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Abstract

We propose LU-Net (for LiDAR U-Net), for the semantic
segmentation of a 3D LiDAR point cloud. Instead of ap-
plying some global 3D segmentation method such as Point-
Net, we propose an end-to-end architecture for LiDAR point
cloud semantic segmentation that efficiently solves the prob-
lem as an image processing problem. First, a high-level 3D
feature extraction module is used to compute 3D local fea-
tures for each point given its neighbors. Then, these fea-
tures are projected into a 2D multichannel range-image by
considering the topology of the sensor. This range-image
later serves as the input to a U-Net segmentation network,
which is a simple architecture yet enough for our purpose.
In this way, we can exploit both the 3D nature of the data
and the specificity of the LiDAR sensor. This approach ef-
ficiently bridges between 3D point cloud processing and
image processing as it outperforms the state-of-the-art by
a large margin on the KITTI dataset, as our experiments
show. Moreover, this approach operates at 24fps on a single
GPU. This is above the acquisition rate of common LiDAR
sensors which makes it suitable for real-time applications.

1. Introduction
The recent interest for autonomous systems has moti-

vated many computer vision works over the past years. The
importance of accurate perception models is a crucial step
towards systems automation, especially for mobile robots
and autonomous driving. Modern systems are equipped
with both optical cameras and 3D sensors, mostly LiDAR
sensors. These sensors are now essential components of
perception systems as they enable direct space measure-
ments, providing accurate 3D representation of the scene.
However, for most automation-related tasks, raw LiDAR
point clouds require further processing in order to be used.
In particular, point clouds with accurate semantic segmen-
tation provide a higher level of representation of the scene
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Figure 1. The two top first images show the segmentation of Li-
DAR data obtained with our method, and the groundtruth segmen-
tation, seen in the sensor topology. The two bottom images show
the same segmentations from a different point of view.

that can be used in various applications such as obstacle
avoiding, road inventory, or object manipulation.

This paper focuses on semantic segmentation of 3D Li-
DAR point clouds. Given a point cloud acquired with a
LiDAR sensor, we aim at estimating a label for each point
that belongs to objects of interests in urban environments
(such as cars, pedestrians and cyclists). The traditional
pipelines used to tackle this problem consider ground re-
moval, clustering of remaining structures, and classifica-
tion based on handcrafted features extracted on each clus-
ters [8, 6]. The segmentation can be improved with varia-
tional models [12]. These methods are often hard to tune as
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handcrafted features usually require tuning many parame-
ters, which is likely to be data dependent and therefore hard
to use in a general scenario. Finally, although the use of reg-
ularization can lead to visual and qualitative improvements,
it often leads to a large increase of the computational time.

Recently, deep-learning approaches have been proposed
to overcome the difficulty of tuning handcrafted features.
This has become possible with the arrival of large 3D an-
notated datasets such as the KITTI 3D object detection
dataset [7]. Many methods have been proposed to segment
the point cloud by directly operating in 3D [17] or on a
voxel-based representation of the point cloud [23]. How-
ever, this type of methods either needs very high computa-
tional power, or are not able to process the amount of points
aquired in a single turn of a sensor. Even more recently,
faster approaches have been proposed [20, 19]. They rely
on a 2D representation of the point cloud, called range-
image [1], which can be used as the input of a convolu-
tional neural network. Thus, the processing time as well as
the required computational power can be kept low, as these
range-images consist in low resolution, multichannel im-
ages. Unfortunately, the choice of input channels, as well
as the difficulty of processing geo-spatial information using
only 2D convolutions have limited the results of such ap-
proaches, which have not yet achieved good enough scores
for practical use, especially on small objects classes such as
cyclists or pedestrians.

In this paper, we propose LU-Net (for LiDAR U-Net),
an end-to-end model for the semantic segmentation of 3D
LiDAR point clouds. LU-Net benefits from a high-level
3D feature extraction module that can embed 3D local fea-
tures in 2D range-images, that can later be efficiently used
in a U-Net segmentation network. We demonstrate that, be-
side being simple, the results of LU-Net largely outperform
state-of-the-art range-image methods, while being visually
convincing as shown in Figure 1.

