. It
has been produced by the addition of zirconium
prop-oxide to methacryloxy-propyl trimethoxysi-
lane. The monomer 2-(dimethylamino)ethyl95

methacrylate has been added as a quencher, and
DMAEMA were used as the organic photopolymer-
izable monomers, while ZPO and the alkoxysi-lane
groups of MAPTMS served as the inorganic net-
work forming moieties.100

The experimental setup employed for 3D struc-
ture fabrication has been further described in [10,
11]. A FemtoFiber pro NIR laser (Ultrafast fiber
laser, 78 nm, 80 MHz, <100 fs) was focused into
the photopolymerizable composite using an objec-105

tive lens (100, N.A.=1.4, Zeiss, Plan Apochromat).
Sample movement was achieved using piezoelectric
and linear stages, for fine and step movement, re-
spectively (Physik Instrumente). The whole setup
was computer-controlled using the customized soft-110

ware of A. Lemonis of IESL/FORTH. The average
power used for the fabrication of the high-resolution
structures was 2 mW, measured before the objec-
tive. The scanning speed was always set to 10 µm/s.
To our knowledge, only the 2 photon polymeriza-115

tion technology can reach the resolutions needed to
print the micro-metric structure shown in Fig. 1, In
general, fabrication of such micro-scale structures is

1See [7] for a prime on 3D printing technology of mill-
metric printing.
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Figure 1: Micro-pantograph image obtained by a scanning
electron microscope.

Table 1: Mechanical and geometrical parameters of the
printed micro-pantograph (E in GPa, f , b, s, d and h in
µm).

E ν f b s d h

0.5 0.45 7.49 0.72 1.7 2 0.8

not a trivial exercise although a number of printing
approaches have been proposed, some of which are120

even commercially available. Nevertheless, the ef-
fort to realize such structures presented here amply
demonstrates the feasibility of the approach.

The estimated mechanical and geometrical pa-
rameters of 3D printed micro-pantographs is re-125

ported in Table 1 (see also Fig. 2).

The printed micro-pantographs were subjected to
compression loading using the Hysitron TI 950 Tri-
boIndenter nano-indenter (Bruker.2)

The compression experiments were performed us-130

ing displacement-control for a specific deformation
profile. It was used so that any creep effects will
be avoided while conducting the tests, see [14].
The deformation profile that was used is shown
in Fig. 3. Force-displacement curves obtained test-135

ing two identical printed specimens are reported in
Fig. 4.

2There is an alternative way to perform nano-indentation
experiments by using an in-situ micro-indentation and Scan-
ning Electron Microscope, see [12, 13].
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Figure 2: Schematic representation of the micro-pantograph
geometry (frontal, on the left, and lateral, on the right,
view).
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Figure 3: Displacement, u in µm, vs. time, t in s, plot.
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Figure 4: Force F in the direction of the longer side of the
pantograph, in µN, vs. displacement u, in nm, for the com-
pression test: experimental results for a pair of identical spec-
imens.

3. Discrete model and numerical simulations

In a series of papers, see [1, 15, 16, 17, 18] we
have shown that a very simple Lagrangian model140

can be used to predict accurately, and also with a
very low computational cost in terms of memory
engagement and computing time, the nonlinear me-
chanical behavior of pantographic structures.3 The
same model was used to predict the first failure of145

specimen under shear test [21]4 and also to prove
a relative insensitivity of the model to geometrical
and mechanical imperfections, see [23].

We refer to [1] for a precise description of the
Hencky-type model. Here we report only its key
points: i) the pantograph is modeled as a plane lat-
tice of beams connected by means of cylindrical piv-
ots; ii) each beam is modeled as an extensible Euler
beam by means of rigid links and elastic joints, ex-
tensional and rotational; iii) pivots are modeled as
rotational elastic joints connecting the two sets of
orthogonal beams. The ideas briefly sketched in the
three key points above completely define the strain
energy of each one elastic joint, and therefore of the
whole pantographic lattice. Denoting a and b the
extensional and flexural rigidity of the beams, re-
spectively, and c the torsional rigidity of the pivots

3This is not the only practicable road, for example see
the that proposed in [19, 20].

