
HAL Id: hal-02269856
https://hal.science/hal-02269856v1

Submitted on 23 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evaluation of a Real-Time Monitoring Framework
Thomas Robert, Matthieu Roy, Jean-Charles Fabre

To cite this version:
Thomas Robert, Matthieu Roy, Jean-Charles Fabre. Evaluation of a Real-Time Monitoring Frame-
work. Embedded Real Time Software and Systems (ERTS2008), Jan 2008, Toulouse, France. �hal-
02269856�

https://hal.science/hal-02269856v1
https://hal.archives-ouvertes.fr

Evaluation of a Real-Time Monitoring Framework
Thomas Robert, Matthieu Roy, Jean-Charles Fabre

LAAS-CNRS, 7 av. Colonel Roche 31000 Toulouse Cedex 4, France

Abstract:
Many algorithms exist to generate real-time run-time
monitors. This paper focuses on the assessment of
an implementation of a real-time monitor designed to
handle timed automata specification as input. The
monitoring algorithm has been analysed to propose
a simple and yet realistic assessment method. The
feature measured is the CPU-time overhead
introduced by the monitor, per event. Our
methodology proceeds by first providing an
analytical formula to point out the main sources of
overhead. According to this formula, we derive the
main parameters of a specification that influence the
induced overhead. Then, “real-life” specifications are
analyzed to get a realistic range for these
quantitative parameters. They are used to generate
equivalent applications to measure the overhead.
Finally, the hypothesis introduced by the analytical
formula on the actual overhead is discussed, with
respect to the empirical results.
Keywords: Run-time Monitor, Evaluation, Parameter
estimation, Real-time Systems.

1. Introduction

In critical real-time systems, there is a strong need
for automated processes that improve the reliability
of software in operation. Many static methods, such
as model checking, can be used to verify the system
correctness and feasibility on models. Nevertheless,
both for complexity and coverage reasons, these
static validations can be complemented with run-time
verification. Run-time verification consists in inserting
components in the system in order to check at run-
time that the system does not fail, i.e. complies with
its specification [1]. Run-time monitors and failure
detectors are examples of such components.
A run-time monitor focuses on assessing the
correctness of the dynamics of the system. By
definition, a system is said to have failed when its
observed behaviour does not match its expected
behaviour. Given a specification describing correct
behaviours, the detector is in charge of signalling
any failure accurately and timely. Note that in the
real-time context, detection latency is as much
important as detection accuracy.1

This paper is a follow-up of our previous work that
focussed on the implementation of a real-time run-

 1 In addition, detection latency may have also a strong

impact on the system dependability.

time wrapping framework for the real-time operating
system Xenomai 2.3. The paper is organised as
follows: first, the monitoring framework is recalled in
order to identify the strategic points to assess it
empirically. Then, the experimentation strategy is
detailed to provide all the elements needed to
reproduce and adapt it to another framework. Finally
the results are discussed with respect to the
alternatives available to implement the same kind of
services.

2. The monitoring model.

This paper focuses on an empirical assessment of
the run-time monitoring framework RTRV2. The aim
of this paper is to get some evidences on the kind of
overhead introduced by our monitoring framework.
The sources of overhead have to be identified before
carrying out the experimentation. Beside the
overhead, the detection latency with respect to
failure occurrence time is a major feature, for such
monitors. Those two features define its efficiency.
For such a system, the impact on interruption
handling latency is another important feature to be
measured. Nevertheless, we focus on developing a
simple experimental process to estimate the
overhead that can be expected, depending on the
complexity of the specification to monitor. The
proposed monitor is in charge to check at run-time
that the behaviour of the system complies with a
specification provided off-line. Although such
systems are more frequently used lately, their
performances for an actual real-time application
would be questionable if the delivered service is not
predictable with respect to two parameters: its
maximum detection latency, and the overhead
introduced by the tracking of the system behaviour.

2.1 The system specification: a timed model.

We assume that a timed automaton provides the
description of expected behaviours at run-time. Such
models are well spread in the community of the
formal languages used to describe Real-Time
systems. More precisely, it is a model for which
many formal validation methods exist. Thus, we can
assume that the descriptions provided in this format
do really represent what the developers expect from
their system. The monitor is generated from this
model and ensures basics but essential properties
along the detection process.

