
HAL Id: hal-02269846
https://hal.science/hal-02269846

Submitted on 23 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a formal semantics for AADL execution model
Jean-François Rolland, Jean-Paul Bodeveix, David Chemouil, M Filali, Dave

Thomas

To cite this version:
Jean-François Rolland, Jean-Paul Bodeveix, David Chemouil, M Filali, Dave Thomas. Towards a for-
mal semantics for AADL execution model. 4th European Congress on Embedded Real Time Software
and Systems (ERTS 2008), 3AF : Association Aéronautique et Astronautique de France; SEE : Société
de l’électricité, de l’électronique et des technologies de l’information et de la communication, Jan 2008,
Toulouse, France. �hal-02269846�

https://hal.science/hal-02269846
https://hal.archives-ouvertes.fr

Towards a formal semantics for AADL
execution model

J-F. Rolland1*, J-P Bodeveix1, D. Chemouil 2, M. Filali1, D. Thomas3

1: IRIT, CNRS, Université Paul Sabatier, 118 Route de Narbonne, Toulouse

{rolland,bodeveix,filali}@irit.fr

2: CNES, 18avenue Edouard Belin, Toulouse

3: EADS ASTRIUM, 31 avenue des Cosmonautes, Toulouse

dave.thomas@astrium.eads.net

Abstract: In this paper, we present a

specification in TLA+ of an AADL execution

model. This formal specification is used for

deriving a prototype verification tool for AADL

within the TOPCASED development

environment.

Keywords: architecture description

languages, dynamic properties, formal

semantics, model checking

1. Introduction

Model driven engineering has put forward a

set of techniques and tools to enhance the

production of reliable software. In this context,

architecture description languages are now

well accepted as a way to express the

relevant dynamic properties that one must

first specify and then ensure. Since, we are at

the model level, in order to specify and

ensure, in a sound way, these dynamic

properties, we must rely on a well defined

execution semantics. Our work is related to

that topic. More precisely, we are interested in

enhancing the precise semantics of the AADL

execution model by a formal semantics. More

precisely, we look for specifying formally

relevant fragments of the AADL execution

model. For this purpose, we have used the

TLA+ [5] language. TLA+, the Temporal logic

of Actions is well suited for describing, in an

abstract way, the behavior of a system.

Actually, TLA+ has already been used to

specify as well hardware protocols, e.g.,

memory protocols, as software protocols, e.g.,

distributed consensus protocols.

The rest of this paper is organized as follows:

Section 2 introduces AADL and the features

we are interested in. Section 3 presents the

main features of our formal model. Section 4

presents the prototype that we have

elaborated. Section 5 discusses our

perspectives with respect to our formal model

and to our tool. Section 6 draws some

conclusions.

2. AADL

AADL [1] is an architecture design language

standardized by the SAE. This language has

been created to be used in the development

of real time and embedded systems. As a

successor of MetaH [8], AADL capitalizes more

than 10 years of experiments. MetaH is a

language developed by Honeywell Labs and

used in numerous experiments in avionics,

flight control, and robotic applications. AADL

also benefits from the knowledge on ADLs

acquired at CMU during the development of

several ADLs, like ACME[6] and Wright[7].

2.1 The language

AADL includes all the standard concepts of

any ADL: components, connectors used to

describe the interface of components, and

connections used to link components. The set

of AADL's components can be divided in three

*Work funded by CNES and EADS Astrium Satellites

Page 1/10

partitions, the software components (process,

thread, thread group, subprogram, and data),

the hardware components (processor, bus,

memory, device), and a System component.

Components can communicate through ports,

synchronous calls, and shared data. A process

represents a virtual address space, or a

partition, this address space includes the

program defined by its sub-components. A

process must contain at least one thread or

thread group. A thread group is a logical

organization of threads in a process. A thread

represents a sequential flow of execution, it's

the only AADL component that can be

scheduled. A subprogram represents a piece

of code that can be called by a thread or

another program. A data models a static

variable used in the code, they can be shared

by threads or processes.

A processor is an abstraction of the hardware

and the software in charge of the scheduling

and the execution of threads. The memory

represents any platform component that

stores data or binary code. The buses are

communication channels used to connect

different hardware components. The devices

represent interfaces between the system

described and its environment.

Systems allow to compose software

components with hardware components. The

interactions can be defined at a logical and a

physical level. At a physical level, software

components are associated to hardwares

component, a thread to a processor, or a data

to a memory for example. The logical level is

used to describe the communication between

hardware and software. At a logical level we

can define communication connections

between processors or devices and software

components.