4See also the recent proposal concerning [22] for brittle
materials.

strain energies are assumed as follows:

Ea =
1

2
a (ℓ− ℓ0)

2
,

Eb = b (cosβ + 1) ,

Ec =
1

2
c
(

γ −

π

2

)2

,

(1)

where ℓ and ℓ0 are the current and reference length
of the beam section in-between two consecutive elas-150

tic joints, respectively, β is the current angle be-
tween two consecutive rigid links of the same beam
and γ is the current angle between two orthogonal
beams which share the same pivot. This Hencky-
type model was improved in [6, 24] refining the flex-155

ural part of the strain energy by simply adding an
intermediate elastic joint for each beam section in-
between two consecutive pivots. In [6] we compare
the results of the numerical simulations with the ex-
periments on milli-metric pantographs proving that,160

after an accurate identification of the rigidities, the
results deriving from experiments and numerical
simulations are closer, both in terms of deforma-
tions and predicted force relative to the imposed dis-
placements. Naturally, to follow out-of-plane buck-165

ling phenomena a different kind of model is nec-
essary, see, e.g., the proposal reported in [25] for
a continuum model or the 3D Hencky-type beam
model [26] based on the suggestion reported in [27].

The simplistic, but very effective, model derived170

based upon the conjecture discussed in the pre-
ceding paragraphs along with an analysis strategy
for solving the nonlinear equilibrium equations, see,
e.g., [6], has to be completed with a set of mechani-
cal parameters, that is the rigidities of elastic joints,175

which have to be estimated by means of some phys-
ical or conceptual experiment. This identification
has been performed in [6] for a millimetric panto-
graphic lattice following the suggestions reported in
[28, 29] using the results of an elongation test.180

Here we use exactly the same methodology de-
scribed in [6] to identify the rigidities of elastic
joints used in the Lagrangian model of the panto-
graphic lattice starting from the available data (the
displacement-force plot reported in Fig. 4) obtain-185

ing a quick, surely improvable, guess of the elastic
joint rigidities. Using the triplet a = 300 µN/µm,
b = 1 µNµm and c = 100 µNµm, the plot reported
in Fig. 5 for the numerically obtained loading part
of the displacement-force curve has been obtained190

(in order to make the comparison simple we have
reported also the whole experimental curve for the
specimen 2).
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Figure 5: Force F in the direction of the longer side of the
pantograph, in µN, vs. displacement u, in nm, for the com-
pression test: numerical (in red) and experimental (in blue)
results.

We remark that experimental and numerical
curves, see Fig. 5, are closer, at least until values195

of given displacement u less than 1500 nm proving
the quality of the simple Hencky-type model. In
addition we observe that the numerical curve could
be much more closer to the experimental one by
changing the strain energy law (the law chosen for200

the Hencky-type model used to perform the calcu-
lation presented here is quadratic);

Figure 6 reports a plot of the strain energy as
the imposed displacement u increases. The energy
is split in the extensional Ea, the bending Eb and205

the shearing Ec (that referred to the torsion of piv-
ots) part. It is remarked that for this case the ex-
tensional Ea and the shearing Ec part are similar.
Conversely, the bending part Eb, which is referred
to the beams, is negligible. This suggests, observ-210

ing that the total volume of the beams is much less
than the total volume of the pivots, that the energy
density has its own peaks in the pivots.

Figure 7 reports the synopsis of the deformation
history, that is the deformation corresponding to215

u =500, 1000, 1500 and 2000, along with the strain
energy density plotted using a color scale on the
beams.5 The energy density shows clearly the parts
of the mini-pantograph which adsorb high level of
strain energy.220

5The energy referred to each one pivot is split in four
equal contributions assigning each of these to the beams shar-
ing the pivot.
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Figure 6: Strain energy, in µNµm, vs. the displacement u, in
nm, for the compression test split in extensional Ea, bending
Eb and shearing Ec part.