2 Cf. www.laas.fr/~trobert/RTRV/

 Page 1/8

Timed automata are a particular case of transition
systems in which transitions are labelled with
enabling conditions and clock resets. Roughly
speaking, each transition is active if and only if the
associated condition is true. A condition on a
transition is defined by a set of equations on
variables representing clocks. Once a transition is
enabled (its condition is satisfied), it can be fired.
Moreover, transitions are labelled with reset actions,
which define the clocks to be reset when the
transition is fired.
Because of the tight relations between clocks and
transition, Timed Automata are rather complicated to
analyze directly at run-time. As an example, the
system may perform actions whereas no final state
can be reached any longer. This scenario happen
whenever: 1) there is a path along edges leading to
some final state, but for any of those path there is at
least one disabled edge. Whereas the state is
connected to final state, it would be impossible to
reach any of them.
Definition 1: Timed Automata
Timed automata are defined by:
• A set of discrete states L, called locations. They

represent functional states.
• A set of clock variables represented by a clock

vector: Vect. These variables represent the
different clocks of the system and all increase at
the same rate.

• A set of events Σ. They correspond to
observable activities of the system.

• A set of edges E between locations. Each edge
is labelled by three elements:

o The event emitted by the system when
crossing it;

o The condition on clock variables to
enable this transition;

o The set of clocks that are to be reset
when this edge is crossed.

• A location that defines the initial location.
• A set of locations that defines the final locations.
In order to check at run-time that the system
complies with its specification, one needs to detect
as soon as possible any divergence between the
current behaviour and the expected ones defined by
the timed automaton. The model underlying the run-
time verification will be a transition system which is
synchronized with the system activity. Nevertheless,
the model that will be synchronized on the system
execution is not the timed automaton itself.
The challenge with such kind of specifications is that
timed automata “allow” more behaviours than what is
actually expected. The conjunction of the set of final
states and the automaton itself entails that some
behaviours will be rejected later even if they are

locally allowed. In order to clarify this point, let us
consider the example of a simple resource manager
specification.

Figure 1: Specification of a resource manager

In this example, the final state is A. The “accept” and
“reject” events are both enabled from state B, firing
the “accept” condition may in some situations put the
automata in a state where the final state can no
longer be reached. Assume that the transition on
“accept” is crossed 16 time units since the “request”
event occurred, then the automata enters location D
with x=16 and y=0, and, letting time elapse, the
system won’t be able to satisfy both conditions
(x<20) and (y>5) at the same time.
In order to cope with this problem, we transform the
specification in a normal form in which this kind of
scenario does not occur, i.e. failures can be detected
as soon as they occur. The problem lays in the fact
that even if in a given state a transition is enabled, it
does not mean that this transition is on a path to a
final state. This restriction is a consequence of the
requirements for reaching a final in any state of the
automaton.
From the example, as soon as an “accept” event
occurs when the clock x belongs to [15,+∞[, the
system cannot match its specification. As we
highlighted in this section, the main issue with a
timed automata model is that its transition system
cannot be used as is for run-time verification. Even if
the state and the value of the clocks are known, it is
extremely difficult to determine at run-time whether
an event can be accepted, given the state of the
system.
2.2 Time abstraction to save computations

To be able to verify at run-time a specification given
by a timed automaton, we transform it in a more
suitable model known as a time abstraction. Time
abstractions of timed automata have been
extensively used in model checking to test
reachability properties [3]. We use it to produce, from
a timed automaton, a model that can easily be used
at run-time. In this section we briefly recall timed

 Page 2/8

abstractions definitions and their use in the context
of run-time verification.
A time abstraction of a timed automaton A is a
labelled transition system where the timed
automaton conditions on transitions are reported on
states. In this model, any transition leaving from one
node is always active, and the reachability of a final
location can be determined off-line. The time
abstraction ensures that the set of generated traces
(i.e. the specification of the system) is the same as
for the initial timed automata.
In a time abstraction, there are two kinds of
transitions: time transitions and event transitions.
As an example, for the specification of the resource
manager (Figure 1), the corresponding time
abstraction splits the state B in three sub-nodes: B
with x in [0,15[, B with x in [15,20[, and B with x
greater than 20. Semantically, it corresponds to the
example given above that shows that being in
location B with x≥15 does not have the same
meaning than being in B with x<15. The
corresponding nodes are connected by time
transitions leading from the former to the later. In
general, for each location, the time abstraction will
partition the space of clock values in a finite set of
zones.

