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a b s t r a c t 

Polygonal networks of patterned ground are a common feature in cold-climate environments. They can 

form through the thermal contraction of ice-cemented sediment (i.e. formed from fractures), or the freez- 

ing and thawing of ground ice (i.e. formed by patterns of clasts, or ground deformation). The characteris- 

tics of these landforms provide information about environmental conditions. Analogous polygonal forms 

have been observed on Mars leading to inferences about environmental conditions. We have identified 

clastic polygonal features located around Lyot crater, Mars (50 °N, 30 °E). These polygons are unusually 

large ( > 100 m diameter) compared to terrestrial clastic polygons, and contain very large clasts, some of 

which are up to 15 metres in diameter. The polygons are distributed in a wide arc around the eastern side 

of Lyot crater, at a consistent distance from the crater rim. Using high-resolution imaging data, we digi- 

tised these features to extract morphological information. These data are compared to existing terrestrial 

and Martian polygon data to look for similarities and differences and to inform hypotheses concerning 

possible formation mechanisms. Our results show the clastic polygons do not have any morphometric 

features that indicate they are similar to terrestrial sorted, clastic polygons formed by freeze-thaw pro- 

cesses. They are too large, do not show the expected variation in form with slope, and have clasts that do 

not scale in size with polygon diameter. However, the clastic networks are similar in network morphology 

to thermal contraction cracks, and there is a potential direct Martian analogue in a sub-type of thermal 

contraction polygons located in Utopia Planitia. Based upon our observations, we reject the hypothesis 

that polygons located around Lyot formed as freeze-thaw polygons and instead an alternative mechanism 

is put forward: they result from the infilling of earlier thermal contraction cracks by wind-blown mate- 

rial, which then became compressed and/or cemented resulting in a resistant fill. Erosion then leads to 

preservation of these polygons in positive relief, while later weathering results in the fracturing of the fill 

material to form angular clasts. These results suggest that there was an extensive area of ice-rich terrain, 

the extent of which is linked to ejecta from Lyot crater. 

© 2017 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

Terrestrial polygonal networks of centimetre- to decametre-

scale patterned ground are common in cold-climate regions. They

form by the thermal contraction of ice-cemented soils, in the case

of fracture patterns, and/or the freezing and thawing of ground ice,

in the case of patterned ground (e.g. Lachenbruch, 1962; Kessler

and Werner, 2003 ). Patterned ground includes sorted patterned

ground – frequently observed in periglacial environments, and
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hought to form through a combination of processes including frost

eave and the upfreezing of clasts ( Washburn, 1956; Feuillet et al.,

012 ) – and thermal contraction crack polygons, including various

ubtypes such as ‘ice-wedge’, ‘sand-wedge’, ‘composite-wedge’ and

sublimation’ ( Marchant et al., 2002 ). Polygonal features have also

een observed to form through the dehydration of volatile-rich

aterial generally in arid conditions – termed desiccation polygons

r desiccation cracks ( Neal et al., 1968 ) – and through the polygo-

al weathering of exposed surfaces of boulders and rock outcrops

 Williams and Robinson, 1989 ). Due to the large range of potential

ormation mechanisms it is important to pinpoint characteristics
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. A) HiRISE (ESP_016985_2315) image of part of a clastic polygonal network observed to the north-east of Lyot crater within the outer ejecta blanket. Image credit: 

NASA/JPL/University of Arizona. B) An example of morphologically similar terrestrial polygonal features found on Tindastóll Plateau, Northern Iceland. The scale is a 25 cm 

square with 5 cm markers. Image credit: Alex Barrett. C) HiRISE (PSP_004072_1845) image of possible sorted patterned ground located in the Elysium Planitia region of Mars 

( Balme et al., 2009 ). Image credit: NASA/JPL/University of Arizona. D) HiRISE (PSP_005597_1250) image of possible sorted patterned ground in the Argyre region of Mars 

( Soare et al., 2016 ). Image credit: NASA/JPL/University of Arizona. 
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nique to each polygon type to aid with identification, this is par-

icularly key for their use as morphological (or perhaps process)

nalogues for features observed on Mars. 

On Mars, polygonal surface features have been observed

hat range in diameter from metres to tens of kilometres (e.g.

echmann, 1980; Seibert and Kargel, 2001; Mangold, 2005; Mor-

enstern et al., 2007; Soare et al., 2008; Lefort et al., 2009; Levy

t al., 2011 ). Systematic study of these landforms and compari-

on with terrestrial analogues can help gain information into the

echanism by which they formed, and so gain insight into past

nd present environmental conditions. We have identified polygo-

al clast-bounded networks around Lyot crater, Mars. These poly-

ons are enigmatic in that the clasts that demarcate the polygon

ides are up to 15 metres across, with an average polygon diame-

er of 130 metres. This is significantly larger than morphologically

imilar polygons observed on Earth or on Mars (e.g., Fig. 1 ) which

re found with maximum diameters of tens of metres ( Washburn,

956; Balme et al., 2009; Treml et al., 2010; Feuillet et al., 2012;

oare et al., 2016 ). Additionally, clastic polygons of this morphology

nd scale are – to our knowledge – unique to the ejecta blanket

ocated around Lyot and so are of particular interest. Their distinc-

ive morphology and location implies that there is a unique mate-

ial and/or process leading to their formation. Thus, a better under-

tanding of these features could provide useful information about

he environment around Lyot, as well as the material that they are

omposed of. 

The primary aim of this paper is to present the first in-depth

tudy of these clastic polygonal features using both qualitative ob-

ervations and quantitative morphometric measurements derived

rom high-resolution remote sensing data. Secondly, these data
 2
ill be compared to both terrestrial and Martian polygon datasets

ollected from other studies in order to assess possible formation

echanisms and, finally, to infer a working hypothesis for their

rigin. 

.1. Lyot study area 

Lyot crater (50 °N, 30 °E) is a ∼215 km diameter, late-Hesperian-

ged impact crater located north of Deuteronilus Mensae and im-

ediately to the north of the dichotomy boundary. Lyot crater ex-

ibits the lowest points of elevation in the northern hemisphere

ith a maximum depth of ∼3 km in the crater interior ( ∼7 km be-

ow datum). It has a central peak within an inner peak ring, and

n extensive ejecta blanket composed of hummocky outer ejecta

xtending to ∼2.5 crater radii from the crater rim, and smoother,

ore continuous inner ejecta with a marginal scarp which extends

o ∼1 crater radius from the crater rim ( Fig. 2 ). The ejecta blanket

s not well-preserved in the south and southwest due to superpo-

ition by deposits of the Deuteronilus Mensae region. 

The impact event which formed Lyot crater is estimated to be

ate-Hesperian to early-Amazonian in age ( ∼1.6 – 3.4 Ga; Greeley

nd Guest, 1987; Werner, 2008; Dickson et al., 2009 ). Large braided

hannels, extending > 300 km beyond the ejecta margins to the

orth, west and east of Lyot, are suggested to be the result of

roundwater release during the impact event ( Harrison et al.,

010 ). There are also numerous small channels present within the

rater interior and inner ejecta blanket that are attributed to more

ecent fluvial activity, possibly associated with obliquity-driven cli-

ate cycles ( Dickson et al., 2009; Fassett et al., 2010; Hobley et al.,

014 ). 
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Fig. 2. Lyot crater study area displayed using colourised Mars Orbiter Laser Altimeter (MOLA; Zuber et al., 1992 ) topographic data overlain on a MOLA hillshade. The crater 

peak, inner peak ring, crater rim, inner ejecta scarp and outer ejecta extent are indicated by black lines. Regions of clastic polygonal features are marked as white circles. 

Image credit: MOLA Science Team. 
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Landforms and landscapes morphologically similar to those

formed by glacial and/or periglacial processes have also been lo-

cated in and around Lyot crater. These include Viscous Flow Fea-

tures (VFFs) thought to be analogous to glacial landforms on Earth

( Dickson et al., 2009; Balme et al., 2013; Hobley et al., 2014 ),

mantling deposits thought to be formed by a dusty, ice-rich ma-

terial ( Hobley et al., 2014 ), and polygonal networks, as described

above. Thus, it appears that the surface in and around Lyot crater

has experienced the action of both ancient water sourced from

underground, and recent water, probably sourced from the atmo-

sphere ( Dickson et al., 2009; Harrison et al., 2010; Hobley et al.,

2014 ). 

The clastic polygonal landforms ( Figs. 1 and 2 ) are located only

in the outer ejecta within a band ranging from the north to south-

east. The polygons are of particular interest as they are much

larger than most terrestrial clastic polygons and those heretofore

reported on Mars (e.g. Balme et al., 2009; Gallagher et al., 2011;

Soare et al., 2016 ), and are located in a very specific area: this pat-

tern could indicate a genetic link between their formation and the

Lyot-forming impact event. 

2. Terrestrial polygon types 

There is a large variety of processes that result in the pro-

duction of polygonal features on Earth at a range of scales. The

most widespread decametre-scale types include sorted patterned

ground, thermal contraction cracks and desiccation polygons. These

polygonal landforms generally do not exceed polygon diameters of

∼300 metres ( Neal et al., 1968 ). In this section, we detail the mor-

phological characteristics and possible formation mechanisms as-

sociated with each polygon type. 
.1. Sorted patterned ground 

Sorted patterned ground (e.g., Figs. 3 and 4 ) is composed of

aterial sorted into coarse and fine domains which form distinc-

ive geometric shapes including circles, polygons and stripes (e.g.,

ashburn, 1956; Kessler and Werner, 2003; Treml et al., 2010;

euillet et al., 2012 ). Patterned ground is most commonly found in

old-climate conditions where repeated freezing and thawing cy-

les occur, but the exact formation mechanism is still not well un-

erstood ( Washburn, 1956; Treml et al., 2010; Feuillet et al., 2012 ).