The rest of the paper is organized as follows: We first
discuss previous works on point cloud semantic segmen-
tation, including methods designed for processing LiDAR
data. We then detail our approach, and evaluate it on the
KITTI dataset against state-of-the-art and discuss the re-
sults. Finally a conclusion is drawn.

2. Related Work
We discuss previous works on image semantic segmenta-

tion as well as 3D point cloud semantic segmentation below.

2.1. Semantic Segmentation for Images

Semantic segmentation of images has been the subject of
many works in the past years. Recently, deep learning meth-
ods have largely outperformed previous ones. The method
presented in [16] was the first to propose an accurate end-
to-end network for semantic segmentation. This method is

based on an encoder in which each scale is used to com-
pute the final segmentation. Only a few month later, the
U-net architecture [18] was proposed for the semantic seg-
mentation of medical images. This method is an encoder-
decoder able to provide highly precise segmentation. These
two methods have largely influenced recent works such
as DeeplabV3+ [5] that uses dilated convolutional layers
and spatial pyramid pooling modules in an encoder-decoder
structure to improve the quality of the prediction. Other ap-
proaches explore multi-scale architectures to produce and
fuse segmentations performed at different scales [14, 22].
Most of these methods are able to produce very accurate re-
sults, on various types of images (medical, outdoor, indoor).
The survey [3] of CNNs methods for semantic segmentation
provides a deep analysis of some recent techniques. This
work demonstrates that a combination of various compo-
nents would most likely improve segmentation results on
wider classes of objects.

2.2. Semantic Segmentation of Point Clouds

3D-based methods. As mentioned above, the first ap-
proaches for point cloud semantic segmentation were done
using heavy pipelines, composed of many successive steps
such as: ground removal, point cloud clustering, feature ex-
traction as presented in [8, 6]. However, these methods of-
ten require many parameters and they are therefore hard to
tune. In [11], a deep-learning approach is used to extract
features from the point cloud. Then, the segmentation is
done using a variational regularization. Another approach
presented in [17] proposes to directly input the raw 3D Li-
DAR point cloud to a network composed of a succession
of fully-connected layers to classify or segment the point
cloud. However, due to the heavy structure of this architec-
ture, it is only suitable for small point clouds. Moreover,
processing 3D data often increases the computational time
due to the dimension of the data (number of points, num-
ber of voxels), and the absence of spatial correlation. To
overcome these limitations, the methods presented in [13]
and [23] propose to represent the point cloud as a voxel-
grid which can be used as the input of a 3D CNN. These
methods achieve satisfying results for 3D detection. How-
ever, semantic segmentation would require a voxel-grid of
very high resolution, which would increase the computa-
tional cost as well as the memory usage.

Range-image based methods. Recently, SqueezeSeg, a
novel approach for the semantic segmentation of a LiDAR
point cloud represented as a spherical range-image [1],
was proposed. This representation allows to perform the
segmentation by using simple 2D convolutions, which low-
ers the computational cost while keeping good accuracy.
The architecture is derived from the SqueezeNet image
segmentation method [10]. The intermediate layers are ”fire



Figure 2. Proposed pipeline for 3D LiDAR point cloud semantic segmentation. First, the topology of the sensor is used to estimate the
8-connected neighborhood of each point. Then, each point and its neighbors are fed to the high-level 3D feature extraction module, which
outputs a multichannel 2D range-image. The range-image is finally used as the input of a U-Net segmentation network.

layers”, i.e. layers made of one squeeze module and one
expansion module. Later on, the same authors improved
this method in [21] by adding a context aggregation module
and by considering focal loss and batch normalization to
improve the quality of the segmentation. A similar range-
image approach was proposed in [19], where a Atrous
Spatial Pyramid Pooling [4] and squeeze reweighting
layer [9] are added. Finally, in [2], the authors offer to input
a range-image directly to the U-net architecture described
in [18]. This method achieves results that are comparable
to the state of the art of range-image methods with a
much simpler and more intuitive architecture. All these
range-image methods succeed in real-time computation.
However, their results often lack of accuracy which limits
their usage in real scenarios.

