
HAL Id: hal-02269852
https://hal.science/hal-02269852

Submitted on 23 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

UML Modeling of a Real-Time Embedded Industrial
System: an Engine Testbed

Nicolas Pernet, Sylvie Cauvin, Frédéric Thomas, Chokri Mraidha, Michel Sall,
Philippe Robin

To cite this version:
Nicolas Pernet, Sylvie Cauvin, Frédéric Thomas, Chokri Mraidha, Michel Sall, et al.. UML Modeling
of a Real-Time Embedded Industrial System: an Engine Testbed. Embedded Real Time Software and
Systems (ERTS2008), Jan 2008, Toulouse, France. �hal-02269852�

https://hal.science/hal-02269852
https://hal.archives-ouvertes.fr


UML Modeling of a Real-Time Embedded Industrial System: an Engine 
Testbed  

Nicolas PERNET, Sylvie CAUVIN1, Frédéric THOMAS, Chokri MRAIDHA 2, 
Michel SALL, Philippe ROBIN3

1: IFP, 1-4 avenue du Bois Préau, F-92852 Rueil Malmaison, France 
2: CEA LIST, CEA Saclay, F-91191 Gif sur Yvette, France  

3: TRIALOG, 25 rue du Général Foy, F-75008 Paris, France 
 

 
Abstract: The paper presents a work performed in 
the Software Factory / OpenDevFactory project 
which is part of the French System@tic cluster. The 
OpenDevFactory project focuses on the modeling of 
complex systems using a wide variety of tools and 
technologies and the Eclipse framework as an 
integration platform.  
 
The paper presents the work performed in an 
industrial use case proposed by French IFP research 
institute which, among other disciplines, is a 
specialist of internal combustion engine modeling, 
design and testing. The modeled system is a real-
time distributed control system for engine testbeds. 
 
Real-time and embedded systems dedicated UML 
modeling components developed within the 
OpenDevFactory project are used and combined to 
describe the deployment of the testbed control 
applications onto the underlying execution 
infrastructure based on RTAI real-time operating 
system. Modeling components are relevant to the 
modeling of the real-time and communication 
requirements of applications, the modeling of fault-
tolerant requirements and the modeling of the 
underlying technical architecture. The deployment is 
performed down to the actual code using automatic 
code generation.  
 
The paper presents the modeling process used in 
the industrial use case and its usability and will 
conclude on the portability and productivity 
enhancements achieved with this modeling process.  
 
Keywords: Eclipse, Platform Independent Model 
(PIM), Platform Description Model (PDM), Platform 
Specific Model (PSM), UML modeling, real-time 
embedded, RTAI 

1. Introduction 

 
Model-based engineering currently offers new 
solutions to deal with real-time systems 
development. The recently adopted OMG MARTE1 
(Modeling Analysis of Real-time and Embedded 
systems) standard [1] brings improvements in three 
directions: enrichment / refinement of system 

                                                           
1 http://www.omgmarte.org/ 

functionalities, reduction of time-to-market and 
production costs, and compliance with non-functional 
requirements. Based on MARTE standard, CEA 
LIST developed the two components called CT-RTE 
and CT-PDM for the Eclipse framework. Another 
component named CG-LA was provided as an 
Action Language editor. At last, by combining these 
components with the new UML modeler named 
Papyrus2, CEA LIST offers a comprehensive 
integrated platform for the modeling, analysis and 
synthesis of real-time and embedded systems.  
 
IFP proposed an industrial use case which consists 
in the modeling of a real-time test-bed supervisor 
and used the new integrated platform proposed by 
CEA LIST for this purpose. In order to assess a 
complete model-to-code process, the project 
decided to target an implementation of the 
supervisor on the RTAI real-time operating system. 
In order to achieve the required model-to-code 
transformation, TRIALOG used the CT-PDM 
component to describe the RTAI software platform 
and developed an automatic code generation 
solution. 
 