Frost heave, a process by which clasts may be moved to the

urface, is thought to be important in the development of sorted

atterned ground. There are two proposed mechanisms by which

eaving occurs ( Washburn, 1956; MacKay, 1984; French, 2007 ). The

rst mechanism, termed “frost-pull”, involves the growth of ice

enses by downward freezing. This ‘grips’ the clast and the over-

ll heave of the ground leads to it being moved upwards ( MacKay,

984; French, 2007 ). The second mechanism, termed “frost-push”,

eads to the clast being forced upwards by the forming of ice be-

eath it due to the greater thermal conductivity of the clast com-

ared to surrounding material ( MacKay, 1984; French, 2007 ). Frost

eave also leads to the expansion of soil perpendicular to the

reezing front causing surface clasts to migrate to clastic borders

 Kessler and Werner, 2003 ). Over time and repeated freeze-thaw

ycles, this leads to the separation of fine material from coarse

aterial leading to raised and potentially imbricated borders ( Dahl,

966; Kessler and Werner, 2003; Soare et al., 2016 ). Another recog-

isable feature of this process is the tilting of stones due to differ-

ntial heave at the top and bottom of the clast ( French, 2007 ). 

The transition between different geometric sorted forms is

he result of a variety of factors including slope gradient and
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Fig. 3. A) Sorted stone circles from Brøgger Peninsular on the west coast of Spits- 

bergen, Svalbard, Norway. The pole is approximately 1.25 metres tall. Image credit: 

Matt Balme. B) Sorted stone polygons from the western side of Hafnarfjalt, W. Ice- 

land. Image credit: Susan Conway. 

Fig. 4. Sorted stripes from the western side of Hafnarfjalt, W. Iceland. Image credit: 

Susan Conway. 
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ateral frost heave ( Kessler and Werner, 20 03; French, 20 07; Feuil-

et et al., 2012 ). Of particular interest is the transition from circles

nd polygons to stripes. Stripes ( Fig. 4 ) are composed of parallel

ines of alternating coarse and fine domains oriented down slope

 Washburn, 1956 ). Sorted polygons merge into stripes through a

ransition gradient of 3 ° to 7 ° ( Washburn, 1956 ). According to
oldthwait (1976) , polygons and nets form on slopes of 2 ° to 4 °,
llipses form on 3 ° to 6 ° slopes and stripes occur on slopes of 4 °
o 11 °

Sorted polygons generally range in diameter from 1 to 3 me-

res, with maximum diameters of 10 metres ( Washburn, 1956 ;

reml, 2010; Feuillet et al., 2012 ). It has been suggested that the

arger polygonal structures ( > 3 metres in diameter) have a polyge-

etic origin in which pre-existing desiccation or thermal contrac-

ion cracks are exploited ( French, 2007; Treml et al., 2010 ). Due

o the presence of clasts at the polygon boundaries, polygons of

his type are generally denoted as “low-centred”, meaning that the

olygon edges are topographically higher than the polygon centre.

nother indicator of this polygon type is that the size of the clasts

ithin the polygon borders increases with the size of the polygon,

s has been observed on Earth ( Washburn, 1956; Goldthwait, 1976;

ertran et al., 2010 ). Goldthwait (1976) , for example, suggests a ra-

io between the polygon diameter and mean clast size of between

:5 and 1:10. 

.2. Thermal contraction crack polygons 

Thermal contraction cracks ( Fig. 5 ) are the most widespread

olygonal feature found in permafrost regions ( Black, 1976; French,

007 ). They can be separated broadly into the subtypes ice-wedge,

and-wedge, composite-wedge and sublimation polygons. 

Thermal contraction of ground materials occurs as a result

f low (below-zero) temperatures and rapid cooling, resulting in

he contraction and expansion of the ground ( Lachenbruch, 1962;

rench, 2007 ). Cracks form when the tensile stress due to con-

raction on cooling exceeds the tensile strength of the mate-

ial ( Lachenbruch, 1962; Haltigin et al., 2012 ). This is particularly

revalent in ice-cemented material as the expansion coefficient of

ce is far higher than that of most silicates ( Greene, 1963 ) and

he tensile strength relatively low compared to rocks. Therefore,

ce-cemented material is more likely to result in significant ther-

al contraction cracking where cold sub-zero air temperatures

re present and where temperature losses are rapid ( Lachenbruch,

962; French, 2007 ). 

Thermal contraction cracks form polygonal networks with av-

rage diameters in unconsolidated sediments of 10 ′ s of metres;

n consolidated bedrock, they form smaller polygons of maximum

ize of 5 to 15 metres ( French, 2007 ). Theoretically, the intersec-

ion of a crack with another pre-existing crack should tend to-

ards orthogonal angles of intersection ( Lachenbruch, 1962; Plug

nd Werner, 2001 ). This implies that for angular intersections of

20 ° to occur, cracks must develop at a series of points almost si-

ultaneously ( French, 2007 ). It has also been observed in the Dry

alleys of Antarctica that young polygons have a range of sizes and

end to be relatively large with orthogonal intersections. More ma-

ure networks, however, tend towards intersections of 120 ° with

maller, more regularly sized polygons ( Sletten et al., 2003 ). This

ndicates that the maturity of a polygonal network may be indi-

ated by the angle of intersection and the regularity of polygon

ize. The various thermal contraction polygon subtypes result from

ifferent subsurface properties and environmental conditions lead-

ng to an alternate evolution of the original fracture ( Black, 1976;

evy et al., 2008a ). 

Ice-wedges form as a result of the refreezing of water de-

ived from melting snow, and/or the build-up of hoar frost within

he fractures ( Leffingwell, 1915 ; Black, 1976 ; French, 2007 ). This

lls the fracture and prevents re-closing, and also forms a zone

f weakness that reopens yearly, building up a wedge of ice

ver a period of tens to thousands of years ( Leffingwell, 1915 ;

achenbruch, 1962; Plug and Werner, 2001 ). The formation of

he ice wedge can cause deformation of the surrounding ma-

erial, resulting in raised rims on either side of the fracture
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Fig. 5. Figure adapted from Fig. 6 , Marchant and Head (2007) . A) (Top to bottom) shows a photograph of sublimation polygons from the Antarctic Dry Valleys (FOV ∼50 m) 

and a block diagram indicating how they might develop. B) (Top to bottom) shows a photograph of sand-wedge polygons from the Antarctic Dry Valleys (FOV ∼100 m) and 

a block diagram indicating how they might develop. C) (Top to bottom) shows a photograph of ice-wedge polygons from the Antarctic Dry Valleys (FOV ∼50 m) and a block 

diagram indicating how they might develop. 
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( Lachenbruch, 1962; Plug and Werner, 20 01 ; French, 20 07 ;

Haltigin et al., 2012 ). French (2007) also suggests that deformation

could be the result of material being pushed laterally away from

the polygon centre and piling up at the margins. Ice-wedge poly-

gons ( Fig. 5 C) require moisture to form and so are less likely to

occur in very arid environments ( Black, 1976; French, 2007 ). 

Sand-wedge polygons ( Fig. 5 B) occur in cold, arid conditions

( Black, 1976; Sletten et al., 20 03; French, 20 07 ). Ice is found as

pore ice within the sediment at a value of less than 30% by vol-

ume ( Marchant and Head, 2007 ). They form when wind-blown

sediment infills the fracture, preventing full closure ( Sletten et al.,

20 03; French, 20 07 ). Like the ice-wedge case, sand-wedges cause a

build-up of stresses resulting in deformation of the ground on ei-

ther side of the fracture, thus forming ridges ( Sletten et al., 2003 ).

As in the case of ice-wedge polygons, sand-wedge polygons will

reopen in cold conditions, and further infill of surface wind-blown

material leads to the growth of the wedge, causing more defined

rims to form ( Sletten et al., 2003 ). In some cases, layers of both

sand and ice will be added to the wedge due to variations in

humidity, leading to the formation of composite-wedge polygons

( Black, 1976; Levy et al., 2008b ). 

It is difficult to differentiate between ice-wedge, sand-wedge

and composite-wedge polygons from surface morphology alone, as

the surface expression could be similar in each case ( Black, 1976 ;

Sletten et al., 2003 ). All of these polygon types express an ini-

tially “high-centred” appearance, meaning that the polygon bor-

ders are demarcated by troughs surrounding the polygon centres.

Over time, as the surface material is forced upwards on either side

of the fractures, the polygons take on a low-centred appearance

and in some cases gain ‘double-rim’ margins ( Black, 1976; French,

2007 ). An additional effect of these processes is the realigning of
lasts adjacent to the fracture ( Black, 1976 ). Clastic material near

o the fracture may slump into the depression ( Levy et al., 2010 ),

hich could lead to a clastic border. It is worth noting that if the

edge is composed of ice, removal of this ice (i.e. through thaw

r sublimation) results in the slumping of surface material into

he fracture, leading to collapse structures and resulting in a high-

entred appearance ( Washburn, 1956; Black, 1976; Sletten et al.,

003; Levy et al., 2010; Ulrich et al., 2011 ). Ice-wedge polygons

ave a typical diameter range of 10 to 40 metres with maximum

iameters of over 100 metres occasionally seen ( Washburn, 1956;

lack, 1976 ; Washburn, 1980). The diameters of sand-wedge and

omposite-wedge polygons are similar, due to similar formation

echanisms. 

Sublimation polygons ( Fig. 5 A) occur in locations where there

s excess ice in the shallow subsurface in an environment with

o wet active layer ( Marchant and Head, 2007 ). On Earth, sub-

imation polygons are uncommon and occur in the Dry Valleys,

ntarctica, where they are underlain by massive ice ( Marchant and

ead, 2007 ). As cracks form in the underlying ice, debris overlying

he fracture can collapse into the depression, resulting in coarse-

rained debris at polygon borders ( Marchant et al., 2002; Marchant

nd Head, 2007; Levy et al., 2010; Haltigin et al., 2012 ). This in

urn increases the rate of sublimation beneath, leading to the de-

elopment of deep troughs and the typically high-centred appear-

nce of this polygon subtype ( Marchant et al., 2002; Sletten et al.,

0 03; Levy et al., 20 06; Marchant and Head, 20 07; Levy et al.,

010 ). The location of ice in the subsurface significantly impacts

olygon morphology, as does the aspect of the slope that they are

orming on ( Marchant et al., 2002; Levy et al., 2008a ). Sublimation

olygons in Beacon Valley, Antarctica, have diameters ranging from

 to 35 metres ( Marchant et al., 2002; Levy et al., 2008a ). Subli-
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Fig. 6. A) Image showing large desiccation cracks from Coyote Lake, California. After 

Fig. 1 A, El Maarry et al. (2012) . B) Image showing desiccation stripes, ∼ 400 metres 

in length, from the Indian Springs Playa, Nevada. After Fig. 8 , El Maarry et al. (2010) . 
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ation polygons tend to be smaller in diameter than sand-wedge

olygons where the two occur in similar environmental conditions

 Levy et al., 2006; Levy et al., 2010 ). 