AADL uses the notion of mode to determine a

set of active components. This mechanism

allows to describe dynamic architectures. The

set of active components can be modified by

the reception of an event.

The AADL standard describes a strict

semantics of execution, this semantics is

customizable using properties. We will present

only a subset of AADL. We don't take into

account the hardware components. Modes are

not modeled yet, but it is planned to integrate

them in our model. We will present this

semantic aspect for the communication

through ports, the scheduling and the

communication through shared data.

2.2 Communication through ports

AADL proposes three types of ports: data,

event and event data ports. A port is declared

to be in an input, output or input/output

mode. It can be used to transmit data or

control or both. Ports are used to describe the

interface of a component. Data transmitted

through ports is typed. Each input port has a

fresh variable to define the state of the port, if

a port has not received anything between two

thread dispatches this variable is set to false.

A buffer is also associated with each input

port, when an output port sends a data or an

event it modifies these buffers. On the

dispatch of a thread these buffers are copied

into the local memory of the thread. Some

properties permit to customize the behavior of

event and event data ports. The property

"Queue_size" determines the maximum

number of events that can be received.

“Overflow_handling_protocol” describes the

behavior of the port in case of overflow, the

two default politics are drop newest and drop

oldest. The "Dequeue_protocol" describe the

way elements in the queue are accessed, one

by one ("OneItem") or all at once (“AllItems").

Data ports have the simplest behavior, data is

sent at the end of the thread's execution and

is received at the next dispatch of the

receiving thread. Event and event data ports

have a very close behavior, they can send an

event or event data anytime during the

Page 2/10

execution of a thread. Events or events data

sent are queued in the destinations ports.

Input event and event data ports are

delivered at the dispatch of the thread. For

periodic threads that are harmonic, a data

connection can be declared as immediate or

delayed. If the connection is delayed data is

sent at the end of the period of the sending

thread. If the connection is immediate the

receiving thread must wait the sending thread

to complete and it receives data at the start of

its execution.

2.3 Communication through shared variables

As all AADL components, data has a type and

an implementation. The internal structure of

the data is described in the data

implementation. We can specify that different

components have a shared access to a data

subcomponent using the “require data

access” connector. The “provide data access”

connector is used to represent that a

component allows other components to

access to one of its data subcomponent. The

concurrency protocol used to access to a data

is defined by a data property called

“concurrency_control_protocol”.This

concurrency protocol can be implemented

through different concurrency control

mechanisms such as mutex, semaphore...

The data is locked when the thread enters in a

critical region, i.e. when the thread accesses

to the data. But the AADL standard does not

allow to describe precisely when the data is

accessed. The “provide” and “required data

access” connectors have a “Provide_Access”

and a “Required_Access” properties used to

defined the different form of access needed or

provided (read only, write only, read write).

2.4 Scheduling strategy

Thread models: Threads are the only

components that have an execution

semantics. AADL supports the classic types of

dispatch protocols, a thread can be declared

as periodic, aperiodic, sporadic or

background. All the standard properties

(WCET, deadline,...) used to described a real-

time system exist in AADL. Threads have two

predeclared event ports : dispatch and

complete. The dispatch port is used for

aperiodic or sporadic threads. If this port is

connected all other ports of the thread do not

trigger the dispatch. It's a very common

behavior for an aperiodic or a sporadic thread

to send an event on completion. In AADL, we

do not specify when an event is sent. The

complete event ports used to send an event

at the end of the execution.

Basic scheduling strategy: All the thread have

the same life cycle, this cycle can be

represented as an automaton. All threads

start in the awaiting dispatch

state. The dispatch condition depends on the

thread's type. If the thread is periodic it will be

dispatched at every period. At this time,

delivery occurs for all its input ports. An

aperiodic or a sporadic thread that does not

have its dispatch ports connected is

dispatched each time it receives an event.

Delivery occurs only for the port that triggers

the dispatch and the data ports. If its dispatch

port is connected, it is dispatched each time it

receives an event on this port, and delivery

occurs for all its others ports. The thread in

the active state that has the maximum

priority starts or continues its execution. The

priority of the thread is determined by the

chosen scheduling policy (RMA, EDF, LLF).

This policy is specified by a property of the

model. When a thread is dispatched it can

have a higher priority than the executing

thread. In this case, the executing thread is

preempted and goes back to the active state.

When a thread ends its execution it goes to

the “awaiting_dispatch” state until its next

dispatch. At this time, all the output data

ports of the thread are read and their content

is sent to their respective destination ports.