OpenDevFactory

CT-PDMCT-RTE CG-LA

Engine test bed supervisor modeling

Real-time execution

OMG

Action
LanguageMARTE

OpenDevFactoryOpenDevFactory

CT-PDMCT-RTE CG-LA

Engine test bed supervisor modeling

Real-time execution

OMG

Action
LanguageMARTE

CT-PDMCT-RTE CG-LA

Engine test bed supervisor modeling

Real-time executionReal-time execution

OMG

Action
LanguageMARTE

OpenDevFactory

 
Figure 1: Use case principles and components 

foundations 

This work was performed in the context of the Usine 
Logicielle project of the System@tic Paris Région 
Cluster. Figure 1 presents the different components 
used for the use case and the foundation of each of 
them. 
 

                                                           
2 http://www.papyrusuml.org

 Page 1/9 

mailto:System@tic
http://www.papyrusuml.org/


2. Presentation of engine testbed use case 

IFP, along with D2T company, has developed a 
unique solution for test-bed automation, engine 
calibration test implementation and model integration 
into the test-bed (simulation). The solution is based 
on a real-time control system working with RTX real-
time kernel. Figure 2 shows a screenshot of the 
commercial version of the software. 
 

 
Figure 2: Real-time supervisor screenshot 

In the OpenDevFactory project, IFP aimed at testing 
a new modeling process based on components 
dedicated to real-time systems. First, CT-RTE was 
used to specify non-functional properties such as 
real-time constraints or time behavior. Second, CG-
LA offered a new solution to describe operations and 
algorithms, without choosing either a specific 
programming language or activity diagrams. Third, 
CT-PDM allowed IFP designers to specify the final 
implementation of the system. IFP chose to 
investigate an implementation based on the RTAI 
platform.  

3. Assessment of modeling components   

3.1 CT-RTE component 

Description of component 
CT-RTE stands for Technical Component for Real-
Time and Embedded applications modeling. 
The modeling of real-time applications requires a 
modeling language that enables the description of 
the specific features inherent to the real-time 
domain. Actually real-time applications have 
qualitative features such as deadline and period, as 
well as quantitative features related to 
communication, concurrency and behavioral 
aspects. The modeling language used to model real-
time applications must at least provide the modeling 
concepts to represent such features. 

UML [2] is a general purpose modeling language 
that provides concepts for behavioral modeling, 
some concepts for concurrency modeling (e.g. 
CallConcurrencyKind in Communications, concurrent 
states in StateMachines), and some basic concepts 
on time modeling. However, in order to guarantee 
that UML is a general purpose language, those 
concepts are not defined precisely enough to 
capture the specificities of a given domain (e.g. the 
real-time domain). To handle domain specificities, 
UML provides a specialization mechanism called 
profiles. Profiles provide the capability to tailor the 
UML metamodel for different domains. This is 
achieved by extending the UML metamodel 
elements in order to adapt them for the targeted 
domain. The UML profile for Modeling and Analysis 
of Real-Time and Embedded systems (MARTE) is a 
specialization of UML that provides concepts 
dedicated to the real-time domain. 
CT-RTE component is based on the UML profile for 
MARTE. CT-RTE aims at providing a way to define 
and model the real-time characteristics of real-time 
and embedded systems, such as non-functional 
properties (NFPs MARTE sub-profile), time structure 
(Time MARTE sub-profile) (e.g. not-timed / 
asynchronous, synchronous, multi-clock). CT-RTE 
component allows designers to specify real-time 
quantitative features (e.g. deadline, energy 
consumption, memory footprint, etc), as well as 
qualitative features (e.g. concurrency modeling). 
CT-RTE relies on MARTE language and provides 
the appropriate editors that support MARTE model 
specification. These are a Value Specification 
Language (VSL) editor and a Clock Constraint 
Specification Language (CCSL) editor. 
VSL is used to specify the values of constraints, 
properties and stereotype attributes particularly 
related to non-functional aspects. Actually, this 
expression language can be used by profile users in 
tagged values, body of constraints, and in any UML 
element associated with value specifications. VSL 
supports the following requirements: 

- How to specify parameters / variables, 
constants, and expressions in textual form. 

- How to define relationships between various 
parameters or constant values with the 
support of arithmetic, logical, relational, and 
conditional expressions. 

- How to define different time values and 
assertions in UML. 

- How to specify composite values such as 
collection, interval, and tuple values. 