.3. Desiccation polygons 

Desiccation polygons ( Fig. 6 ) are commonly found in arid playa

nvironments where the ground is extremely hard and flat ( Neal

t al., 1968; Loope and Haverland, 1988 ). They generally form in la-

ustrine deposits composed of fine grained aeolian material, which

re able to accommodate a significant amount of volatile material

 Neal et al., 1968; Loope and Haverland, 1988; El Maarry et al.,

010; El Maarry et al., 2012; El Maarry et al., 2014 ). 

Desiccation cracks form as a result of volume loss due to the

vaporation or diffusion of volatiles such as ice or water as sum-

arised by El Maarry et al. (2012) and El Maarry et al. (2014) . This

olume loss causes a change in surface tension between grains, re-

ulting in a build-up of stress ( El Maarry et al., 2010; El Maarry

t al., 2012 ). Once this stress exceeds the strength of the ground

aterial, a fracture can form ( Neal et al., 1968; Weinberger, 2001;

l Maarry et al., 2010 ). Fractures take months to years to develop

s seasonal flooding only permeates shallowly into hard playa ma-

erial ( Neal et al., 1968 ). Once they form, desiccation fractures are
enerally irregular, jagged and less than 30 cm wide ( Neal et al.,

968 ). Young fractures are discontinuous and material may slump

nto them ( Neal et al., 1968 ). Secondary fractures develop at right

ngles to the initial fracture, leading to polygonal patterns with or-

hogonal intersections in plan-view ( Neal et al., 1968; Loope and

averland, 1988; Weinberger, 2001 ). Non-orthogonal intersections

an occur either as a result of the development of a series of frac-

ures simultaneously in a homogenous material ( El Maarry et al.,

014 ), or the maturation of a network from the repeated opening

nd closing of fractures due to recurrent wetting and drying ( Neal

t al., 1968; Loope and Haverland, 1988 ). Further contraction frac-

uring often subdivides large polygons into regular, smaller poly-

ons giving a nested appearance ( El Maarry et al., 2014 ). 

Desiccation polygons occur across a range of scales. Primary

esiccation fracture polygons rarely exceed diameters of 1 metre

 Lachenbruch, 1962; Loope and Haverland, 1988; El Maarry et al.,

014 ), although much larger polygons have been observed in some

laya basins (e.g. Fig. 6 A). These polygons can have diameters of

etween 15 to 100 metres, or even up to 300 metres ( Neal et al.,

968 ). As polygon diameter is related to the thickness of the layer

ubject to fracturing, the stressed region needs to be thick to pro-

uce larger polygons ( Neal et al., 1968; Groisman and Kaplan,

994; El Maarry et al., 2014 ). It is thought that large desiccation

olygons occur as a result of intense evaporation due to a period

f increased aridity, combined with lowering of the ground-water

evel as a result of geological and/or human activity ( Neal et al.,

968; El Maarry et al., 2012 ). The fissuring process might be aided

y gradual subsidence or sudden earthquakes ( Neal et al., 1968 ). 

Desiccation polygons typically exhibit a pentagonal to hexag-

nal appearance ( Neal et al., 1968; Weinberger, 2001; El Maarry

t al., 2014 ). They can grade into stripes or parallel fractures as a

esult of constriction in narrow zones ( Fig. 6 B; Neal et al., 1968 ).

esiccation polygon centres are often depressed relative to the

olygon lip, and at intersections a collapse hole is often visible

 Neal et al., 1968 ). Over time, wind-blown material will fill these

ractures leading to a surface “stain” even when the topographic

ignature of the fracture is not visible ( Neal et al., 1968 ). 

. Data and methods 

.1. Data 

Observations of landforms and landscapes in and around Lyot

rater, indicate that clastic polygons are recognisable as organised,

ough-textured features with clasts demarcated by dark shadows

n 6 m/pixel context camera (CTX) images ( Fig. 7 ; Malin et al.,

007 ). Although CTX data is suitable for the mapping of clastic

olygonal networks, it is not suitable for an in-depth study of these

olygons, since the clasts which demarcate polygon edges are gen-

rally beneath the resolution of the data. Due to this, higher res-

lution images from the High Resolution Imaging Science Experi-

ent (HiRISE) have been chosen for use in this study. 

HiRISE data has a ground pixel size of 0.25 to 1.3 m/pixel al-

owing metre-scale objects to be resolved ( McEwen et al., 2007 ),

lthough the spatial coverage for this dataset is low on the global

cale. In addition, where HiRISE stereopairs are available, digi-

al elevation models (DEMs) and orthoimages can be produced

 Kirk et al., 2008 ). This allows information such as slope and as-

ect to be extracted from the data. 

Six areas or ‘strips’ were identified as having HiRISE im-

ge coverage suitable for use in this study ( Fig. 8 ). These

mages cover clastic polygonal networks to the north and

ortheast of Lyot crater, with five strips clustered in a simi-

ar location. One of the strips has a HiRISE stereopair avail-

ble (ESP_03,3059_2345 and ESP_03,2980_2345); where other 

mages are absent of repeated stereo cover, CTX stereopairs
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Fig. 7. CTX image (B17_016484_2346) showing a section of a clastic polygonal 

network visible as organised, rough textured, polygonal features. The presence of 

clasts is inferred both by comparison of similar features in HiRISE images and from 

the dark shadows that are cast by the polygon margins. Image credit: NASA/JPL- 

Caltech/MSSS. 
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(B19_01,6985_2338 and B21_01,7697_2303, B19_01,6906_2346 and

D15_03,3059_2344) have been used instead ( Fig. 8 ). The method of

producing DEMs from stereopairs is described by Kirk et al. (2008) ,

and we have followed that approach here. DEMs used within this

study were generated using SOCETSET software. The HiRISE DEM

so produced has a grid spacing of 1 metre, whereas the CTX DEMs

have grid spacings of 18 metres. For analysis of aspect and slope,

the DEMs were smoothed using a moving-window running mean

to remove the effects of small topographic features, with a window
size of 100 metres for the HiRISE DEM and 400 metres for the CTX s  

Fig. 8. The red box within the inset map indicates the extent of the main image. The 

convention used in this study. Black lines indicate the crater rim, inner ejecta scarp and o
EMs. Slope and aspect maps were derived from the smoothed

iRISE and CTX DEMs. All morphometric measurements and post-

EM processing was performed using ArcGIS 10.1 software. 

.2. Morphometric analyses 

To collect morphometric data, the observed polygons must be

igitised and analysed. Our method of analysis is based upon that

f Ulrich et al. (2011) , who used a similar technique to digitise

hermal contraction fracture networks. Clastic polygonal networks

ere manually digitised onto HiRISE data using ArcMap 10.1 soft-

are using a Cassini projection centred on the 30 ° east meridian.

nly polygonal networks in which the polygons could be reliably

nterpreted as clastic were mapped. This was done by digitising

olygon margins down their centre-lines with the start and end

oints corresponding to the intersection of other polygon edges

r a lack of further clasts. If all of the lines formed a continuous,

losed feature then this was considered to be a clastic polygon. All

he candidate clastic polygons visible in each strip were examined

nd digitised. 

The overlaying of mantling deposits on the polygons can make

t challenging to identify whether clasts are present, as well as ob-

curing the polygon geometry. If there was a high level of uncer-

ainty surrounding the identification of a clastic polygon edge it

as left unmarked. 

Once each strip was completely digitised, morphometric param-

ters were calculated and extracted using a tool written in the

ython scripting language for use with ArcMap. The key parame-

ers extracted are listed in Table 1 . Fig. 9 illustrates how the values

re extracted for a typical clastic polygon. In addition, the length

nd width of the five largest clasts in a polygon were measured

or fifteen randomly selected polygons from each strip. These mea-

urements were made manually within ArcMap, with the clasts se-
background is a MOLA hillshade. The strips are labelled according to the naming 

uter ejecta extent. Image credit: MOLA Science Team. 
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Table 1 

Morphometric parameters and topographic properties extracted and calculated for each polygon network digitised. The parameters selected are based upon those used by 

Ulrich et al. (2011) . 

Parameter Data Source Description 

Number of sides HiRISE The number of sides is extracted from simplified polygons. 

Length (m) HiRISE The length of the longest axis of the simplified polygon. 

Width (m) HiRISE The length of the minor axis of the simplified polygon. 

Perimeter (m) HiRISE The length of all of the polygon sides added together. 

Area (m 

2 ) HiRISE The area enclosed within the polygon. 

Orientation ( °) HiRISE The orientation of the longest polygon axis with values of between 0 and 180 ° measured from 

true north. 

Size (m) HiRISE = 

√ 

4 A 
π where A is the polygon area. 

Circularity HiRISE = 

4 πA 
P 2 

where A is the polygon area and P is the polygon perimeter. 0 indicates an elongate 

ellipse and 1 indicates a circle. 

Distance from crater centre (km) HiRISE The distance measured from Lyot crater centre to the centre of the polygon. 

Intersection Type HiRISE A count of the number of sides meeting at each polygon vertex. 

Intersection Angle ( °) HiRISE The angle between the sides at an intersection. 

Clast Length (m) 

(for 15 polygons per strip) HiRISE The length of the longest axis of the five largest clasts. 

Clast Width (m) 

(for 15 polygons per strip) HiRISE The length of the minor axis of the five largest clasts. 

Clast Size (m) 

(for 15 polygons per strip) HiRISE = 

√ 

4 A 
π for the five largest clasts where A is the clast area. 

Mean slope ( °) Smoothed HiRISE or CTX DEM The mean slope across the area of the polygon. 