Impact of shared data on scheduling: The

precedent behavior is slightly modified when

Page 3/10

we used shared variables with concurrency

control. In order to take into account the

shared variables we just have to add a state

to the automaton. When an executing thread

tries to access to a locked shared variable, it

goes to this state. It can go back to the active

state when the variable is released. Here, we

do not specify when the data is locked. It

depends on the implementation used. If the

implementation describes the behavior of the

thread in a very precise way, you can lock the

shared variable for a very short time, just

when it is accessed. But if the model

describes a very abstract behavior, the most

strict implementation is to lock the shared

variable when the thread starts its execution

and to unlock it at the end of the execution.

Figure 1: Thread's life cycle

3. A formal model for AADL execution

model

In this section, we are concerned by setting a

formal semantics for the AADL execution

model. Although, AADL brings precise

semantics for real time components, to the

best of our knowledge, such semantics has

not been formalized with a formal notation

yet. The goal of such a semantics can be

twofold:

− first it can be used to reason about an

AADL design formally. Actually, since our

semantics is stated in the TLA formalism,

it will be possible to perform some

properties verification through model

checking.

− second it can be used as a formal

specification for the development of an

AADL execution platform. One can imagine

that an actual implementation would be

certified with respect to the proposed

model.

We are concerned by a subset of the

execution model only, we try to define a

subset small enough to be formalized easily

but with enough expressiveness to perform

small tests. The only components used in our

model are threads and data. The

communication between threads can be done

through ports or shared variables. For the

scheduling, we consider only periodic and

aperiodic threads. We implement a fixed

priority policy for the scheduling, with

preemption, and a simple access control

protocol for shared variables.

3.1 A brief presentation of TLA+

Specification in TLA+: TLA+[5] specifications

are organized into modules. A module

contains constants, variables, assumptions

and definitions.

We are concerned with transition systems.

While their state spaces can be defined using

variables with values in sets as just given,

TLA+ definitions are used to introduce the

following:

− The set of initial states, using a predicate

usually called Init.

− The set of transitions, using action

predicates. An action is a formula

containing primed (next state) variables

and unprimed (current state) variables.

Such a formula describes the relation

between the current state and next state

values of the variables.

Time in TLA+: In this section we present a

way of representing the evolution of time and

the expression of time constraints. As TLA

does not have pre-defined constructions to

manipulate time, we use an explicit time

approach proposed by Lamport. The basic

principle used by Lamport is obvious, we add

a variable called “now”. The evolution of this

variable represents the evolution of time. This

Page 4/10

variable is manipulated trough an operation

tick, this operation increases the value of

“now”. In order to express time constraints we

can use three kind of timers:

− expiration timer: The tick operation does

not change the value of the timer. It is set

to a value greater than now and the

timeout occurs when now = timer.

− count down timer: The tick decrease the

value of the timer. The timeout occurs

when timer = 0.

− count up timer: The tick increase the value

of the timer. The timeout occurs when the

timer equals a predefined constant.

Timers can be set up in the tick operation, or

in other part of the next transition.

3.2 General architecture

We have developed a generic TLA architecture

easily customizable. The kernel and ports

modules model the behavior of the execution

model described in the AADL standard. The

“threads behavior” module contains the

behavior of each thread. This behavior is

represented be a simple relation between the

input of a thread and it's output. We consider

that the calculation is atomic, even if the

thread can be preempted. The AADL model is

a set theory representation of an AADL model.

All the threads, ports, shared variables are

represented by sets, the interface of a thread

is defined by relations (associations between

ports, shared variables and threads). The

properties are also represented by relations.

The mapping between an AADL model and

this configuration module is really easy and

can be done automatically. The kernel module

contains the representation of the thread's life

cycle, and shared variables mechanisms. We

model in this module all the scheduling. For

each type of ports we have a corresponding

module in TLA. Each of these modules

represent all the ports of its type, for example

the out data port module represents all the

output data ports of the models. These

modules are parameterized by the sets and

relations defined in the module representing

the AADL model. Another way to represent

ports would have been to create one module

for each port of the model but the generation

from an AADL model would have been harder.

Figure 2: Global structure of our TLA

specification

3.3 AADL ports

The structure of our application has an impact

on the conception of operations. We don't

have simple variables, all the variables are

functions from a set of ports into a set of data,

or naturals. For example a simple event

counter is function from the sets of input

event ports. When we modify those variables

we have to calculate the relation that

associate modified ports to their new values

and then modifies the variable according to

this relation.