In the next section, we propose LU-Net: an end-to-
end model for the accurate semantic segmentation of point
clouds represented as range-images. We will show that it
outperforms all other range-image methods by a large mar-
gin on the KITTI dataset, while offering a robust methodol-
ogy for bridging between 3D LiDAR point cloud processing
and 2D image processing.

3. Methodology
In this section, we present our end-to-end model for the

semantic segmentation of LiDAR point clouds inspired by
the U-Net architecture [18]. An overview of the proposed
method is available in Figure 2.

3.1. Network input

As mentioned above, processing raw LiDAR point
clouds is computationally expensive. Indeed, these 3D
point clouds are stored as unorganized lists of (x, y, z)
Cartesian coordinates. Therefore processing such data of-
ten involves preprocessing steps to bring spatial structure
to the data. To that end, alternative representations, such
as voxel grids or 2D pinhole projections in 2D images, are
sometimes used, as discussed in the Related Work section.
However, high resolution is often needed in order to rep-
resent enough details, which involves heavy memory costs.

Modern LiDAR sensors often acquire 3D points, following
a strict sensor topology, from which we can build a dense
2D image [1], the so-called range-image. The range-image
offers a lightweight, structured and dense representation of
the point cloud.

3.2. Range-images

Whenever the raw LiDAR data (with beam number) is
not available, the point cloud has to be processed to ex-
tract the corresponding range-image. As 3D LiDAR sensors
acquire 3D points with a sampling pattern of a few num-
ber of scan lines and quasi uniform angular steps between
samples, the acquisition follows a grid pattern that can be
used to create a 2D image. Indeed each point is defined by
two angles and a depth, (θ, φ, d) respectively, with steps of
(∆θ,∆φ) between two consecutive positions. Each point pi
of the LiDAR point cloud P can be mapped to the coordi-
nates (x, y) with x = b θ∆θ c, y = b φ∆φc of a 2D range-image
of resolution H×W = Card(P ), where each channel rep-
resents a modality of the measured point. A range-image is
presented on figure 3.

In perfect conditions, the resulting image is completely
dense, without any missing data. However, due to the nature

(a)

(b)
Figure 3. Example of a point cloud from the KITTI database [7] (a)
turned into a range-image (b). Note that the dark area in (b) corre-
sponds to pulses with no returns. Colors correspond to groundtruth
annotation, for better understanding.



of the acquisition, some measurements are considered in-
valid by the sensor and they lead to empty pixels (no-data).
This happens when the laser beam is highly deviated (e.g.
when going through a transparent material) or when it does
not create any echo (e.g. when the beam points in the sky
direction). We propose to identify such pixels using a bi-
nary maskm equal to 0 for empty pixels and to 1 otherwise.
The analysis of multi-echo LiDAR scans is subject to future
work.

3.3. High-level 3D feature extraction module

In [19], [20] and [21], the authors use 5-channels range-
images as the input of their network. These 5 channels
are composed of 3D coordinates (x, y, z), reflectance (r)
and spherical depth (d). However, the analysis presented
in [2] showed that feeding a 2-channel range-image (re-
flectance and depth) to a U-Net architecture achieves com-
parable results to the state of the art. In all these previous
works, the choice of the number of channels of the range-
image appears to be empirical. For each application, a com-
plete study or a large set of experiments must be conducted
to choose the best within all the possible combinations of
channels. This is tedious and time consuming. To bypass
such an expensive study, we propose in this paper a feature
extraction module that is able to directly learn meaningful
features adapted to the target application (here, semantic
segmentation).

Moreover, processing geo-spatial information using 2D
convolutional layers can cause issues in terms of data nor-
malization as LiDAR sensors sampling typically decreases
when acquiring farther points.