Figure 2: Partition of the clock values for D

This partition is structured in parallel “lines”
(R1→R2→R3 is an example of such a line). This
property is a direct consequence of the identical rate
of time elapse on each clock. As we shall see, it
plays a major role in the monitoring engine to catch
deadline failures.
The graph obtained as a result of the time
abstraction is then analysed to delete node that are
forbidden –in the example (D,R3) is forbidden–, or
not reachable –like (D,R0). Finally any transition not
present in this graph is by definition forbidden.
Finally, this model ensures that a local decision can
be taken for each event as long as the “current”
node is known. It will be used at run-time to perform
the run-time verification of the compliance of the
system to its specification.

3. The monitoring engine.

As presented above, time abstractions can be
computed off-line, and then be used at run-time by
synchronizing it with the system activity.
Nevertheless, the monitoring engine is not a simple,
passive trace reader. Many nodes of the time
abstraction are not stable: the system may stay in
these states only for a bounded duration. For
instance, if we consider the discrete location3 D, the
maximum time for which the system can remain
inactive is defined as TtF (time to failure) as shown
on Figure 3. Each time an event occurs and is
accepted by the monitor, the monitor computes the
maximum amount of time during which the system
may remain silent. For instance, on this example,
assume that “accept” occurred exactly 12 time units
after the “request” event. Thus the system has to
emit an event within 8 time units to avoid a timing
failure, as represented in Figure 3.

Figure 3: Predicting deadline miss

2.1 The complete monitoring process.

The computations at run-time can be grouped in six
main steps, corresponding to model manipulation,
and system calls. The same processing is performed
for each event:
1. Shield the monitor execution from pre-emption

(using a dedicated system call).
2. Compute the impact of time elapse on the

current state of the system.
3. Check whether the event being intercepted is

allowed or not in the current system state.
4. If the event is allowed, then fire the

corresponding transition and update the current
state value. Update the clock vector using the
resets attached to the fired event transition.

5. Compute the new clock vector corresponding to
the system state right after the event

3 A location is a discrete state of a timed automata.
A,B,C,D are the locations in the example automaton.

 Page 3/8

occurrence. In each node, the maximal allowed
values for each clock is known

6. If a deadline exist in the current node, set a
timer to wake at the deadline miss time (using a
system call).

7. Un-shield the execution of the monitor from pre-
emption (using a dedicated system call).

As presented above, unless there is a deadline miss,
the monitoring system is only activated when an
event occurs. Moreover, most of the introduced
overhead comes from its activity along a valid
behaviour.

Figure 4: Activation times of the monitor.

3.2 Theoretical profile for cpu-time overhead.

Before the actual measurements of the different
latencies and/or overheads introduced by our
system, we analytically identified the relationships
between the complexity of a specification and the
monitor overhead. Given the knowledge of the
algorithm used to perform the run-time verification,
we provide in this section the relationship between
the overhead of the monitoring algorithm and the
complexity of a specification.
With respect to algorithms used in steps 2,4 and 5,
we introduce two parameters that can be computed
from the time abstraction of any timed automaton,
namely its branching degree Br and the length of the
longest path with time transitions only TPmax.
In step 2, the graph of the time abstraction is
browsed to find the up-to-date value of the current
node. The path followed for this task is made of time
transitions only. Recall that from any node, the
states, that can be reached crossing time transitions
only, are organized along a linear topology (“lines”).