Mean aspect ( °) Smoothed HiRISE or CTX DEM The mean aspect across the area of the polygon. 

Fig. 9. HiRISE (ESP_016985_2315) image of a digitised clastic polygon from the Lyot 

study area with the scheme of the key extracted values displayed (listed in Table 1 ). 

The green shaded area indicates the minimum bounding area of the polygon which 

takes the form of a simplified polygon. This is used to extract length, width, orien- 

tation and the number of sides. The polygon area is taken as the area within the 

blue digitised lines, and the perimeter is taken as the lengths of each of the blue 

lines added together. Other values such as size and circularity are calculated from 

the extracted values. Image credit: NASA/JPL/University of Arizona. 
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ected by observing which are the largest within the polygon at a

igh zoom level. 

The parameters chosen were based upon those selected by

lrich et al. (2011) , as well as other studies of polygonal networks

 Neal et al., 1968; Yoshikawa, 2003; Burr et al., 2005; Treml et al.,

010; Barrett, 2014 ). The digitised parameters were automatically

dded as an attribute table attached to the digitised polygons and
hen exported so that statistical values could be calculated (e.g.,

ean, minimum, maximum, first quartile, median, third quartile,

tandard deviations and skewness values). All graphs were created

sing R ( R Core Team, 2013 ) within RStudio ( RStudio Team, 2015 ). 

. Observations and results 

Six strips of HiRISE data were surveyed for clastic polygonal

etworks, with a total of 3588 polygons digitised, of which 3197

ccur within available, high resolution topographic data (HiRISE or

TX DEMs). During the digitisation process, clastic polygonal fea-

ures were also scrutinised for morphological features that might

rovide insight into their formation process. This section is there-

ore divided into qualitative observations and quantitative morpho-

etric data. 

.1. Polygon observations 

Clastic polygonal features are recognisable on both CTX and

iRISE data as comparatively rough-textured, patterned areas, sur-

ounded by dark shadows cast by the clasts. In HiRISE images, indi-

idual clasts can be easily seen. The polygons are located within ar-

as of terrain with kilometre scale hummocky relief. They are con-

trained to the higher topography at the upper parts of the hum-

ocks; depressed areas are marked by a lack of polygonal features.

owever, it should be noted that many of the depressions found

ear to the polygonal networks contain infilling, smooth, mantling

eposits, which could obscure polygonal features ( Fig. 10 ). 

The networks themselves appear to change shape in relation to

ifferences in topography, with clastic polygons “bending” around

epressions ( Fig. 10 A) and occasionally becoming drawn out into

mall boulder fields in constricted regions ( Fig. 10 B). Equally, clas-

ic polygons can be seen to form oriented patterns on and around

igher topography features ( Fig. 10 B). Towards the boundary of

he network, the edges become discontinuous and isolated poly-

ons are observed, many of which appear nearer circular in shape

 Fig. 11 A). In some locations, the polygonal networks do not grade

nto discontinuous forms, but instead become draped by mantling

eposits which obscure the clasts ( Fig. 11 B). 

In addition to the areas of clastic polygonal ground, large boul-

er fields occur within the outer ejecta blanket of Lyot crater,

hich have a similarly distinctive topographic relationship with
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Fig. 10. A) HiRISE (ESP_026466_2345) image of clastic polygons “bending” around 

a large depressed region infilled with a smooth, mantling unit. B) HiRISE 

(ESP_016985_2345) image of clastic polygons oriented around a higher topographic 

feature. Clasts to the east of the high topographic feature have been drawn out as 

a result of constriction between the depressed region and the area of higher topog- 

raphy. Image credit: NASA/JPL/University of Arizona. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. A) HiRISE (ESP_019685_2315) image of the edge of a clastic polygonal net- 

work which appears to become discontinuous, with isolated, more circular, forms 

being present with wider clastic borders. B) HiRISE (ESP_017829_2345) image of 

clastic polygons which appear to have become draped by a mantle deposit. Image 

credit: NASA/JPL/University of Arizona. 

Fig. 12. CTX (B20_017552_2335) image of a large boulder field present within the 

outer ejecta blanket of Lyot crater. The clastic material is recognisable as a low 

albedo rough texture found on areas of higher topography. Clastic material bends 

around depressions which often contain smooth, mantle material. Image credit: 

NASA/JPL-Caltech/MSSS. 
interspaced mantle-filled depressions ( Fig. 12 ). No large boulder

fields have been observed near to the polygon nets studied, al-

though the landscape related to the polygons contains a large vol-

ume of clastic material, both within the polygons, and as a light

covering of small clasts throughout the region interpreted from

shadows cast by material below the resolution limit. There are

some small boulder fields bordering polygonal networks but there

is often a cleared boundary area between the end of the polygonal

network and the start of the boulder field ( Fig. 13 ). 

The clastic polygons are often irregular in size and form,

although they generally approximate hexagonal and pentagonal

shapes. In many large polygons, discontinuous lines of clasts parti-

tion the interior, suggesting either that the larger polygon formed

from merging smaller polygons, or that an existing large polygon

was partitioned into smaller areas after it formed ( Fig. 14 ). In such

examples, the clastic line is often draped with mantle material in-

dicating that it could continue underneath the mantling deposit.

Alternatively, Soare et al. (2016) suggest that sorting could become

truncated early on during the process of development, leaving the

landform in adolescence. The vast majority of polygons appear to

emerge from superposing mantling material. This can make identi-

fication of features associated with many terrestrial polygons, such

as fractures along polygon sides, difficult. 

The polygon margins are composed of clasts which range in

size and form from small and approximately circular boulders, just
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Fig. 13. HiRISE (ESP_017829_2345) image of the edge of a clastic polygonal net- 

work where a small boulder field can be observed. There is a cleared area located 

between the end of the polygonal network and beginning of the small boulder field. 

Image credit: NASA/JPL/University of Arizona. 

Fig. 14. HiRISE (ESP_016906_2345) image showing a large clastic polygon which 

contains discontinuous internal clastic lines. Due to a change in albedo of the man- 

tle and bumps where boulders would be expected, it is indicated that smaller poly- 

gons are contained in the interior which have become overlain with mantle mate- 

rial. Image credit: NASA/JPL/University of Arizona. 
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t the image resolutions, to large and ridge-like clasts of up to

5 metres in diameter. Small boulders can also be found within

ome polygons ( Fig. 15 A). The polygon borders sometimes have a

double-rimmed” appearance, where there are two lines of clasts

oughly parallel to each other, sometimes with a slight gap be-

ween them ( Fig. 15 B). The clasts which form the polygon edges

re commonly angular with square to rectangular shapes ( Fig. 15 ).

hey often line up end to end to form the polygon sides and many

ive the appearance that they have formed from the fracturing of

arger, more elongate clasts. The topographically high clasts give

he polygons a low-centred appearance ( Fig. 16 ). No fractures or

roughs have been observed to demarcate the polygon borders, al-

hough the presence of probably younger overlying mantle makes

his difficult to constrain. Polygon margins are high standing and

lasts do not appear to overlie or be contained within fractures of

roughs ( Fig. 16 ). Examination of many topographic-profiles (made

rom the best 1 m-resolution HiRISE DEM, and avoiding any possi-

ly noisy areas) across the polygon margins show no evidence of

he clasts sitting within troughs at the margins. 

In summary, the clastic polygons located around Lyot crater are

enerally hexagonal to pentagonal in form and occur on a range
f scales (see Section 3.2 ). They are constrained to areas of higher

opography, though polygons occurring in depressed regions might

e obscured by mantling units. Polygon morphology is observed to

ave been affected by topographic features causing them to be ori-

ntated around areas of high or low topography and become elon-

ate in form in constricted regions. Polygon edges are commonly

omposed of angular clasts which can exhibit a “double-rimmed”

ppearance. No fractures or troughs have been observed demar-

ating polygon edges. Finally, we have not observed polygon net-

orks and boulder fields being spatially adjacent within the outer

jecta blanket. This is in contrast to Earth where sorted patterned

round commonly occurs in a pre-existing clastic layer such as

lacial till or blockfields (e.g. Goldthwait, 1976; Wilson and Sellier,

995; Grab, 2002 ). 

.2. Morphometric data 

The key morphometric data gathered from 3588 polygons are

resented in Tables 2 , 3 and 4 . These tables provide summarised

tatistical values for each parameter of interest. 

The clastic polygons across the six strips are relatively uniform

n shape, with no statistically significant difference between the

ean values recorded for the individual strips. Clastic polygons are

ommonly 5 to 6 sided with a mean polygon size of 130 metres.

he distribution of polygon sizes in each strip is broad, indicated

y the quartile ranges in Fig. 17 , but as a whole the populations

re fairly similar for each strip. Strips 1 and 4 appear to show a

ore confined normal distribution when compared to the other

reas. Polygon circularity values are generally constrained to values

f between 0.5 and 0.9 with a mean value of ∼0.7 ( Fig. 18 ). This in-

icates that polygons tend to be equidimensional rather than elon-

ate in shape. 

The polygon intersection values show a distribution centred

round 120 ° ( Fig. 19 ). The highest percentage of intersections

 Table 3 ) are 3-ray (93.1%), with only 6.7% of intersections recorded

s 4-ray. This indicates that the polygons tend towards equiangular

ets, as opposed to orthogonal nets. 

. Analysis 

.1. Key relationship between parameters – hypothesis testing 

Sorted patterned ground on Earth formed by freeze-thaw pro-

esses displays clear relationships between circularity and average

lope values ( Washburn, 1956; Goldthwait, 1976 ), aspect and poly-

on orientation ( Washburn, 1956 ), and between polygon size and

last size ( Washburn, 1956; Goldthwait, 1976; Bertran et al., 2010 ).

n Earth, circularity is inversely related to underlying slope (i.e.

orted polygonal forms become elongated downslope on steeper

lopes). Also, terrestrial observations indicate that larger polygons

end to have larger clast sizes in their borders ( Washburn, 1956;

oldthwait, 1976; Bertran et al., 2010 ). We therefore investigate

hether there are any relationships between polygon circularity

nd average slope, polygon orientation and average aspect, and

olygon size and clast size, which might support a periglacial ori-

in for the clastic polygons in Lyot. 