Inspired by the Local Point Embedder presented in [11],
we propose a high-level 3D feature extraction module that
is able to learn N meaningful high-level 3D features for
each point and to output a range-image with N channels.
Contrary to [11], our module exploits the range-image to
directly estimate the neighbors of each points instead of us-
ing a pre-processing step. Moreover, our module outputs a
range-image, instead of a point cloud, which can be used as
input of a CNN.

Figure 4. Illustration of the notation of the input of the feature
extraction module. pi is the point,N (pi) is the set of neighbors of
pi.

Figure 5. Architecture of the 3D feature extraction module. The
output is an 1×N feature vector for each LiDAR point.

Given a point pi = (x, y, z), and ri its associated re-
flectance, we define N (pi) the set of neighboring points of
pi in the range-image (e.g. the points that correspond to
the 8-connected neighborhood of pi in the range-image).
This set is illustrated Figure 4. We also define N̄ (pi) =
{q − pi | q ∈ N (pi)} the set of neighbors in coordinates
relative to pi.

Similarly to [11], the set of neighbors N̄ (pi) is first pro-
cessed by a multi-layer perceptron (MLP), which consists of
a succession of linear, ReLU and batch normalization lay-
ers. The resulting set is then maxpooled to a point feature
set, which is concatenated with pi and ri. The resulting vec-
tor is processed through another MLP that outputs a vector
of N 3D features for each pi. This module is illustrated in
Figure 5.

As linear layers can be done using 1 × 1 convolutional
layers, the whole P point cloud can be processed at once.
In this case, the output of the 3D feature extraction module
is a Card(P ) × N matrix, which can then be reshaped to a
H ×W ×N range-image.

3.4. Semantic segmentation

Architecture. The U-net architecture [18] is an encoder-
decoder. As illustrated in Figure 6, the first half consists
in the repeated application of two 3 × 3 convolutions fol-
lowed by a rectified linear unit (ReLU) and a 2 × 2 max-
pooling layer that downsamples the input by a factor 2.
Each time a downsampling is done, the number of features
is doubled. The second half of the network consists of up-
sampling blocks where the input is upsampled using 2 × 2
up-convolutions. Then, concatenation is done between the
upsampled feature map and the corresponding feature map
of the first half. This allows the network to capture global
details while keeping fine details. After that, two 3 × 3
convolutions are applied followed by a ReLU. This block
is repeated until the output of the network matches the di-
mension of the input. Finally, the last layer consists in a
1x1 convolution that outputs as many features as the wanted
number of possible labels i.e. K 1-hot encoded.



Figure 6. LU-Net architecture with the output of the 3D feature ex-
traction module as the input (top) and the output segmented range-
image (bottom).

Loss function. The loss function of our model is defined
as a variation of the focal loss presented in [15]. Indeed,
our model is trained on a dataset in which the number of
example for each class is largely unbalanced. Using the
focal loss approach helps improving the average score by
few percent, as discussed later in Section 4. First, we define
the pixel-wise softmax for each label k:

pk(x) =
exp(ak(x))

K∑
k′=0

exp(ak′(x))

where ak(x) is the activation for feature k at the pixel po-
sition x. After that, we define l(x) the groundtruth label of
pixel x. We then compute the weighted focal loss as fol-
lows:

E =
∑
x∈Ω

−1{m(x)>0}w(x)(1− pl(x)(x))γ log(pl(x)(x))

where Ω is the domain of definition of u, m(x) > 0 are the
valid pixels, γ = 2 is the focusing parameter and w(x) is
a weighting function introduced to give more importance to
pixels that are close to a separation between two labels, as
defined in [18].

Training We train the network with the Adam stochastic
gradient optimizer and a learning rate set to 0.001. We also

use batch normalization with a momentum of 0.99 to ensure
good convergence of the model. Finally, the batch size is set
to 4 and the training is stopped after 10 epochs.