Consider the following example: the monitor
intercepts “used”, and the last estimated state was

(D,γ), where γ=(x0,0) represents the last estimation of
the clock vector. If d units of time elapsed since the
last event occurrence, the monitor will jump from
clock region R1 to R2, and possibly to R3, following
the first diagonal (∆). Thus the size of the longest
path of time transitions bounds the number of nodes
considered along step 2.
In step 3, the list of locally available events needs to
be browsed. The cost of this step increases linearly
with the branching degree of the node, i.e. the
number of event transitions leaving from this node.
The overhead introduced in the fourth and fifth step
will only depend on the number of clocks used in the
automaton. This property is true for the fifth step as
the moves along the nodes connected by time
transitions can be computed off-line: the deadline is
defined in the last node of the “line” of time
transitions leaving from the current node. For
instance, the transition between the time regions R2
and R3 allows obtaining the knowledge about the
most urgent deadline for R1.
Steps 1,6 and 7 involve for each event at most three
“system calls”. The maximal duration of these three
system calls will be denoted ∆SysCall
If we sum up the conclusion of this subsection, we
can establish a profile that gives an idea of the
overhead that can be expected w.r.t. the complexity
of the specification. Notice that this profile is not
there to predict or give quantitative values of the
introduced overhead given the parameters linked to
a specification. The aim of the profile is to guide
experimentation in order to find evidence on the
usability of the monitor. Thus the time overhead Oh
introduced by the monitor at run-time is bounded by
an analytical formula that involves TPmax, Br, n (the
number of clocks in the timed automaton) and
∆SysCall and four unknown constants (denoted M0,
M1, M2 and M3) related to the hardware and the real
time operating system:

Oh ≤ TPmax.M0+Br.M1+n.M2+n+M3+∆SysCall [1]

The remainder of this paper will try to identify which
parameters are the most important. The main
problem with this profile is the lack of direct link with
the automaton provided as input. This is particularly
true for the parameter TPmax .

2.3 Estimation of (B,TPmax) from visible parameters

For a given timed automaton A, the following
parameters are used to estimate at first glance, i.e.
without computing the time abstraction, the cost of
monitoring an application depending on the timed
automaton:

 Page 4/8

• B, the maximum number of edges leaving from a
location.

• C, linked to the timing constraints as follows:
given that timing constraints are defined using
fraction of naturals, we can normalize the time
unit used in the automaton to use only naturals.
Let C1,...,Ck be the constant used in the enabling
condition attached to the edges of the
automaton with such normalized constraints.
Then let C be the least common multiple of
C1,...,Ck.

• n, the number of clocks involved in the
automaton.

As the number of enabled edges is restricted by
clock constraints, the number of edges leaving from
one location, B, is at least greater than the number
of event transitions enabled, in any location, at any
time: (Br ≤ B). The link between C and TPmax is much
more complicated. First notice that for scattered
constant C1,...,Ck, small changes on one of the Ci
may entail a combinatorial explosion of C. The
problem is that this explosion is often directly linked
to a state explosion of the time abstraction as well.
In the region graph, the clock space related to a
single location is divided in the worst case according
to the hyper-planes xi=k and xi - xj =k for k lower than
C. In dimension 2, it generates the grid presented
below. In these conditions TPmax is bounded by the
number of elementary time regions that can be
crossed by lines along the vector (1,1,1….1). With
two dimensions, it can easily be visualized: the
largest number of regions can be crossed close to
the 1st diagonal.

Nevertheless the example, an efficient time
abstraction generator would generate path of length
3 – at most . It is far smaller that n^2.C =16—n= 2,
C=4.
The bound provided by C, is a very rough estimation
of what happen with TPmax. Moreover, as we are
only interested into reachable and correct nodes,
many nodes involved in very long time transition
paths can “disappear” once the time abstraction is
truncated to fit our needs. Thus instead of relying on
C, we preferred to measure actually the parameter
TPmax . Computing the time abstraction and its
related parameters seems a better strategy.
The relevance of monitoring the time abstraction
instead of the automaton highly depends on the

detection gain introduced by clock regions. In the
case of the run-time monitor, the gain is of at most 5
time units. Nevertheless, it represents a quarter of
one complete round of the resource manager. The
time abstraction can be analyzed to decide that
monitoring the time abstraction is more interesting
than monitoring the automaton itself. Beside the
computation involved in the current state and next
deadline estimations for each new event, the monitor
makes three system calls. The empirical analysis is
designed to identify the relative cost of system calls,
β, with respect to state estimation computations, α,
in the overall overhead (Oh=α+β). Such
measurements will be performed for different values
of TPmax and Br. The experimentations are meant to
obtain these measurements easily.