CT-RTE provides an advanced VSL editor with 
completion that assists the user for the specification 
of real-time and embedded expressions in models. 

 Page 2/9 



CCSL is a declarative language used to specify 
constraints between clocks. The specified 
constraints may then be validated on models. 
In short, MARTE concepts used in CT-RTE may be 
used to qualify UML structural and behavioral 
application models of real-time and embedded 
systems. Those qualified models include the 
complete semantics related to the characteristics of 
real-time systems and are therefore ready to support 
either a system analysis (e.g. a schedulability 
analysis, a performance analysis) or a system 
synthesis (e.g. a code generation). 
 
Modeling requirements 
IFP real-time supervisor relies on a mix of off-line 
and on-line scheduling and consequently deals with 
various time representations and real-time 
constraints. From a modeling point of view, it is 
important to represent the timing behaviors. In 
addition, the future versions of the supervisor will 
have to exploit the capabilities of multi-core 
architectures. Consequently, IFP is looking for 
modeling solutions which could provide a complete 
design framework to cope with these new 
challenges. The main need is to represent non-
functional properties such as timing constraints. 
Then the possibility to use standardized patterns is 
also required in order to make the collaboration and 
exchange between different partners easier during 
the development. The utilization of a standardized 
design approach should also offer new opportunities 
in term of analysis tools. Finally, IFP pays attention 
to the high level of expressiveness of the 
descriptions achieved. Consequently CT-RTE has to 
offer comprehensive capabilities for the description 
of non-functional properties but at the same time it 
has to produce easy-to-understand models.  
 
Assessment criteria 
Following the IFP modeling requirements presented 
above, CT-RTE component was evaluated according 
to four criteria. Criterion #1 is relevant to the 
descriptive capabilities offered by the component. 
Can we just use standardized patterns of non-
functional properties or is a strong language (with no 
limitation of modeling possibilities) available to 
specify non-functional properties ? Criterion #2 is the 
user-friendliness of the language ("easy-to-use” 
aspect). Is it a new language, a new methodology or 
philosophy or on the contrary is it intuitive ? Criterion 
#3 completes criterion #2 since it concerns the 
"easy-to-read" aspect. We want to specify more 
complete models, we do not want them to be more 
complex. The last criterion #4 is relevant to the 
availability of new tools that might be available for 
model analysis and transformation. 
 

Results of assessment 
During the modeling process performed by IFP, CT-
RTE was used in different ways at different 
abstraction levels. Actually, CT-RTE component 
introduces some general concepts which are out of 
the scope of MARTE which is focused on the 
modeling of real-time systems. Such general 
concepts are for instance the following stereotypes: 
<< tupleType >> which supports the definition of 
composed types, <<choiceType>> which supports 
the instantiation of an object which may belong to 
different classes and <<collectionType>> which 
supports the description of sets. CT-RTE component 
contains also more specific concepts. For example, it 
contains a MARTE library which defines various 
patterns allowing designers to represent periodic and 
aperiodic entities. Different time units are available 
too. At last, VSL language offers a real freedom of 
description for defining new specific values of non-
functional properties.  
 
Summarising, CT-RTE provides (i) general concepts 
which could belong to a more general standard, (ii) 
specific and ready-to-use concepts which improve 
the modelling of real-time systems and (iii) an open 
standard for value description which allows 
designers to specify their own non-functional 
properties. Criterion #1 which is relevant to the 
variety of description possibilities is therefore fully 
satisfied. The models using CT-RTE are clear and 
easy to understand, and consequently CT-RTE 
satisfies criterion #3. Nevertheless, even if the 
MARTE library is easy to use, the other stereotypes 
may require more documentation to be fully used. 
We expect a "how to" documentation to be issued in 
a not too far future and therefore criterion #2 will be 
met. Finally, we investigated the availability of 
external tools. Since MARTE adoption as an OMG 
standard is recent (June 2007), few MARTE-
compliant tools are available yet. However the fact it 
is standardised will facilitate the arrival of tools. In 
the OpenDevFactory project for instance, Thales 
TRT showed how to generate a file compatible for 
RapidRMA3 tool which supports the verification of  
schedulability properties. Evaluation criterion #4 
should also be met in the future. 
 