4. Experiments

We trained and evaluated LU-Net using the same exper-
imental setup than the one presented in SqueezeSeg [20]
as they provide range-images with segmentation labels ex-
ported from the 3D object detection challenge of the KITTI
dataset [7]. They also provide the training / validation split
that they used for their experiments, which contains 8057
samples for training and 2791 for validation and which can
be used for a fair comparison between each results of each
methods.

We have manually tuned the parameter N . On all our
experiments, best semantic segmentation results were ob-
tained by setting N = 3. This small amount of channels is
enough to highlight the structure of the objects that are lat-
ter used in the U-Net in charge of the segmenation task. All
results reported in this section are with this value. Neverthe-
less, if using the high-level 3D feature extraction module for
other applications, one should consider adapting this value.

4.1. Comparison with the state of the art

We compare the proposed method to 4 range-image
based methods of the state of the art: PointSeg [19],
SqueezeSeg [20], SqueezeSegV2 [21], and RIU-Net [2].
Similarly to [20] and [21], the comparison is done using
the Intersection-over-Union score:

IoUl =
|ρl

⋂
Gl|

|ρl
⋃
Gl|

where ρl and Gl denote the predicted and groundtruth sets
of points that belongs to label l respectively.

The performance comparisons between LU-Net and
state-of-the-art methods are displayed Table 1. The first

Table 1. Comparison (IoUs, %) of LU-Net with the state of the art
for the semantic segmentation of the KITTI dataset.
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SqueezeSeg [20] 64.6 21.8 25.1 37.2
PointSeg [19] 67.4 19.2 32.7 39.8
RIU-Net [2] 62.5 22.5 36.8 40.6

SqueezeSegv2 [21] 73.2 27.8 33.6 44.9

LU-Net 72.7 46.9 46.5 55.4



observation is that the proposed model outperforms exist-
ing methods in terms of average IoU by over 10%. In par-
ticular, the proposed model achieves better results on ev-
ery classes compared to PointSeg, SqueezeSeg and RIU-
Net. Our method also largely outperforms SqueezeSegV2
for both pedestrians and cyclists.

Our method is very similar to RIU-Net as both meth-
ods use a U-Net architecture with a range-image as input.
While RIU-Net uses 2 channels – the reflectance and depth
– LU-Net automatically extracts a N-dimensional high-level
features per point thanks to the 3D feature extraction mod-
ule. Table 1 demonstrates that using an additional network
to automatically learn high-level features from the 3D point
cloud largely improves the results, especially on classes that
are less represented in the dataset.

Figure 7 present visual results for SqueezeSegV2 and
LU-Net. We here observe that visually, the results for cars
are comparable. Nevertheless, by looking closer to the re-
sults, we observe that SqueezeSegV2 is more subject to
false-positive (Figure 7, orange rectangle). Moreover, our
method better succeeds the segmentation of the cars in the
back of the scene compared to SqueezeSegV2 (Figure 7,
purple rectangle).

4.2. Ablation study

Table 2 presents intermediate scores in order to highlight
the contribution of some model components.

First, we analyse the influence of relative coordinates
N̄ as input to the 3D feature extraction module (Figure 5).
We trained and tested the model using absolute coordinates
N . We name this version LU-Net w/o relative. As ta-
ble 2 shows, relative candidates provides better results than
neighbors in absolute coordinates. We believe that by read-
ing relative coordinates as input, the network learns high-
level features characterizing the local 3D geometry of the
point cloud, independently of its absolute position in the
3D environment. These positions are integrated once this
geometry is learned, i.e. before the second multi-layer per-
ceptron of the 3D feature extraction module.

For fair comparison, we also experimented using abso-
lute coordinates N and adding a supplementary convolu-
tional layer as the first layer. Indeed, we could expect this
additional layer to characterize the transformation from ab-
solute and local coordinates. Nevertheless, this architec-
ture brought numerical instability while not managing to
learn such transform, as it ended up with an average IoU
of 30.6%.