4. The experimental setting.

In the previous section, the relationship between the
monitoring overhead and the parameters Br and
TPmax has been highlighted. It turns out that the
overall overhead is made of two different kinds of
computations: system calls and graph browsing.
Whereas the second source of overhead can be
optimized, the first is directly related to the efficiency
of the underlying real time operating system (which
is Xenomai v2.3 in our case). Thus the first source
of overhead is the minimal price to use the monitor
The experimental setting is made of two steps.

Figure 5: Experimental process.

First, a sample of case studies has been gathered
from various sites of well known model checkers that
accept timed automaton as inputs [9,10]. Given this
sample, intervals of interest have been defined for
parameters Br and TPmax. Then fake specifications
have been written, together with dedicated

 Page 5/8

applications with respect to these values. Such pairs
(application, specification), would cause the monitor
to follow predefined execution path with parameters
Br and TPmax. Thus the overhead measured along
these paths is likely to represent the overhead we
could have measured on a real application. The
complete process is summed up in Figure 5.

4.1 Collecting the parameters of the case studies.

Most of the model checkers propose several
academic case studies together with real-life case
studies drawn from system actually produced --less
frequent. Such specifications have been analyzed to
get the values of TPmax and Br. This part of the
process has been done semi-automatically but can
be improved.
Let us first analyze the main difference between
academic examples and real-life case studies. In
most of academic examples, the systems are made
of identical components interacting in a peer-to-peer
fashion: Fisher mutual exclusion, CSMA/CD, token
ring networks. We are convinced that real-life
examples are less symmetric. For instance, one can
consider the interactions between a driver, an
asynchronous application and a real time application
bound to both. Nevertheless, the case studies
available do not exhibit such architectures. Thus, we
gathered parameter values from freely distributed
case studies that have often a regular structure. The
main issue with regular architecture lays in the
concurrency introduced by weakly synchronized
components. It leads to consider an arbitrarily high
value for Br corresponding to the number of
components involved in the system. Moreover, by
coupling components with distinct periodicity, it is
likely that C would explode exponentially. The
specifications considered to get those values are the
following:
• Single component in CSMA/CD, Fisher’s mutual

exclusion, audio bus controller protocol.
• Few cooperating (about 3) components for

CSMA/CD.
The motivation for such choices is twofold. First, the
specification provided as input for the monitoring
process can be considered as the result of a model
checking process that proved that whenever all the
components behave correctly the system is correct
— that is the case of most protocol specifications.
With component off-the-shelf, it may happen that the
specifications of each component cannot be
changed easily without rewriting completely the
component. Then the monitor could be used as a
wrapper in order to enforce a fail silent model for the
assembly. In this context the size of the considered
systems would not be larger than few components.
Notice that for the largest systems, the state space
was as large as thousands of states and thousands

of transitions. The following table presents a
summary of values observed for various
specifications:

Br TPmax

Min Max Min Max
2 8 2 16

First, the minimal values of both parameters
correspond to simple components for which using
the proposed monitor is irrelevant. The descriptions
of non-trivial timed behaviours often involves
automaton with at least one time transition path of
length three. Nevertheless, even for very complex
systems, the maximal branching degree is still rather
small. The maximal values for TPmax have been
obtained for compositional specifications with highly
independent components. There, the clock space is
highly fragmented due to the nature of the
application (mutual exclusion). The ranges observed
for these two parameters will still be considered for
the experiment.

4.2 Generating the pair model / real-time code.

The experimental part of this work has mostly be
automated so that experimentation can be run on
other platform supporting Xenomai. The problem of
deploying actual applications is rooted in its cost. It
was too costly for each of these specifications to
implement those protocols for real and then plug the
detector. Moreover, the strategy to assess the
monitor would be unclear as we are not interested in
average performances. Thus compiling the overhead
along a complete execution would smooth all the
measures. Instead of considering a “real-life” model,
an artificial specification is generated for which the
parameters can be tuned at will. Thus we can
generate a model with the same topological
properties than in the most complicated part of each
of the case study specifications. This will allow
collecting at low cost a large number of measures for
parameters α and β -- recall that they represent the
state computation overhead and the system calls
overhead respectively, as presented in the analytical
approximation of the overhead per event.
Given the parameters Br and TPmax. We generate a
fake time abstraction with the following
requirements:
• The system accepts in each node at least Br

events.
• The last node has a bounded duration for any of

its clocks.
• Any event sends the system back in node 0 and

reset all the clocks.
• From node 0 there is a unique path of time

transitions of length TPmax.