There is no evidence for any relationship between polygon cir-

ularity and underlying slope ( Fig. 20 ). There is also no evidence

f any relationship between polygon orientation and underlying

spect, signifying that polygons are randomly oriented ( Fig. 21 ).

his indicates that the shape of polygons does not vary with slope,

nd therefore polygons do not appear to grade into elongate forms

ownslope as slope increases. This could be the result of a small

mount of data available for polygons on slopes of greater than 6 °;
ccording to Goldthwait (1976) , polygons and nets form on slopes

f 2 ° to 4 °, ellipses form on 3 ° to 6 ° slopes and stripes occur on
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Fig. 15. A) HiRISE (ESP_017829_2345) image showing a variety of different clastic features including large angular clasts aligned in rows and smaller rounded clasts which 

are generally located further from polygon edges. B) HiRISE (ESP_016985_2315) image showing clastic polygons with double rims of parallel angular clasts, occasionally with 

a slight gap between them, which is characteristic of many polygon edges. Image credit: NASA/JPL/University of Arizona. 

Fig. 16. A) Anaglyph (ESP_032980_2345_ESP_033059_2345) showing part of a clastic polygonal network. Scale is approximate. Image credit: NASA/JPL/University of Arizona. 

B) 3D view of part of a clastic polygonal network using an orthoimage generated from HiRISE data (ESP_032980_2345) and the corresponding 1 m/pixel DEM. There is a 

vertical exaggeration of 1.2. Figure created using ArcScene 10.1. Image credit: NASA/JPL/University of Arizona. 
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Table 2 

Morphometric parameters summarised for all polygons analysed within the study. 

Parameter Length (m) Width (m) Size (m) Circularity Intersection Angle ( °) Underlying Slope ( °) Clast Length (m) Clast Width (m) Clast Size (m) 

Mean 179 117 130 0.712 116 2 5 3 5 

Maximum 676 450 435 0.966 268 12 15 10 12 

Minimum 19 11 16 0.226 19 0 1 1 1 

Count 3588 3588 3588 3588 21,267 3197 450 450 450 

Median 172 111 126 0.727 114 2 5 3 4 

1st Quartile 126 79 91 0.644 93 1 3 2 3 

3rd Quartile 222 149 164 0.793 139 3 7 4 6 

Standard Deviation (SD) 78.053 10.799 56.179 0.114 34.397 1.413 2.196 1.571 1.993 

Skewness (SK) 1.023 0.807 0.699 −0.645 0.161 1.384 0.816 0.876 0.003 

Table 3 

Intersection types that occur within the polyg- 

onal networks summarised across all strips. 

Intersection type Number Percentage 

2-ray 15 0.2 

3-ray 8741 93.1 

4-ray 625 6.7 

5-ray 8 0.1 

Total 9391 100 

Table 4 

Number of sides per polygon. 

Number of sides Number Percentage 

3-side 236 6.8 

4-side 593 17.0 

5-side 912 26.1 

6-side 781 22.4 

7-side 503 14.4 

8-side 258 7.4 

9-side 144 4.1 

10-side 64 1.8 

Total 3491 10 0.0 0 

Fig. 17. Boxplots displaying polygon size values for all of the strips analysed. The 

boxes represent the interquartile range of each strip. The bold horizontal line is 

the median of each strip. The whiskers represent the upper and lower quartile. The 

outliers are located 1.5 times the interquartile range above the upper quartile. 
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Fig. 18. Boxplots displaying polygon circularity values for all of the strips analysed. 

The boxes represent the interquartile range of each strip. The bold horizontal line 

is the median of each strip. The whiskers represent the upper and lower quartile. 

The outliers are located 1.5 times the interquartile range above the upper quartile. 
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lopes of 4 ° to 11 ° Finally, there is no correlation between polygon

ize and clast size ( Fig. 22 ). In fact, the smallest polygons can con-

ain the largest clasts and vice versa. These three null results, taken

ogether, argue against the Lyot clastic forms having a periglacial,

reeze-thaw origin: they do not show any of the relationship found

n terrestrial freeze-thaw sorted polygons and circles. 
.2. Comparison datasets 

Having obtained measurements and observations of these

olygonal features, we can use these data to test hypotheses for

ow they formed. However, to gain additional insight into their

ossible formation mechanisms we also gathered comparative data

or other polygonal patterned grounds, both from Earth and Mars.

he various polygon datasets have been collated from the litera-

ure, and cover a variety of different polygon types including ther-

al contraction crack polygons, sorted patterned ground and des-

ccation polygons (i.e. not just positive-relief margin, clast-bounded

olygons). We have done this in order to consider the widest pos-

ible suite of possible formation mechanisms. For example, it could

e imagined that negative-relief margin (i.e., trough or fracture-

ounded) polygons could become infilled by clasts or debris and

hen inverted by differential erosion to form features similar to

hose seen here. Hence, we need to consider many types of polyg-

nal ground. However, it has been difficult to locate morphome-

ric measurements of similar detail to those conducted in either

his study or that of Ulrich et al. (2011) . Accurate intersection an-

le and clast size data has been particularly challenging to lo-

ate. As a result, many parameters do not have comparison data

vailable. 

First, we consider the basic plan-view shape and size of the

yot polygons. Fig. 23 shows mean polygon size values plotted

gainst mean circularity for each strip. The comparison data in-

lude small thermal contraction crack polygons from Earth and

ars ( Ulrich et al., 2011 ), and sorted patterned ground from Earth
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Fig. 19. Histograms displaying polygon intersection angle values for each of the strips analysed. The median for each strip is marked as a red line. 

Fig. 20. Scatterplots displaying the relationship between the circularity of polygons and their mean slope. There is no suitable 3D data available for strip 2 and therefore no 

slope data. 



L.M. Brooker et al. / Icarus 302 (2018) 386–406 399 

Fig. 21. Scatterplots displaying the relationship between the orientation of polygons and their mean aspect. There is no suitable 3D data available for strip 2 and therefore 

no orientation data. 

Fig. 22. Scatterplot displaying the relationship between polygon size and clast size. 
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nd Mars ( Barrett, 2014 ). The figure indicates that, although Lyot

olygons are far larger, their circularity values are within the range

f both sorted patterned ground and thermal contraction crack

olygons. Sorted patterned ground values show a larger spread

ompared to the other polygon types and, in general, the mean

alues for circularity from Lyot are closer to the values indicated

or thermal contraction crack polygons. 

Next, we examine whether larger Lyot polygons contain larger

arginal clasts, as might be expected for sorted periglacial pat-

erned ground on Earth. Fig. 24 shows polygon size plotted against

last length. The datasets used as comparisons are all taken from

orted patterned ground. These include data from Iceland, Earth

nd around Lomonosov Crater, Mars ( Barrett, 2014 ). Polygon data

or known patterned ground displays a characteristic positive cor-

elation where clast length increases with polygon size. The data

or Lyot crater does not sit along this line, indicating that it does

ot follow this relationship. In fact, the clasts observed are simi-

ar in mean length to the larger measurements from Lomonosov

rater, although the polygon size values are far greater for the Lyot

xamples. 
To test whether polygons of any formation mechanism are anal-

gous in size and shape to those observed around Lyot crater exist

n Earth or Mars, polygon size and lengths for our Lyot data and

 variety of other datasets are compared ( Table 5 ). Table 5 shows

hat the polygons found at Lyot crater are within the range of size

alues for large thermal contraction cracks from Utopia Planitia

nd the South Polar Layered Deposit on Mars, and also within the

ize ranges displayed by large desiccation polygons observed occa-

ionally in playa environments on Earth. Sorted patterned grounds

ave size values that are far lower, as are the sizes of thermal con-

raction crack polygons on Earth. This might indicate that thermal

ontraction polygons on Mars are able to form with larger diame-

ers than those on Earth, or that larger thermal contraction poly-

ons are more poorly preserved on Earth. 

The comparison of the Lyot clastic polygon data with data from

ther studies of polygonal features indicates that the Lyot crater

olygons are comparable in size and circularity to some thermal

ontraction crack and desiccation polygons, but not to sorted clas-

ic polygons. More specifically, they are similar in size and shape

o thermal contraction crack polygons located on Mars, as the ter-
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Fig. 23. Scatterplot of comparison data displaying the relationship between circularity and polygon size. The thermal contraction crack polygon values for Earth and Mars 

are taken from Ulrich et al. (2011) . The sorted patterned ground values for Earth and Mars are adapted from Barrett (2014) . For further information about these comparison 

data refer to Table 5 . One standard deviation on the mean is used for the error bar values. 

Fig. 24. Scatterplot of comparison data displaying the relationship between clast length and polygon size. Skagi, Tindastoll and Lomonosov values are adapted from 

Barrett (2014) . One standard deviation is used for the error bar values. 
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restrial examples tend not to reach as large a size. Desiccation

polygons can also occur at a similar scale to those which occur

around Lyot, and the literature indicates that they possess a sim-

ilar plan view to thermal contraction cracks. The plots analysed

demonstrate that the Lyot forms have different morphological val-

ues than other sorted patterned ground: sorted patterned grounds

are more circular than the polygons located around Lyot crater, al-

though the spread of data could encompass those at Lyot, and they

are far smaller in size. This could be a result of the sorted pat-

terned ground data selected for use in this study, but we note

that there are almost no published observations of sorted pat-

terned ground with diameters greater than ∼10–20 m. A further

relationship, that between clast size and polygon size, also indi-

cates that the Lyot polygons do not follow the typical “sorted pat-

terned ground” relationship, with clasts too small and polygons too

large. 
. Discussion 

.1. Comparison of the Lyot clastic polygons and periglacial sorted 

atterned ground 

Clastic polygonal networks around Lyot crater morphologically

esemble sorted patterned ground in that they have clastic mate-

ial and low centres ( Fig. 1 B). However, their large size is unusual.

orted patterned ground rarely contains polygons or circles greater

han a few metres in diameter, although maximum diameters of

round 10 metres have been observed on Earth ( Washburn, 1956 ;

reml, 2010; Feuillet et al., 2012 ) and possible examples on Mars

f around 23 to 25 metres in diameter have been observed ( Balme

t al., 2009; Barrett, 2014; Soare et al., 2016 ). The typical poly-

on found at Lyot crater is ∼130 metres in diameter, more than

0 times the size of those found on Earth, and more than 5 times
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Table 5 

Comparison data displaying the average sizes and lengths for various polygons taken from the literature. Where an average value is not available a 

range has been used. 