All the input ports have the same structure, a

set of variables, a set of constants and an

operation. The variables used are a buffer,

filled by the input ports, a delivered variable

and a fresh variable accessible from a thread.

Each input module contains a set of all its

ports, some additional constant relations

describe the properties associated to a port.

The deliver operation describes how the

elements are copied from the buffer to the

delivered variable.

Similarly all the output ports have a very close

structure. Each output port module has two

sets to define the input and output ports, a

variable for the connections between ports,

and some additional relations to describe the

Page 5/10

properties associated to a port. A “store” or

“raise_event” operation describes the

behavior of the port.

Figure 3: Structure of data ports

Not all the AADL specification is modeled. We

don't use immediate or delayed connexion

between ports, we use only the drop newest

policy for event and event data ports. We just

send event and event data at the end of the

execution. We could specify that an event can

be sent at any time but it would led to a

model on which we could not do any

verification, the number of generated traces

being too big.

3.4 AADL Threads

Threads are the only elements of AADL with

an execution semantics, the module

corresponding to threads is the center of our

architecture. All the system's variables are

declared in this module, all the instantiation of

other modules are also done here. Threads

are represented by a set, the interface and

the different properties of the threads are

relations.

As for ports, we don't respect totally the AADL

standard. Currently we use only periodic and

aperiodic threads. For aperiodic threads we

support only one type of dispatch. We

consider that the behavior of the thread is a

simple relation between its input and its

output. Those relations are described in a

separate TLA module.

The principle is obvious, we just have to

encode the automaton described in the first

section. A state of the figure corresponds to

one subset of the “Thread” set. Each

transition corresponds to a TLA operation, the

evolution of the whole system is a disjunction

of these operations. We have to ensure that

transition are done in a certain order. In

accordance with the technique presented by

Lamport, we use a global variable to represent

time, and timers to model different protocols

of scheduling. For example all threads have a

deadline timer, initialized at the dispatch to

the value of the deadline property of the

thread. This timer is decreased on each clock

tick if the thread is active or executing. If it

becomes less than zero the deadline is

missed. The whole system acts as a

stopwatch automaton, transitions are guarded

by timers and these timers are decreased only

in certain states.

4. Prototype

4.1 Framework

In this section, we outline the different tools

our framework relies on. For each one, we

give its main features.

Osate: OSATE[9], Open Source AADL Tool

Environment, is an Eclipse[14] plugin

dedicated to the edition of AADL models. The

metamodel of AADL is described in EMF, the

Eclipse language for metamodels. This tool

provides the backend for manipulate AADL

models in text or XMI. Moreover it includes

some analysis tools.

Topcased: The TOPCASED [3] project is

concerned by the definition and the

implementation of an Open Source

Environment for the development

of Critical Applications. With respect to

development TOPCASED supports the so

called model driven engineering. Actually,

modeling notations like UML, AADL, SYSML

and SDL are currently supported by the

TOPCASED toolkit. The architecture of

TOPCASED is illustrated by the following

figure:

Page 6/10

Figure 4: TOPCASED architecture

One of the features of TOPCASED is to

promote the use of the so-called pivot

languages. The following table illustrates

some of the tools currently available in

TOPCASED and the corresponding pivot

language.

Purpose Pivot

language

Tool

Data modeling

and

transformation

ecore ATL[15],

Kermeta[17]

, Acceleo

Verification Fiacre Fiacre

engine

Acceleo: Acceleo[10] is an open source code

generator. As it is an eclipse plugin, it uses

metamodels described in EMF. Even if it's

main usage is to generate code from UML

models, it accepts other metamodels, notably

AADL metamodel. From our point of view, one

major advantage of Acceleo is that it allows to

define Java services to be executed on nodes

of XMI tree. This permit to call OSATE built in

methods to recover information. For example,

the period of a thread can be defined as a

property of the thread group, of the thread, of

the thread implementation... OSATE supplies

Java methods that finds this kind of

information wherever it is defined. At last

Accelleo is now part of TOPCASED.

TLA tools: TLA tools are open source. They

consist in:

− a syntactic analyzer;

− a LaTeX pretty printer ;

− a model checker and a simulator for a

subset of TLA.

Currently, the verification process is

supported by the TLC model checker. The

proof process is not currently supported as

such. In fact, the proof process can be

considered as supported in the cases where

the exhaustive exploration of the model is

possible.