 Page 6/8

Thus the model described in Figure 6 is generated
for several pairs of parameters Br and TPmax. Notice
that TPmax grows faster than Br with the complexity
of the model.

Figure 6: The model used to measure the overhead.

In order to ensure that using this model to assess
the overhead is realistic, we need to generate
deterministic execution paths. Here the idea is to
generate periodically one of the (xi)s, say xp, so that
the system is in the node “k” when xp occurs.
The model above will be generated so that at any
time in [T-∆,T+∆] from the last event, the current
node would always be k. Thus the application that
will be used as reference to measure the overhead
will only have to generate the “last event” among the
xi periodically at time kT.
The time constant ∆ is used to ensure that the
generated code activates the right path in the
artificial model. Along this path, the monitor would
generate the same kind of overhead than it would
have for the actual application. The parameter ∆ will
be chosen with respect to the context switching
latency of the operating system Xenomai 2.3. If the
application is configured to trigger an alarm at time
k*T, and ∆ is ten times greater than the usual context
switching latency, then only the desired path would
be followed in the artificial model.
The experimental platform was made of a Pentium©
III at 800Mhz on which we used the real time Linux
Xenomai 2.3.0 (Xenomai is a patch for the Linux
kernel, currently used with the version 2.6.19.) The
distribution used to install the operating system is a
Debian Sarge with only few modules. The
interested reader can find the monitor generation
framework on-line4. The measurements have been
done under several different settings for which the
following parameters have been changed: TPmax, Br.
Notice that load conditions shall not interfere with the
application and monitor behaviours. Unlike load
conditions, the base time unit modifies the ratio
between T, the application period, and ∆, the

4 http://www.laas.fr/~trobert/RTRV

duration of the last time abstract node. Thus the
relative cost of systems calls used in the monitor
increases with the application frequency. It can be
used to determine frequency bounds for the
relevance of monitoring the application.
The measurement of the overhead under different
load conditions is more related to the assessment of
the underlying operating system, than the one of the
monitoring framework. The load conditions interfere
with the application and monitor behaviours together
by changing the reactivity of the operating system.

 4.3 Measurement points in the monitoring engine.

 In order to estimate the scale factors binding M0,
M1, M2, M3 and ∆SysCall, the following
measurements are carried out for each event
occurrence. Only the mean value is kept: storing
each event overhead would require large tables that
may disturb the overhead computation. The steps
durations are measured incrementally: first, only step
1, then steps 1 plus step 2 and so on. It allows
estimating the average cost of each step. The
duration of the last step cannot be measured with
high confidence, so we do not integrate it to the
computation. Instead, it is assumed it lasts as long
as step 1 does.
Figure 7 represents the average value of the total
measured overhead with respect to the parameters
Br and TPmax for the same number of clocks –2
clocks.

2

4

6

8 1
0 1

2 1
4 1

6 1
8 2

0

234567891
0

0

10000

20000

30000

40000

50000

60000

ns (1)

TP_max

Br

Average time overhead

50000-60000
40000-50000
30000-40000
20000-30000
10000-20000
0-10000

Figure 7: Measured overhead w.r.t. different pairs

(Br,TPmax).
The graph plotted in Figure 7 is provided in order to
decide which parameter between Br and TPmax has
the greater impact on the overhead. Beside the
direct relationship between the overhead and the
parameters, we are interested in the grow ratios of
the overhead with respect to each parameter. A
session of experimentations provides the growth
factor of the overhead with respect to parameters.
Several sessions have been performed and the table
below report their average values:

 Page 7/8

∆Oh /∆Br ∆Oh/∆Tpmax

17,12 ns/unit 1560,65
The results obtained through the proposed
experimentation are pointing out that the most costly
step is the state estimation, which is not surprising.
Besides, the measured overheads related to model
computations are of the same magnitude than the
system calls used to enforce the detection policy. In
addition to these quantitative results, this study
pointed out the steps that actually require
optimizations (step 2).
Nevertheless for models with non-trivial timing
behaviours (TPmax between 3-10), the use of such
monitor is not costly: the price to pay (40
microseconds) is only twice the worst case of a
context switch of Xenomai 2.3 (20 microseconds).
This relationship is essential as deadline detection
latency is directly connected to context switching
latency. Thus for such models, the expected worst-
case detection latency will be between 20 and 40
microseconds: 20 for deadline misses and 40 for
unexpected events. The key parameter to estimate
the cost of such a system is TPmax. When deploying
the tool, one should focus on trying to improve the
step 2 or on minimizing TPmax

5. Conclusion.

An experimental setting has been proposed to
assess the overhead introduced by the real-time
monitoring framework RTRV. Instead of selecting few
“real-life” applications and testing the monitor on
these applications, another assessment strategy has
been followed. This work has been carried out
according to several external requirements: the
assessment methods should be simple but relevant.
It leads us to consider first the theory to decide
which parameters should be measured. Finally, we
identified several steps in the monitoring algorithms
for which duration measurements have been
performed. The theory for some of these steps
provided the dependencies between their durations
and the parameters of the automaton. The results of
the experimentations point out the impact on the
overhead of the richness of the model with respect to
event and/or timing constraints. As stated from the
beginning this work is a fast and simple assessment
of the overhead of a monitoring tool for elaborated
specifications. Besides, like most of the monitoring
frameworks for complex real-time specifications, run-
time overhead highly depends on the specification.
Thus a fair assessment strategy for various
monitoring frameworks would require that the
respective dependencies (model/overhead) are
identified to avoid extreme bias. It is a prerequisite to
propose a suitable measurement strategy with
reduced cost.

The measurements showed that our monitoring
framework is very efficient for non-trivial timing
behaviours (i.e. TPmax between 3-10). As it has been
pointed out in the current result, optimizing step 2
would benefit the monitor performances, since it
represents a bottleneck for performance in our
implementation. More elaborated data structures,
such as binary search tree, would improve the
performances at the expense of the storage cost.
Independently, one could investigate approximation
methods on models to reduce the value of TPmax. As
in Xenomai, “pods” allow inserting applications
written for other real time operating systems,
(RTOS), such as VxWorks. Enabling such
technologies for a real-time operating system like
Xenomai seems to be a key feature to take
advantage of the off-the-shelf components
paradigms applied to real time softwares.

6. References.

[1] K. Havelund and G. Rosu: "Runtime Verification",
vol. 70. Elsevier Science, 2002.

[2] A. Bauer, M. Leucker, and C. Schallhart :
"Monitoring of real-time properties", in FSTTCS,
(Kolkata, INDIA) , 2006.

[3] R. Alur and D. L. Dill: "A theory of timed automata",
Theoretical Computer Science, vol. 126, 1994.

[4] S. Tripakis and S. Yovine: "Analysis of timed
systems using timeabstracting bisimulations",
Formal Methods in System Design, vol. 18,
Springer, 2001.

[5] “Xenomai homepage,” https://www.xenomai.org.
[6] N. Delgado, A. Q. Gates, and S. Roach: “A

taxonomy and catalog of runtime software-fault
monitoring tools,” IEEE Transactions Software
Engineering, vol. 30, IEEE Transactions, 2004.

[7] M. Kim, M. Viswanathan, H. Ben-Abdallah, S.
Kannan, I. Lee, and O. Sokolsky : “Formally
Specified Monitoring Of Temporal Properties,” in
Proceedings of 11th Euromicro Conference on
Real-Time Systems, 1999, pp. 114–22.

[8] K. Havelund and G. Rosu : "Monitoring Java
programs with Java PathExplorer", Runtime
Verification, (Paris, France), 2001.

[9] “Kronos home page":
”http://www.verimag.imag.fr/TEMPORISE/kronos/.

[10] Johan Bengtsson, Kim G. Larsen, Fredrik Larsson,
Paul Pettersson and Wang Yi: "Uppaal - a Tool
Suite for Automatic Verification of Real-Time
Systems", 4th DIMACS Workshop, (New
Brunswick, USA), 1995.

 Page 8/8

https://www.xenomai.org/