At this stage we are unable to compare the de-
formation history obtained numerically with the
experimental results due to non-availability of the
measured deformation history. It is notable, how-
ever, that such a comparison may provide a fur-225

ther confirmation of the quality of the numerical
results besides providing information useful for im-
proving the identification of the rigidity parameters.
Based upon our previous experience, we are confi-
dent that the results produced by numerical sim-230

ulations obtained by the very simple model agree
with the experimental ones. Our trust is sup-
ported by the comparison between experimental re-
sult on the mill-metric pantographic lattice (dimen-
sions 13 mm×13 mm) whose complete data are re-235

ported in the case of an elongation test in [6] under
compression test and its numerical simulation. For
reference we report here the comparison between
the experimental and the numerically obtained de-
formations at the end of the loading process, see240

Fig. 8.

4. Concluding remarks and future challenges

The concept of pantographic structures as fun-
damental unit of novel metamaterials has been con-
ceived in [30] from a purely theoretical point of view.245

The main features of conceived basic structures are
the following: 1) at a lower length scale there are
some elastic elements (i.e. the internal pivots, see
Fig. 2) which offer an extremely weak resistance

5
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Figure 7: Compression test: synopsis of the deformation
history for u =500, 1000, 1500 and 2000 nm along with the
strain energy density plotted using a color scale.

Figure 8: Compression test for a mini-pantograph (dimen-
sions 13 mm×13 mm): comparison between experimental
(on the top) and numerical (on the bottom) deformation for
an imposed displacement u =11.89 mm.

to some deformation, while the other elastic ele-250

ments are capable to support external loads (i.e. the
beams constituting the lattice whose bending and
extensional stiffnesses are relatively stronger; 2) the
lower scale structure allows for some macro-scale de-
formations at the expense of a relatively small de-255

formation energy; 3) the most suitable macroscopic
continuum model which is suitable for describing
the novel metamaterial must include second gradi-
ent effects (see [31, 32]).

In [33] it has been proven that this concept has260

some potentialities as the specimens printed with
3D printing technology have shown a behaviour
which is very close to the one forecast by the the-
oretical design analysis. However the lower length
scale which has been considered up to now amounts265

to 1 millimetre and it has been questioned if smaller
length scales could be exploited by keeping the de-
sired macro-effects.

The results presented in this paper used a novel
3D printing technology which allowed us to produce270

pantographic specimens having length scale of one
micrometer. The experimental apparatus which
has been used is at the frontier of the present state-
of-the-art and the obtained measurements were per-
formed in a very precise and effective manner. In275

this paper it has been proven that micro-metric and
milli-metric pantographic modules have a very sim-
ilar behaviour. This is the result of the comparison
among: i) numerical simulations with a Hencky-
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type model; ii) experimental measurements with280

millimetres pantographs and iii) and experimental
results obtained by using micrometric pantographs.
As a consequence we believe that the design and
construction of pantographic metamaterials having
a microstructure whose length scale is 1 micrometer285

is a technologically feasible which offers avenues for
novel and interesting engineering applications..

Going forward, the following research questions
can be immediately recognized:

1. to get experimental measurements of the defor-290

mation patterns of micro-pantographs and to
compare the obtained measures with the avail-
able numerical predictions;

2. to conceive a campaign of measurements in
which the micrometrical pantographs have dif-295

ferent geometrical properties; in particular the
possibility to have internal pivots whose di-
mensions are different from the interconnected
beams seems of a great relevance;

3. to start building larger specimens constituted300

by many micrometrical pantographic modules.

More long term perspectives are very ambitious:
to build a metamaterial undergoing large elastic de-
formations which has a lower scale structure with
characteristic dimensions of few micrometers.305
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