3.2 CT-PDM component 

Description of component 
CT-PDM stands for Technical Component for 
Platform Description Modeling. 
CT-PDM covers software and hardware platform 
modeling. This section gives a brief presentation of 
the concepts and principles used for modeling these 
two kinds of platforms. 

                                                           
3 http://www.tripac.com/ 

 Page 3/9 



The MDA guide [3] provides the following generic 
definition of the platform concept: “A platform is a set 
of subsystems and technologies that provide a 
coherent set of functionalities through interfaces and 
specified usage patterns, which any application 
supported by that platform can use without concern 
for the details of how the functionality provided by 
the platform is implemented“. Although this is a very 
broad and high-level definition which leaves a large 
scope for interpretation, it shows clearly that the 
MDA guide considers a platform as a support for the 
execution of software applications. This is consistent 
with the intuitive definition of “platform” used in the 
industry which refers to machines or systems such 
as frameworks, middleware, virtual machines and 
RTOS, which are built to support an execution 
process. 
In [4], A. Sangiovanni - Vincentelli states that 
resources and services are provided by application 
programming interfaces (APIs). APIs should provide 
a complete and accurate description of the platform, 
so that the execution of any application consistent 
with these interfaces is guaranteed on the platform. 
A model of a platform is thus a model of the platform 
APIs. Hence, a platform metamodel is nothing but a 
language to describe the APIs. A language 
dedicated to the modeling of Real-Time and 
Embedded (RTE) multitasking platforms was 
proposed : this is the UML Software Resource 
Modeling profile (SRM). 
SRM has been implemented as an extension to the 
Unified Modeling Language (UML) (e.g. a UML 
profile). SRM profile is now a part of the new UML 
profile for MARTE. It is not a new set of multitasking 
APIs. It is rather a language to describe multi-tasking 
APIs (existing or under definition). SRM language 
has been built from the results of a detailed analysis 
of main multitasking API standards [5] and of several 
industrial standards. Three families of concepts were 
identified: 
- Concurrent (i.e. parallel) execution contexts such 

as an interrupt context and a task context. 
- Interactions between concurrent contexts for either 

communication or synchronization purposes (e.g. 
mailbox and semaphore mechanisms). 

- Hardware and software resource brokering 
concepts, such as driver or memory management. 

For this purpose, SRM profile is based on the 
"Resource Service" pattern. That pattern supports 
the description of resources having properties and 
providing services. Some properties and services 
might play roles which are modeled as resource 
attributes. Figure 3 illustrates how such a pattern is 
represented in SRM profile package. A schedulable 
resource in SRM is the modeling of a context for 
executing concurrent sequences of actions (i.e. a 
task). A schedulable resource has some attributes. 
Some of these attributes may play the role of the 
priority. A schedulable resource provides services 

also. Some services may be used by the resource 
itself to activate it. It would be too lengthy to describe 
all SRM profile details. Therefore the interested 
reader will find more information in [5]. 
The way SRM profile is used in the modeling 
process consists in three basic steps. First step is to 
model the multitasking APIs under consideration as 
a UML model library. Figure 3 below shows the first 
step of the (partial) modeling of the OSEK/VDX 
platform. Then in the second step, the designer 
applies SRM profile to clarify the taxonomy of 
modeling elements. For instance when modeling the 
OSEK/VDX platform, the OSEK/VDX BasicTask is 
considered as a SRM software schedulable resource 
whose attributes and operations are referenced in 
the stereotype properties. Finally in the third step, 
the classifier is instantiated for describing a multitask 
design (e.g. a task t1 is created in the application 
model). The resulting multitasking design is the 
platform instance model. 