Location Source Polygon Type Size (m) SD Length (m) SD 

Lyot crater, Mars This study To be determined 130.5 56.18 179.2 78.05 

Skagi, Iceland, Earth Barrett (2014 ) Sorted patterned ground 0.3 0.02 0.3 1.02 

Tindastoll, Iceland, Earth Barrett (2014 ) Sorted patterned ground 4 0.88 5 1.68 

High Sudetes, Central Europe, Earth Treml et al. (2010 ) Sorted patterned ground 3.7 

Adventdalen, Svalbard, Earth Ulrich et al. (2011 ) Thermal contraction cracks 29.7 1.4 40.9 14.9 

Dry Valley, Antarctic, Earth Yoshikawa (2003 ) Thermal contraction cracks 12.7 

Barrow, Alaska, Earth Yoshikawa (2003 ) Thermal contraction cracks 16.3 

Adventdalen, Svalbard, Earth Yoshikawa (2003 ) Thermal contraction cracks 18.5 

Pingo dal, East Greenland, Earth Yoshikawa (2003 ) Thermal contraction cracks 38.2 

Alvord Desert, Oregon, Earth Neal et al. (1968 ) Desiccation Polygons 15 - 30 

Guano Lake, Oregon, Earth Neal et al. (1968 ) Desiccation Polygons > 100 

Pit-Taylor Reservoir, Nevada, Earth Neal et al. (1968 ) Desiccation Polygons 15 - 30 

Smoke Creek Desert, Nevada, Earth Neal et al. (1968 ) Desiccation Polygons 30 - 75 

Coal Valley, Nevada, Earth Neal et al. (1968 ) Desiccation Polygons 75 - 100 

Jakes Valley, Nevada, Earth Neal et al. (1968 ) Desiccation Polygons > 100 

Elysium Planitia, Mars Balme et al. (2009 ) Possible sorted patterned ground 13.7 3.4 

Northern plains, Mars Gallagher et al. (2011 ) Possible sorted patterned ground 13 

Lomonosov, Mars Barrett (2014 ) Possible sorted patterned ground 21.4 5.91 25.4 8.57 

Utopia Planitia, Mars Ulrich et al. (2011 ) Possible thermal contraction cracks 34.3 12.8 46.2 16.9 

Utopia Planitia, Mars Yoshikawa (2003 ) Possible thermal contraction cracks 123.9 

South Polar Layered Deposit, Mars Yoshikawa (2003 ) Possible thermal contraction cracks 137.7 

Athabasca Valles, Mars Burr et al. (2005 ) Possible thermal contraction cracks ∼25 ∼10 

Giant Polygons, Mars Yoshikawa (2003 ) Km-scale polygons 7236.6 
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he size of the other examples found on Mars. This would indi-

ate an exceptionally large sorting depth of between ∼33 to 43

etres based on a polygon diameter to sorting depth ratio of 3

o 4 ( Ballantyne and Harris, 1994; Treml et al., 2010 ). A sorting

epth of this scale is far larger than any previously observed and

eems unlikely. This indicates that the formation of these poly-

ons through freeze-thaw cycling alone is questionable. It has been

bserved that large polygons can form by the amalgamation of

maller sorted polygons over time ( Kessler and Werner, 2003 ). This

ould potentially be indicated by the discontinuous clastic lines ob-

erved in the large polygon interiors ( Fig. 14 ). On the other hand,

urial by mantling units, as opposed to the elimination of small

olygons, is another possibility – and could suggest that polygon

izes are somewhat overestimated. However, even taking this in-

ernal partitioning into account, and noting that it is not seen in all

f the observed polygons, it seems unlikely that the difference in

ize between the Lyot clastic polygons and previous observations

f more typical sorted polygonal ground is due to observation of

nly the largest polygons in the network, while smaller, internal

nes are somehow always buried. 

Terrestrial observations also indicate that there is a relationship

etween polygon diameter and clast size, with a ratio ranging from

:5 to 1:10 (Goldthwaite, 1976). This positive correlation is not ob-

erved in the case of the clasts demarcating Lyot polygons. Further-

ore, according to the ratio provided by Goldthwait (1976) , the

lasts in the Lyot polygons should be between 13 and 26 metres

n diameter, but even the largest clasts observed around Lyot poly-

ons are smaller than this lower limit ( Table 1 ). It should also be

oted that there is no evidence of the imbrication of clasts, which

an occur as a result of frost sorting processes ( Dahl, 1966; Kessler

nd Werner, 2003; French, 2007 ; Soare et al., 2016 ). Also, the ob-

ervations of double lines of clasts, and of clasts that appear to

ave formed from the fracture of larger, elongate ridges of mate-

ial do not match a periglacial sorting model ( Fig. 15 ). 

Finally, periglacial sorted patterned ground has a distinctive re-

ationship with topography in which geometric forms change from

olygons on slopes of 2 to 4 °, to ellipses on slopes of 3 to 6 °,
nd finally to stripes on slopes of 4 to 11 ° ( Goldthwait, 1976 ).

herefore it is expected that sorted patterned ground on Mars

ill behave in a similar way, and that larger slopes will lead to

 lower value for circularity indicating elongation. Such a relation-
hip has been observed at other locations on the surface of Mars

e.g. Gallagher et al., 2011 ). Although a qualitative relationship be-

ween topography and the polygons is indicated from observations,

here is no positive correlation between circularity and slope, and

igh circularity polygons have been recorded on slopes as large as

2 ° Also, no clastic stripes have been observed in this study. 

Overall, the morphometric analysis and qualitative observations

o not support the hypothesis that freeze-thaw sorting processes

re responsible for formation of the clastic polygonal features

round Lyot. Both Martian and terrestrial data indicate that there

hould be a stronger relationship between clast size and polygon

iameter, and between polygon form and underlying slope and as-

ect than is observed (e.g. Goldthwait, 1976; Gallagher et al., 2011;

arrett, 2014 ). It should be noted that little quantitative data de-

cribing the relationship between polygon elongation and slope an-

le is currently available on Mars, although this relationship has

een observed qualitatively. Similarly, there is also little compari-

on data available quantifying the relationship between clast size

nd polygon diameter on Mars. Nevertheless, the combined obser-

ations and measurements and their comparison with terrestrial

nd martian datasets suggest that a periglacial sorting origin is not

he best working hypothesis to explain the Lyot clastic polygons. 

.2. Comparison of Lyot clastic polygons and thermal contraction 

rack polygons 

Thermal contraction crack polygons vary in morphology and

ize depending upon subsurface properties and the environment

n which they form. The Lyot crater study area contains landforms

nd landscapes indicative of a cold environment with brief, pos-

ibly climate-driven, periods of fluvial activity. Fractures would be

ffected by topography and this could explain the oriented polyg-

nal features observed around topographic features. This suggests

hat the thermal contraction of ice-cemented soils could be a po-

ential mechanism to form patterned ground in this area – es-

ecially if a mechanism exists that could allow a “wedge-type”

olygon to evolve into a “clast-bounded” polygon. The formation

f these wedge-type polygons around Lyot is discussed here, and

heir morphology and morphometric properties are compared to

hose of the Lyot clastic polygons. We discuss whether thermal
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Fig. 25. HiRISE (PSP_002070_2250) image of possible thermal contraction crack 

polygons located in Utopia Planitia (45 °N, 88 °E). The polygons have somewhat 

similar sizes and morphologies to the network shape seen in the polygons lo- 

cated around Lyot crater. The terrain in this area contains scalloped depressions 

( Séjourné et al., 2011 ) and a surficial layer of small clastic material. Image credit: 

NASA/JPL/University of Arizona. 
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contraction features could evolve to form the clast-bounded poly-

gons observed later. 

Typical diameters for terrestrial ice-wedge polygons range from

10 to 40 metres with maximum diameters of over 100 metres

( Washburn, 1956; Black, 1976 ; Washburn, 1980; Maloof et al.,

2002 ). On Mars, possible thermal contraction polygons of a simi-

lar size to the clastic polygons around Lyot crater, with diameters

ranging from 30 to 170 metres ( Fig. 25 ; Yoshikawa, 2003; Lefort

et al., 2009 ), have been observed in Utopia Planitia. Hence, there

is evidence that thermal contraction cracking on Mars can produce

polygonal ground of the same spatial scale as the Lyot clastic poly-

gons – although a simple thermal contraction crack mechanism

would not explain their clastic boundaries. It has been also ob-

served that thermal contraction polygons potentially subdivide into

smaller polygons over time ( Greene, 1963; Black, 1976 ), this might

be analogous to the internal partitioning observed inside some of

the larger Lyot clastic polygons ( Fig. 14 ). 

Taking each subtype separately, sand-wedge and composite-

wedge polygons appear more likely to produce the gross polygon

morphology and scale observed at Lyot. Sublimation polygons are

rare on Earth, and require underlying massive ice or excess ice (as

opposed to ice-rich sediments or soils) directly beneath the layer

in which the polygons form. While this might have been the case

here, we note that sublimation polygons are usually both smaller

than wedge type polygons, and form broader dome-like features

with more poorly defined marginal troughs. Hence we think that

they are less likely to be good analogues for the Lyot clastic net-

work patterns than wedge-type polygons. 

Sand-wedge and composite-wedge polygons can form low-

centred polygons as a result of the forcing of material upwards

on either side of the initial fracture. This can lead to the realign-

ing of clasts and the production of a double rimmed appearance

( Black, 1976; French, 2007 ), as is seen at Lyot ( Fig. 15 ). Although

ice-wedge polygons can also produce this surface morphology, one

might expect ice exposed to the Martian surface environment to

sublime, leading to the formation of pits or other signs of collapse

and eventually a high-centred appearance, as described for other

parts of Mars ( Levy et al., 2011 ), unless it were shielded from the

surface by a layer of desiccated material (e.g., Lefort et al., 2009 ).