Architecture of the prototype: We use Acceleo

to define templates that express the relation

between an AADL model and it's

representation in TLA. We have one template

for the generation of the architecture part of

the model, plus non functional properties (the

AADL_model module), and a template for the

generation of the TLA module that contains

the behavior of threads. After editing an AADL

model we can generate TLA modules by

applying these templates. The generated

modules are used to parametrize our TLA

specification of the AADL execution model. We

can then run the TLC model checker to verify

some properties on the model. In the next

parts, we will show what kind of models and

what kind of properties can be checked.

Figure 5: architecture of the application

4.2 Restrictions on models

Here we have to deal, with two types of

restrictions, those that come from our

representation of the execution model, and

those that come from our translator. In the

latter case, there is mainly some syntactic

problems. In the translator we don't take care

about name-spaces, but in the TLA

Page 7/10

representation, we can't have, for example

two threads with the same name. In AADL,

nothing forbids two threads to have the same

name if they are not in the same container

(same process for example). This naming

problems occurs for all AADL elements. Thus

we have to take care of the different name we

use in a model. This restriction can be easily

circumvented by adding to each element

name the name of its container. As this work

is done on the instantiation of an AADL model,

the other solution would be to base our

translation on the instance of the AADL

model.

The second type of restrictions comes from

our decision to use only a subset of AADL in

the TLA specification. Here we will try to list

the major limitations of our model. As we said

in the first part of the paper, we consider that

threads are the only elements that have an

execution semantics. The communication

between threads can be made through ports

or shared variable. For the thread we need to

give all the needed informations for the

scheduling (period, wcet, deadline). A shared

variable is represented as a data component

accessed by threads. Each thread that access

to this variable must have a

requires_data_access port, type of access to

the data is defined in the properties of this

port. We consider that the thread lock the

data at the beginning of its execution and

release the lock at the completion time. For

each event or event data port we define the

length of the queue. The communication

between threads only happens at the dispatch

time and at the completion time.

Figure 6: Timing of communication in AADL

We implement a small part of the thread life

cycle, as defined in the first part of the paper.

We don't take into account the errors,

activation or deactivation mechanisms.

Currently the thread behavior generator is a

simple translator. It generates a standard

behavior: at the end of the execution the

thread send a data on each data and event

data ports and emit an event on each port.

4.3 Properties

In the current version of the prototype we

check for three type of properties, the

schedulability of the system, the size of

buffers, and the protection of shared data.

These three type of properties are verified by

the model checker. The shedulability analysis

takes into account periodic and aperiodic

threads. Aperiodic threads are dispatched on

the reception of an event. We considers that

there are two type of shared variables,

protected or not protected. In the first case a

thread can access to the variable only if it is

not already in use. In the latter case we

consider that the scheduling guarantee the

integrity of the data. When a property is

violated, the model checker gives the trace of

an execution trace that leads to the violation

of the property.

5. Perspectives

In this section we describe the current and

future work performed around AADL and the

framework presented here.

5.1 Modes

We started to study the mode mechanisms

described in the AADL standard. A first paper

will be published in [11]. In this paper we

describe the behavior of a system during a

mode switch. This description has been done

in TLA+. We try to study precisely all kind of

mechanisms that can be part of the mode

switch. As this is a very abstract vision of

mode switch, the aim of this initial description

Page 8/10

is to capture the semantics of mode change;

verifications should be possible once we have

refined this initial description by concrete

implementation of mode switching. Currently,

we have begun to sketch Giotto and AADL

mode switching. . Our goal is to integrate this

work in the framework we have presented

here. This would give us the possibility of

checking timed properties on the mode

switch, for example we could check that a

mode switch must happen in less than a

particular time. It is interesting to remark that

mode mechanisms in asynchronous systems

requires more attention than in synchronous

systems [12],[13]; actually, since we do not

assume the basic hypothesis of the

synchronous approach: zero time

computation, deterministic concurrency and

instantaneous communication, we have to

handle the transitional aspects related to

these concepts. From our point of view, the

formal specification of these aspects is

challenging and is worth consideration.

5.2 Releasing constraints on communications

In the presented work we impose strong

constraints on communications, i.e. we allow

communications only on the dispatch and on

the complete. Those restrictions are useful for

the model checking but. Fortunately AADL

version 2 will introduce special properties for

defining more precisely the timing of

communications. By integrating those

properties in our models we will be able to

describe some interactions between threads

during their executions. The same type of

technique can be applied for defining more

precisely the instants where a share data is

accessed.