OSEK/VDX Platform

« profile »
SRM

« stereotype »
SwSchedulableResouce

« metaclass »
UML::kernel::Classes::Class

+activate()

+priority : UINT32;

« swSchedulableResource »
BasicTask « swSchedulableResource »

priority =  [priority]
activate = [activate()]

« apply »

« metaclass »
Propertypriority

0..*

OSEK/VDX Application

priority = 10

t1 : BasicTask
« import »

« metaclass »
Operation

activate

0..*

ownedAttribute 0..*

ownedOperation 0..*

 
Figure 3: The "Resource Service" pattern 

During the project, SRM profile was used by 
TRIALOG to model the RTAI operating system. The 
objective of the work was to create a UML model 
library that captures the RTAI concepts and that 
could be used by designers to describe how the 
functional part of various applications is implemented 
on a RTAI platform. We expect that in the future 
designers will have access to libraries allowing them 
to choose between different real-time operating 
systems such as Xenomai, VxWorks, RTX, RTAI, 
RT-Linux, etc. The development of the model 
libraries began by studying RTAI operating system 
APIs which are C-language oriented. However 
concepts like profiles, models or stereotypes are 
closer to Java. Therefore the first step of the model 

 Page 4/9 



development consisted in modeling RTAI APIs from 
an object-oriented perspective. 
Each entity manipulated by the APIs has been 
defined as a class and the functions have been 
transformed into class methods. Then, the classes 
are able to apply the stereotypes defined in the 
profiles. It is also necessary to identify the functions 
of the stereotypes applied with the methods defined 
in the new class. 
In addition, RTAI library methods require specific 
attributes which do not exist in SRM model. The new 
primitives can be created however inside the model 
library allowing the methods to use them. 
For IFP, the goal was to use RTAI model library to 
describe the implementation of the engine test-bed 
functional specification. The approach used is a 
general design method based on three models: PIM, 
PDM and PSM. PIM, or Platform Independent 
Model, is the functional description of the application. 
No hypothesis about the final execution platform is 
performed at this step. PDM, or Platform Description 
Model, corresponds to the platform description. No 
functional aspects are represented. RTAI model 
library is an example of such a PDM. And last, but 
not least, PSM or Platform Specific Model describes 
the way the elements from the PIM are run by PDM 
components. Figure 4 summarizes the approach. 
 

CT-PDM
(generic

platform)
CT-RTE CG-LA

RTAI

code

code generation

PDM : Plateform Description Modeling
RTE : Real Time Embedded
CG-LA : Composant Générique - Langage d’Action
RTAI : Real Time Application  Interface
PIM : Platform Independent Model
PSM : Platform Specific Model

PSM

PIM
(application)

 
Figure 4: The utilisation of the modeling components 

by an application 

We have then investigated how to use the automatic 
code generation from a model such as the PSM. 
TRIALOG has implemented generation scripts using 
the Acceleo tool [6]. The result of the generation is a 
set of  classes that create, initialize and activate the 
tasks and timers defined in the PSM. The classes 
are written in C++ language and are specific to 
RTAI, 
In addition to the description of software platforms, 
CT-PDM provides support for hardware platform 
modeling. For that purpose, CT-PDM relies on 
MARTE Hardware Resource Modeling profile 
(HRM). HRM is a model-based language for 

hardware platform design that can describe many 
low-level details. 
HRM is composed of two views: a logical view that 
classifies the hardware resources depending on their 
functional properties, and a physical view that 
concentrates on their physical nature. Both are 
specializations of a more general model. The logical 
and physical views are complementary. They 
provide two different abstractions for the hardware 
and they could be simply merged. Each view is, in 
turn, composed of many models, as shown in Figure 
5. 
Stereotypes introduced within HRM profile are 
organized under a tree of successive inheritance 
paths from generic to more specific stereotypes ; no 
stereotype is an orphan. This is the reason why 
HRM profile is able to describe low-level details. 
Optional tagged values and composition 
mechanisms are strengthening this ability as well. 
Another feature of HRM profile is that it supports the 
description of most hardware concepts thanks to a 
wide range of stereotypes and to its layered 
architecture. If no specific stereotype corresponds to 
a particular hardware component, a generic 
stereotype may match instead. This is appropriate to 
support new hardware components and new 
technologies. Reader should refer to [1][6] for a more 
detailed description of HRM. 
 

 
Figure 5: Hardware Resource Modeling models 

Modeling requirements 
IFP requirements for CT-PDM components were 
relevant to the modeling of the software and 
hardware platforms on one hand and the modeling of 
the implementation on the other hand. In addition to 
the assessment of CT-PDM modeling capabilities, 
IFP was also interested in CT-PDM capabilities 
relevant to the testing of the implementation and the 
support for multiple platform development. 
 