Ice-wedge polygons also indicate the presence of a more humid

environment, to allow for the growth of an ice-wedge, whereas
and-wedge polygons occur in a more arid environment where

ce occurs in pore spaces within the sediment ( Pewe, 1959; Black,

976; French, 2007 ). Although Lyot has experienced periods of flu-

ial activity, indicating the past presence of water ( Dickson et al.,

009; Fassett et al., 2010 ; Hobley et al., 2014 ), and ice-rich mate-

ial is located nearby in the form of mantling units, it might be

xpected that ice deposited in the fractures would sublime with-

ut sufficient cover, leading to the formation of troughs. It ap-

ears more likely that wind-blown sediment might infill exposed

ractures resulting in a sand-wedge. Alternatively, obliquity-driven

hanges in climate ( Laskar et al., 2004 ) might have resulted in vari-

tions in humidity and pressure leading to composite-wedge or

ce-wedge polygon formation. 

The polygonal networks around Lyot possess similar intersec-

ion angles to terrestrial mature thermal contraction polygonal net-

orks, tending towards 120 ° with, on average, 5-sided polygons

 French, 2007 ). The Utopia Planitia polygons also tend towards

quiangular intersections of ∼120 ° ( Lefort et al., 2009 ), although

hey appear more regular than the Lyot networks ( Fig. 25 ). Thus

hey are somewhat similar in both polygon size and network shape

o the Lyot polygons. 

In both terrestrial thermal contraction polygons, and the poly-

ons present in Utopia Planitia, troughs bound the polygons.

roughs are not visible around the clastic polygons at Lyot. 

Hence, while it can be shown that there are examples of Mar-

ian thermal contraction polygons similar in size and overall shape

o the polygonal networks seen in Lyot, and that the action of ei-

her a sand-wedge or composite-wedge polygon formation mech-

nism appears plausible in this current environment, the clastic

ppearance of the Lyot polygons provides a very clear contrast to

he usual morphology of thermal contraction polygons on Earth or

lsewhere on Mars. It is possible that the gravitational slumping

f overlying clastic material into the fractures could be responsible

or allowing a clastic-bounded polygon to evolve from a thermal

ontraction crack polygon, but in the Lyot study area there is no

elationship between boulder fields and polygons, there is no evi-

ence for troughs at the polygon margins, and there is generally an

bsence of boulders within the polygons between the clastic mar-

ins: the clasts seem too well-confined to the polygon boundaries

o have formed by gravitational slumping from what was originally

 boulder-rich terrain. 

We therefore provide another possible, but somewhat specu-

ative, alternative formation hypothesis: if a thermal contraction

rack network formed, and was then infilled by later materials,

hen this infilling material could become indurated or cemented

ithin the fractures. This material could then be revealed in pos-

tive relief if there were general downwearing of the landscape,

erhaps due to climatic changes and enhanced aeolian erosion.

hese lines of inverted, erosion resistant fracture-fill could then

hemselves degrade to produce clasts. This explanation is con-

istent with some of the detailed observations of the Lyot poly-

ons, such as linear clasts, and double lines of clasts that might

ave formed from material forming on either side of a centrally

ractured sand-wedge or composite-wedge. Furthermore, it is also

roadly in keeping with the overall polygon size and network

hape. 

.3. Comparison of Lyot clastic polygons and desiccation polygons 

Having compared the Lyot clastic polygons to thermal contrac-

ion fracture polygons, we now consider whether they could have

ormed as, or evolved from, desiccation polygons. Desiccation poly-

ons have been observed at a wide range of scales on Earth: al-

hough they rarely exceed 1 metre in diameter, rare examples of up

o 300 metres across exist ( Neal et al., 1968 ). This sets them within

he size range of the clastic polygons around Lyot crater. Therefore,
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 process similar to that suggested for thermal contraction cracks

bove, by which infill of fractures, induration/cementation of fill,

nd inversion of the fill forms clastic polygons, might be invoked. 

However, to produce desiccation polygons of this scale, the

tressed region would need to be thick to produce deep fractures,

nd the environment would need to have first been very humid,

hen have experienced a period of intense aridity combined with

owering of the ground-water level ( Neal et al., 1968; El Maarry

t al., 2012 ). Desiccation polygons are generally associated with

emnant lacustrine deposits in a playa environment ( Neal et al.,

968; Loope and Haverland, 1988; El Maarry et al., 2010; El Maarry

t al., 2012; El Maarry et al., 2014 ). This indicates that sustained

uvial activity would be necessary to form large desiccation poly-

ons. On Mars, such a body of water could be a crater lake sus-

ained by a hydrothermal system, as thermal energy would need to

e provided to sustain a body of water on the surface of Mars ( El

aarry et al., 2010; El Maarry et al., 2012; El Maarry et al., 2014 ).

he clastic polygonal features around Lyot appear to be geologically

ecent and so must have formed far later than the impact event

hich formed the crater, so any hydrothermal activity, or remnant

eat from the impact would have long-since dissipated. 

Although there is geomorphological evidence consistent with

he presence of fluvial activity on the inner ejecta blanket, there

s no evidence of standing bodies of water occurring on the outer

jecta blanket of Lyot, and the clastic polygons occur on areas of

igher topography rather than depressions where standing water

ould be present. Given the geographical setting, and the fact that

he clastic polygons appear to form on the upper parts of hum-

ocks, it seems unlikely that desiccation cracking is the origin of

he clastic polygonal ground around Lyot. 

.4. Other mechanisms 

Polygonal grounds of somewhat similar network morphology to

he clastic polygons located around Lyot crater include the ther-

al contraction of cooling lava (e.g. Peck and Minakami, 1968 ), the

ubaqueous contraction of sedimentary gel, termed syneresis (e.g.

ewhurst et al., 1999 ), the formation of polygonal fault systems via

he intersection of a series of normal faults within marine basins

e.g. Tewksbury et al., 2014 ), and the polygonal weathering of sed-

mentary rocks (e.g. Williams and Robinson, 1989 ). We now briefly

onsider whether any of these mechanisms could have created, or

volved to form, the Lyot clastic polygons. 

The thermal contraction of cooling lava can produce polygons

p to decametres in size ( Peck and Minakami, 1968; Grossenbacher

nd McDuffie, 1995; Hetényi et al., 2012 ). These polygons, also re-

erred to as columnar joints, have a high centred appearance and

end towards a hexagonal shape ( Toramaru and Matsumoto, 2004 ).

olygons of this type are far smaller than those observed around

yot crater and possess a different typical morphology. There are

lso no lava-like flows associated with Lyot polygons, no possible

ources of lava visible, and the distribution on top of small hum-

ocks, and around the crater, cannot be explained by this polygon

ype. Thus the thermal contraction of lava can be eliminated as a

otential hypothesis. 

Syneresis is a process that occurs in fine-grained sediments

uch as mudstones within a subaqueous environment ( Pratt, 1998;

oker et al., 2007 ). Polygons attributed to syneresis vary in di-

meter from crack patterns of centimetres in scale ( Pratt, 1998 )

o polygonal fault systems of decametres to kilometres in scale

 Dewhurst et al., 1999 ; Coker et al., 2007; Moscardelli et al., 2012 ).

ypically, such polygons are found in slope or basin-floor depo-

itional settings ( Moscardelli et al., 2012 ). Lyot polygons are low-

entred, as opposed to high-centred, and occur at a different range

f scales to that typical of syneresis polygons. There is also a lack

f evidence indicating a subaqueous basin environment, and be-
ause of this it is expected that syneresis would be unlikely to have

ccurred. Thus, it is suggested that a hypothesis involving syneresis

an be eliminated. 

Syneresis is also the primary mechanism suggested for the for-

ation of polygonal fault systems formed via the intersection of a

eries of normal faults. Such fault systems occur in deep marine

asin environments, with typical polygon diameters of kilometres

 Dewhurst et al., 1999 ; Watterson et al., 20 0 0; Moscardelli et al.,

012; Tewksbury et al., 2014 ). Polygons around Lyot crater aver-

ge 130 metres in size, which is significantly lower than polygons

ormed by polygonal fault systems. There is also a lack of evidence

or a deep marine environment around Lyot crater at this time. Due

o these factors it is suggested that polygonal faulting can be elim-

nated as a hypothesis. 

Polygonal weathering occurs on the exposed surfaces of

oulders and rock outcrops composed of massive sandstone

 Williams and Robinson, 1989 ). The cracks are pentagonal

o hexagonal in shape and can be flat, concave or convex

 Williams and Robinson, 1989 ). Most such polygons are between 10

nd 20 cm in diameter ( Williams and Robinson, 1989 ), with maxi-

um polygon sizes recorded of metres in scale ( Chan et al., 2008 ).

mall polygons can be contained within large polygons giving a

ested appearance ( Chan et al., 2008 ). The polygons around Lyot

rater are typically over 100 times larger than the largest polygonal

eatures formed by weathering on Earth. The Lyot polygons also do

ot display a nested appearance, although small nested polygons

ould perhaps be obscured by later mantling deposits. It is there-

ore suggested that the polygonal weathering of sedimentary rocks

an also be eliminated as a possible formation hypothesis for the

yot clastic polygons. 

.5. Possible formation mechanisms for the clastic polygons around 

yot crater 

Based upon the previous discussion it is suggested that thermal

ontraction crack polygons, in particular sand-wedge or composite-

edge polygons, provide the best morphometric and morphologi-

al analogue to the polygonal network patterns of the Lyot clastic

olygons. On Mars, the best size and shape analogue is found in

topia Planitia, proposed to have formed through thermal contrac-

ion cracking ( Yoshikawa, 20 03; Lefort et al., 20 09 ). 