Next, we analyse the influence of the focal-loss. As seen
in table 2, the use of focal-loss largely improves the scores
on both cyclists and pedestrians. This is related to the im-
balance between each class in the dataset, where there are
10 times more cars example compared to cyclists or pedes-
trians.

Ground truth

SqueezeSegV2 [21]

LU-Net

Zooms in the following order
Groundtruth, SqueezeSegV2, LU-Net

Figure 7. Visual comparison of the proposed model against
SqueezeSegV2 [21] and the ground truth. Results are shown on
the range-image where depth values are encoded in grayscale map.
Both SqueezeSegV2 and LU-Net globally achieve very satisfy-
ing results. Nervertheless, LU-Net is less subject to false-positive
compared to SqueezeSegV2, as can be seen in the orange areas
and corresponding zooms. It also better segments farther objects
such as the cars on the back of the scene in the purple rectangle,
which reduces the amount of false-negative, which are crucial for
autonomous driving applications.

Groundtruth

LU-Net w/o relative

LU-Net w/o FL

LU-Net
Figure 8. Visual results of the ablation study. The use of neighbors
in absolute coordinates results in incomplete segmentations of the
objects compared to neighbors in relative coordinates. Moreover,
the use of the focal-loss (FL) helps the network to better distin-
guish classes that have similar aspects, here, cyclists and pedestri-
ans.



(a)

(b)

(c)

(d)

(e)
Figure 9. Results of the semantic segmentation of the proposed method (bottom) and groundtruth (top). Results are shown on the range-
image where depth values are encoded in grayscale map. Labels are associated to colors as follows: blue for the cars, red for the cyclists
and lime for the pedestrians.

4.3. Additional results

Apart from being convincing in terms of IoUs, the re-
sults produced by our method are also very convincing vi-
sually, as it is demonstrated Figure 1 and 9. Our segmenta-
tions are very similar to those of the groundtruth. In Figure
9d), one of the pedestrian was not detected. When looking
closely at the depth values in the range-image, this pedes-

trian is hardly visible. It is also the case in the reflectance
image. This is also related to the resolution of the sensor as
only few points fall on the pedestrian, and could probably
be solved by adding an external modality such as an optical
image.

In Figure 9e), a car in the foreground is missing from the
groundtruth, this causes the IoU to drop from 89.7% when



Table 2. Ablation study for the semantic segmentation of the
KITTI dataset. Results in terms of (IoUs, %) for LU-Net w/o rela-
tive: which uses absolute coordinatesN instead of relative ones as
input to the feature extraction module; LU-Net w/o FL : proposed
model without focal-loss; LU-Net: proposed model with relative
coordinates and focal-loss
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LU-Net w/o relative 62.8 39.6 37.5 46.6
LU-Net w/o FL 73.8 42.7 32.9 49.8
LU-Net 72.7 46.9 46.5 55.4

ignoring this region of the image, down to 36.4%. Thus,
removing examples with wrong or missing annotations in
the dataset could lead to better results on LU-Net as well as
on other methods. However, due to the amount of examples
in the dataset, having a perfect annotation is practically
very difficult.

Finally, LU-Net is able to operate at 24 frames per sec-
ond on a single GPU. This is a lower frequency compared
to other systems, yet still above the frame rate of the LiDAR
sensor (10fps). Moreover, our system uses only few more
parameters than RIU-Net for a significant improvement in
terms of IoU scores.

5. Conclusion

In this paper, we have presented LU-Net, an end-to-end
model model for the semantic segmentation of 3D LiDAR
point clouds. Our method efficiently creates a multi-channel
range-image using a 3D feature extraction module. This
range-image later serves as the input of a U-net architecture.
We show that this methodology efficiently bridges between
3D point cloud processing and image processing. The re-
sulting method is simple, but yet provides very high quality
results far beyond existing state-of-the-art methods.

The current method relies on the focal loss function. We
plan to study possible spatial regularization schemes within
this loss function. Finally fusion of LiDAR and optical data
would probably enable reaching a higher level of accuracy.
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