 Page 5/9 



Assessment criteria 
IFP wanted to assess first whether HRM and SRM 
profiles provide an easy way to represent the engine 
test-bed specific architecture. An easy way means 
both the ease of utilisation and the availability of 
entities allowing designers to describe precisely the 
platform under consideration.  
Then IFP wanted to use also CT-PDM to describe 
the implementation onto RTAI software platform and 
on the actual hardware platform. It was important for 
IFP that this part of the model be expressive and 
easy to understand.  
Finally IFP wanted to assess how easy or difficult it 
was to go further into the modelling process towards 
code generation and multiple platform development.   

 
Results of assessment 
First, both SRM profile and HRM profile are very 
complete with respect to modeling entities. No lack 
was identified when modeling RTAI thanks to SRM 
stereotypes that map well every single concept of 
real-time operating systems. HRM profile proposes a 
large set of hardware concepts and could be 
employed in other domains than the industrial control 
system under consideration in the project. Future 
work at IFP will apply HRM profile to scientific 
computing for the description of repetitive structures 
(Repetitive Structure Modeling, annex E of the 
MARTE standard). 
 

 
Figure 6: Example of implementation description with 

CT-PDM and CT-RTE 

Concerning the implementation description, IFP 
considers it would be preferable to group all the 
implementation concepts into a unique profile. 
Actually IFP used a combination of SRM profile (CT-
PDM) and Allocation profile (CT-RTE) and obtained 
interesting results by using the two concepts in a  

complementary way. For instance, SRM profile 
allows a designer to connect a task entity to an 
object of the functional description and to specify the 
called class operations. The Allocation profile allows 
a designer to stereotype the "grain" object, i.e. the 
entity he/she has to allocate in the functional 
description as well as in the software resources 
(task, timer, etc.) and to define the destination of the 
allocation (processor, memory, etc.). Figure 6 shows 
an example of such an implementation. Three levels 
of description can be distinguished, from top to 
bottom : functional description entities, software 
resources and hardware resources. Stereotyped 
dependencies allow designers to describe operation 
calls and resource allocation. 
In brief, SRM and HRM profiles are efficient to 
describe software and hardware platforms. CT-PDM 
and CT-RTE components include interesting 
concepts for the implementation description, 
although a more comprehensive documentation 
would be appreciated. 
At last, for the use case under consideration, 
TRIALOG performed some work on the development 
of a RTAI-oriented code generator which analyzes 
the implementation model and generates the 
corresponding allocation. Since MARTE is now a 
standard, the number of available real-time operating 
system description will certainly grow up. The 
creation of a central repository containing these 
descriptions would help. Consequently, an 
interesting work to be done in the future would 
consist in defining a template for the code generator. 
The template would avoid re-developing a code 
generator from scratch each time a real-time 
operating system is added to the repository.  
IFP considers also that a potential advantage of CT-
PDM is to make multiple platform development 
easier. Starting from a unique implementation model, 
the software code could generated automatically for 
RTAI, RTX and VxWorks operating systems. Some 
work is still needed in this direction however. 
 
3.3 CG-LA component 

Description of component 
CG-LA stands for Generic Component for Action 
Language modeling. The component aims at 
providing a way to model 100% of the application 
behavior in UML. As shown on Figure 7, UML offers 
several packages for behavior modeling. 
Use Cases specify requirements of the system, in 
other words they specify what the system must do. 
State Machines are generally used to specify 
behavioral control aspects of applications. 
Interactions are used to capture protocols of 
message exchange between instances composing 
the system. Activities are built using Actions. Actions 
are the basic entities for behavioral modeling in 

 Page 6/9 



UML. The UML specification provides a concrete 
syntax associated to the abstract syntax for all the 
behavioral packages except for the Action package 
for which UML specifies only the abstract syntax of 
Actions. Without a concrete syntax however, the 
Action package cannot be used for modeling 
purpose, Hence it is not possible to construct UML 
models that are completely specified in UML. Usually 
UML-based design approaches rely on programming 
languages such as C++ or Java to specify the 
behavioral algorithmic aspects [7]. This results in a 
mixing of the higher levels of abstraction and the 
semantics provided by UML with the lower levels of 
abstraction and the semantics provided by the 
programming languages. Such a mix may lead to 
inconsistencies in the resulting model. To cope with 
this problem, the Object Management Group (OMG) 
issued a RfP (Request for Proposal) that aims at 
standardizing a text-based concrete syntax for UML 
Actions abstract syntax [8]. 
 