However, thermal contraction cracking does not explain the

oncentration of clasts at the boundaries of the polygon margins.

here are a number of suggested mechanisms by which clastic ma-

erial can concentrate in thermal contraction polygon boundaries.

hese include freeze-thaw cryoturbation, as in sorted patterned

round, gravitational slumping, and CO 2 frost ratcheting, whereby

oulders become locked in a layer of CO 2 ice and are forced out-

ards as thermal contraction and expansion occurs ( Orloff et al.,

013 ). The size of the clasts found in the Lyot polygons are almost

ertainly too large to have been moved via a freeze-thaw or CO 2 

atcheting process, so we reject this as a mechanism. 

We now consider gravitational slumping of a pre-existing pop-

lation of clasts. This might occur if clasts were ejected during the

yot impact event and later concentrated into the thermal con-

raction fractures by gravity (e.g., Levy et al., 2010 ). In this case

e would expect there to be a pre-existing boulder field of large

lastic material around the polygonal features, as clasts the size of

hose found at Lyot are unlikely to have travelled far before slump-

ng into the fractures. Taking this into consideration we would ex-

ect: (i) evidence of an association of the polygonal networks with

oulder fields and (ii) for clasts of a similar morphology to those

bserved within the polygon margins to be present away from

hese margins, within the polygons centres. These relationships

ave not been observed: the large boulder fields are located away

rom the clastic polygonal networks, and, where a small boulder-
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rich area is present, we find a cleared margin between the edge of

the clastic network and boulder-rich area ( Fig. 13 ). Large angular

clasts are not observed located away from polygon margins, only

smaller, more circular clasts are seen ( Fig. 15 ). Also, gravitational

slumping does not account for the large ridge like clasts that have

been observed in distinctive double rim patterns ( Fig. 15 ). 

Another indicator of gravitational slumping is for the clastic

material to be associated with fractures or located within troughs

( Levy et al., 2010; Barrett et al., 2017 ). We have seen no evidence

of either fractures or troughs associated with the clastic material,

polygonal margins are high standing and clasts do not appear to

be located within depressions ( Fig. 16 ). It is also not certain how

angular boulders of the scale of those observed at Lyot would be

moved via a process of gravitational slumping as the slopes seen in

this study are low, with a maximum angle of 12 ° ( Table 2 ). Finally,

a recent study ( Barrett et al., 2017 ) has indicated that fracture con-

trol mechanisms (such as gravitational slumping) of clasts into pat-

terns could largely be a result of chance, and that fractures did not

seem to substantially influence the arrangement of clasts at most

sites where both clasts and fractures are present. Therefore, we re-

ject the idea that gravitational slumping of a pre-existing popula-

tion of boulders into thermal contraction cracks was the process

by which the clasts forming the Lyot polygons were concentrated. 

We therefore return to the mechanism suggested previously:

the clasts are the result of the infilling of pre-existing polygonal

fractures with wind-blown sediments and/or ice, followed by ce-

mentation or induration of this fill, and then differential erosion,

which exposes the network. Finally, weathering the indurated fill

material formed the pattern of blocks seen today. In this case, the

network is the trace of the exposed sand-wedge or composite-

wedge network itself. This mechanism explains many of the obser-

vations and morphological features of the polygons, although the

large size of the polygons is still difficult to fully explain, given

that many are larger than even the thermal contraction crack poly-

gons identified in Utopia Planitia ( Yoshikawa, 2003; Lefort et al.,

2009 ). Furthermore, the suggested mechanism in which fill mate-

rial is indurated, then fractured, to form the clasts does not ap-

pear to have been observed elsewhere on the surface of Mars or on

Earth; terrestrial clastic polygons are generally the result of gravi-

tational slumping or freeze-thaw processes. This indicates that ei-

ther the method for clast formation is unique, or the environment

must have been unique such that a previously observed mecha-

nism acted on such a scale. Furthermore, there is no clear reason

why fracture fill should become indurated or cemented here, but

not in other locations on Mars. Further investigation is clearly re-

quired to more fully understand how these enigmatic features have

formed. 

6.6. The spatial distribution of clastic polygons and “primary”

formation hypotheses 

A key characteristic of the Lyot polygons is their spatial distri-

bution: their specific location on the Lyot ejecta blanket, at a nar-

row range of radial distances from the crater rim, indicates a ge-

netic link with the crater itself. It seems unlikely that the polygons

formed in this pattern by chance. This indicates either that this re-

gion of the ejecta hosts a unique material type, and/or a unique

process has acted on the materials here. Given the radial distribu-

tion of the polygons, it seems the explanation must lie with the

composition of the ejecta – and hence with the type of material

ejected from a particular depth during the impact event. For exam-

ple, if a vertically constrained, sub-surface layer of a specific com-

position was penetrated by the Lyot-forming impact, ejecta from

this layer might be deposited in a radial band at a certain dis-

tance from the crater. It might be speculated that a water-rich

layer could thus result in a region of ejecta with high water or
ce content being emplaced which, in turn, could be susceptible to

ertain processes that led to the unique polygonal morphologies

een here today. 

Alternatively, the spatial link between the crater and clastic

olygons could suggest a completely different formation hypoth-

sis to those proposed above: namely that the polygons are pri-

ary, structural features picked out by erosion. In this scenario,

nd like many impact events ( Rodríguez et al., 2005 ), the forma-

ion of Lyot resulted in extensive fracturing of the surface. Radial

nd concentric fault systems are often found around impact craters

 Rodríguez et al., 2005 ). It is possible that such a fault system could

hen have been exploited by hydrothermal fluids, resulting in the

ormation of vein networks. Later erosion might result in the ex-

osure of these veins as a high relief feature. An issue for this hy-

othesis, however, is that fracture networks around impact craters

o not possess an organised polygonal appearance. Furthermore,

he fracture network would be expected to be more continuous

round the crater rather than within only a specific area of the

uter ejecta blanket, and it also seems unlikely that such fractures

ould penetrate through the outer, poorly consolidated ejecta to

he surface. 

Another “primary” mechanism for the formation of polygonal

ractures or patterns in the ejecta of Lyot is that of fracturing of

mpact melt ponds, as seen in several craters on the Moon and

ercury (e.g. Xiao et al., 2014 ). While some examples of such frac-

uring are superficially similar to the patterns seen at Lyot, they

re generally much larger ( > 100 s of metres in diameter) and also

orm in well-defined, low standing melt ponds. This is not the case

n Lyot, as the polygons appear to be forming on the tops and mar-

ins of hummocks in the outer ejecta. Thus, while primary forma-

ion mechanisms might be invoked, we think they are unlikely, and

hat the most likely formation mechanisms for the creation of the

yot clastic polygons are secondary, and occurred after the outer

jecta was emplaced. We therefore suggest that the relationship

etween the distribution of the polygons and the site of the Lyot

rater is due to the composition of the outer ejecta material as op-

osed to a structural relation. 

. Conclusion and further work 

Enigmatic clastic polygonal networks located around Lyot crater

ere studied using morphometric analysis and qualitative morpho-

ogical observations to provide information by which a possible

ormation mechanism might be inferred. Amongst the large popu-

ation of observed polygons on Mars, the Lyot polygons are unique

n Mars in that they have clastic margins and average diameters

f 130 metres, far larger than clastic polygons observed on Mars

r Earth. The polygons are generally five or six sided with average

ntersection angles of 120 ° Polygons tend toward equidimensional

ather than elongate forms, with geometric shape largely indepen-

ent of slope or aspect. The clastic blocks which compose the poly-

on edges are angular, with an average maximum clast size of 5

etres. Clast size does not increase with polygon size. These re-

ults taken together indicate that polygons are unlikely to be the

esult of freeze-thaw processes. 

The morphometric data we collected were compared to vari-

us terrestrial and Martian polygon datasets to observe any trends

r associations. Quantitative analysis using high-resolution remote-

ensing data, based upon the method of Ulrich et al. (2011) , and

omparison to existing polygon datasets demonstrates that the

yot polygons are comparable in size and shape to some desicca-

ion polygonal fracture networks on Earth and some thermal con-

raction polygon networks on Mars. Qualitative observations indi-

ate the Lyot polygons are similar to large-scale sorted patterned

round or thermal contraction cracks, but with important differ-

nces, such as their very large diameters, their large clast size in-
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ependent of polygon diameter, their double-rimmed clastic bor-

ers and their elongated border clasts. Based upon these data, and

 literature review of other geological polygonal features, thermal

ontraction cracks are proposed as the most likely mechanism by

hich the initial Lyot fracture networks formed. 

Quantitative analysis of the morphometric data, and careful

ualitative analysis of the morphology and context of the Lyot

lastic polygons, seems to rule out simple gravitational slump-

ng of pre-existing boulders into fractures as the mechanism by

hich initially negative relief polygon boundaries became erosion-

esistant, positive relief boundaries. 

We describe an alternative mechanism in which thermal con-

raction cracks are infilled with wind-blown sediment, and poten-

ially ice, which forms resistant-fill material. The polygons are then

uried by later mantle deposits which are eroded/ablated away

eading to exhumation, fracturing of the resistant fill and the for-

ation of angular clastic borders. We note that this mechanism

xplains many of the characteristics of the Lyot clastic polygons,

ut that the induration/cementation mechanism remains to be de-

cribed. 

The distribution of the clastic polygonal networks indicates a

elationship between the clastic polygonal networks and the com-

osition of the outer ejecta material. However, several lines of mor-

hological and contextual evidence argue against a primary, struc-

ural or impact-melt derived mechanism for the formation of the

yot clastic patterned ground. 

This suggests that the formation of clastic polygons is related to

he material exhumed from a specific depth during the Lyot crater

mpact event. Such material could have been ice-rich and suscepti-

le to certain processes leading to the formation of the exception-

lly large clastic polygons observed. Thus, further work will involve

he numerical modelling of this impact event to identify the depth

rom which such material might be exhumed, and whether this is

elated to the depth of the Martian cryosphere in this area. 

We conclude that, although large amounts of data have been

athered that describe the setting, morphometry and morphology

f these enigmatic clastic polygons, and many formation hypothe-

es described and tested, no single hypothesis can satisfactorily ex-

lain their origin. Our favoured hypothesis is that the polygons

ormed by inversion of polygonal thermal contraction crack net-

orks by infill, cementation/induration and differential erosion. 
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