 
Figure 7: UML2 Packages for Behavior Modeling 

CG-LA provides an action language named Accord-
AL [9] that gives a concrete syntax for UML Actions 
abstract syntax. This language is defined by a one-
to-one mapping between its elements and the 
elements of the UML Actions abstract syntax. 
Accord-AL language gives to UML the capability to 
use UML Actions for the algorithmic aspects of 
behavioral modeling. The concrete syntax allows 
designers to model 100% of their application 
behavior in UML, and thus avoids the mixing of 
different semantics and abstraction levels in the 
same model. 
Since the concrete syntax is not standardized yet, no 
existing UML tool supports it for the time being. This 
is why CG-LA provides such a support for Accord-AL 
through an advanced editing tool. The editor 
supports the description of operation bodies using 
the Accord-AL language. The editor provides syntax 
highlighting and completion functionalities that helps 
the model designer describing behaviors with 

Accord-AL language. The specified behavior is then 
translated in UML2 actions. By doing so, we obtain a 
platform and language independent UML2 model 
that can be used for application execution or 
analysis purposes through simulation or code 
generation processes. 
 

 
Figure 8: CG-LA- Action Language editor 

 
Modeling requirements 
IFP was interested to test an alternative approach to 
activity diagram and direct programming language 
description. IFP wanted to use an action language 
instead to describe the class operations during the 
modeling process. 
 
Assessment criteria 
IFP investigated the possibilities and limitations of 
the action language semantics and compared the 
utilization of the action language in place of activity 
diagrams. Since CG-LA is a textual editor, IFP paid 
as much attention to the user-friendliness 
(ergonomics) of the editor as to the descriptive 
power of the Action language.  
 
Results of assessment 
CG-LA was used to describe more than thirteen 
operations of the real-time supervisor model. IFP 
tried to use it each time C++ was not necessary. For 
several operations, IFP specify activity diagrams too. 
The textual editor provided with the action language 
(see Figure 8) is considered pleasant. It offers 
syntax highlighting and textual completion on 
language keywords. Since it is not totally coupled 
with the Papyrus modeler yet, the completion does 
not include the names of instances and classes.  
The Action Language semantics is object-oriented 
and close to UML2 concepts. Consequently, the 
utilization of the Action Language is very intuitive. 
Moreover, the component includes a documentation 
for each keyword with an equivalent example in 

 Page 7/9 



activity diagrams. Nevertheless, IFP assessment is 
that the semantics of the Action Language could be 
improved. For example, the semantics does not 
include any iterator. This is somewhat surprising 
because an action language is used in particular to 
explore models (classes, associations, etc.) and a 
keyword like "for each" could be helpful to apply the 
same action to every object of an association link.   
The comparison with activity diagrams was very 
informative. Although they are well adapted to 
describe an object flow or a sequential action, 
activity diagrams become complex as soon as 
control structures (loop, if then else statements, etc.) 
are present. The approach followed usually by 
designers in such a case consists in dropping the 
modeling abstraction and using directly the 
programming language.  An action language offers a 
real alternative close to the activity diagram 
philosophy but with the advantage of imperative 
textual language in term of control structure 
description. 
In our case, the final implementation programming 
language is known and determined, but we need to 
underline that an Action Language improves the 
reusability of the model. Moreover, the use of CG-LA 
component and the associated Action Language is 
not limited to the modelling of real-time systems and 
they could be employed in every UML2 project. 

4. Autocoding from UML models 

As shown on the Figure 4 above, the engineering 
process used in the project included the code 
generation from the UML model. The code 
generation proceeds as follows. In addition to the 
scripts developed for generating the skeleton of the 
application (headers and source files), a script based 
on the Acceleo tool4 generates a C++ RTAI file for 
the initialization of the application. This script reads 
the PSM model and for all real-time objects such as 
the tasks, timers and resources used by the 
application the script generates the code for the 
declaration, creation and deletion of the real-time 
objects. For example, for a task, the script uses 
information like the stack size, the task priority, the 
task entry point and whether the task is periodic or 
not for creating the corresponding task object within 
RTAI and for launching the task (or not) at 
initialization time. 

 5. Conclusion 

Recently adopted, the OMG MARTE standard offers 
a new modeling solution for the modeling of real-time 
systems. In the OpenDevFactory project, IFP 
proposed a use case to assess the following three 

                                                           
4 Acceleo is a tool of the French OBEO company which 
translates an UML model to text. 

modeling components: CG-LA, CT-RTE and CG-
PDM. The use case was relevant to the modeling of 
a real-time supervisor of engine test-bed which was 
complex enough to raise different modeling issues 
and consequently to explore different modeling 
solutions. 
It appeared that the modeling components (profiles) 
dedicated to the modeling of software and hardware 
platforms (CT-PDM) and to the modeling of non 
functional properties (CT-RTE) seem exhaustive and 
offer an unlimited number of modeling solutions. 
These profiles are available with libraries of 
predefined entities that can be used as such for what 
could be named a standard modeling process. An 
interested observation is that HRM profile and CG-
LA editor are not limited to the modeling of real-time 
systems. Finally, the Papyrus modeler, in the 
Eclipse-based integration platform was pleasant to 
use. 
Some more work needs to be done in two directions. 
First, it is necessary to define a global modeling 
methodology that would describe the successive 
steps of the modeling process and include 
documentation and examples. The interaction 
between tools needs also to be improved in order to 
fully exploit the MARTE standard. Second, CT-PDM 
opens the way for multiple platform development and 
code generation. It is therefore now necessary to 
build and collect the descriptions of various 
operating systems based on SRM profile and to 
streamline the code generation process by providing 
some sort of a generic code generator using a CT-
PDM model as input. 

6. References 

[1] OMG: "A UML Profile for MARTE",  ptc/07-08-04, 
2007. 

[2] OMG: "Unified Modeling Language: 
Superstructure",  formal/2007-02-05, 2007. 

[3] OMG: "MDA Guide" (version 1.0.1), Object 
Management Group, Inc., Needham, MA 02494, 
June. 2003. OMG document number: omg/2003-
06-01. 

[4] A. Sangiovanni-Vincentelli and G. Martin: 
"Platform-based design and software design 
methodology for embedded systems", Design & 
Test of Computers, IEEE Computer Society, p.23-
33, 2001. 

[5] F. Thomas, S. Gérard, J. Delatour and F. Terrier: 
"Software Real-Time Resource Modeling", Forum 
on Specification and Design Languages (FDL) 
2007, ECSI, Barcelona, Spain, September 2007, 
p.231-236. 

[6] www.obeo.fr 
[7] S.Taha, A.Radermacher, S.Gerard and J-L. 

Dekeyzer: "An Open Framework for Hardware 
Detailed Modeling", In IEEE proceedings 
SIES'2007, pages 118-125, Lisboa, July 2007. 

 Page 8/9 



[8] B. P. Douglass: "Real Time UML - Advances in the 
UML for Real Time Systems" (3rd edition), Addison 
Wesley ed, 2004. 

[9] OMG: "Concrete Syntax for a UML Action  
Request For Proposal",  ad/2007-08-02, 2007. 

[10] C. Mraidha, S. Gérard, Y. Tanguy, H. Dubois, and 
R. Schnekenburger: "Action Language Notation for 
Accord/UML", CEA, 2005. 

7. Glossary 

UML:    Unified Modeling Language 
MARTE: Modeling Analysis of Real-time and 

Embedded systems 
CT-RTE: Technical Component for Real-Time and 

Embedded applications modeling 
CT-PDM: Technical Component for Platform 

Description Modeling 
CG-LA: Generic Component for Action Language 

modeling 

 Page 9/9 