5.3 Generating thread behavior

In this work the behavior of threads can not

be parameterized. An AADL extension exists

to define the behavior of threads, it is the

behavioral annex[16]. We should use this

language as an entry point for our generator

to derivate the behavior of threads in TLA. We

have already done several experimentations

for the definition of the semantics of the

behavioral annex in TLA. It follows that the

integration within our framework should be

straightforward.

5.4 Evolution of the prototype

The translation schemes defined in our

prototype are very simple and must be

detailed and validated. Currently the edition

of an AADL model an the translation into TLA

modules can be made in the TOPCASED

environment. We also want to integrate the

process of model checking to this

environment in order to have a single

integrated tool.

5.6 Scalability

At this time we only try this prototype on

small examples. With some realistic models

the generation of TLA modules should work

well. But the model checking of real models

with TLC might be too long. We have to test

our prototype in such case and possibly

choose another model checker.

6. Conclusion

In this paper, we have presented our current

work concerning the formalization of the AADL

execution model. This work has made us

much more confident about the

understanding of the basic AADL execution

model mechanisms. We have also related our

first experiments on the use of the

transformation tool Acceleo. Aside, from the

perspectives given in the preceding section,

we should also mention that our work is

currently the starting point for the translation

from AADL to Fiacre: the verification pivot

language of TOPCASED. Moreover, our work

has also been used as the starting point for

the translation[19] between a subset of AADL

and the real time specification for Java:

RTSJ[18].

Page 9/10

Aknowledgements: We would like to thank

Peter Feiler for initial discussions about this

work.

7. References

[1] SAE Aerospace: "SAE AS5506 : Architecture

Analysis and Design Language (AADL)", SAE

Internatinal, 2004.

[2] Jean-Paul Bodeveix, Mamoun Filali and Jean-

François Rolland: "AADL execution model

semantics, AADL communication semantics

in TLA", Technical Report, IRIT, 2007.

[3] Topcased: "Toolkit in OPen-source for Critical

Apllications and SystEms Development",

http://www.topcased.org .

[4] Jean-Raymond Abrial: “The B Book: Assigning

programs to meanings”, Cambridge

University Press, 1996.

[5] Leslie Lamport: “Specifying Systems:The

TLA+ Language and Tools for Hardware and

Software Engineers”, Addison-Wesley, 2002.

[6] D. Garlan and R. Monroe and D. Wile: “ACME:

An Architecture Description Interchange

Language”, CASCON'97, Toronto, 1997.

[7] Robert Allen: “A Formal Approach to Software

Architecture”, Carnegie Mellon, School of

Computer Science, 1997.

[8] S. Vestal: “MetaH User's Manual”, Honewell

Technology Drive, 1998.

[9] The SEI AADL Team: “An Extensible Open

Source AADL Tool Environment

(OSATE)”,Software Engineering Institute,

2006.

[10] Acceleo: “An open source code generator”,

http://www.acceleo.org/pages/home/en

[11] Jean-François Rolland, Jean-Paul Bodeveix,

Mamoun Filali, Dave Thomas and David

Chemouil: “Modes in asynchronous

systems”, UML&AADL'08, IEEE ICCECS,

Belfast (to appear).

[12] Florence Maraninchi and Yann Rémond:

“Mode-Automata: a new domain-specific

construct for the development of safe critical

systems”, Sci. Comput. Program., 2003.

[13] Jean-Pierre Talpin, Christian Brunette, Thierry

Gautier and Abdoulaye Gamatié:

“Polychronous mode automata”, EMSOFT '06:

Proceedings of the 6th ACM & IEEE

International conference on Embedded

software, Seoul, 2006.

[14] Frank Budinsky, David Steinberg, Ed Merks,

Ray Ellersick, and Timothy Grose: “Eclipse

Modeling Framework”, Addison-Wesley, 2003

[15] Jean Bézin,Erwan Breton,Grégoire Dupé and

Patrick Valduriez: “The ATL Transformation-

based Model Management Framwork”, IRIN,

2003

[16] Ricardo~Bedin França, Jean-Paul Bodeveix,

Mamoun Filali, Jean-François Rolland,David

Chemouil and Dave Thomas. The AADL

behaviour annex experiments and

roadmap.12th IEEE International Conference

on Engineering Complex Computer Systems

(ICECCS 2007), Auckland, New Zealand,

11/07/07-14/07/07, pages 377—382,

http://www.computer.org, 2007, IEEE

Computer Society.

[17] Zoé Drey, Cyril Faucher, Franck Fleurey, and

Didier Vojtisek: “Kermeta language reference

manual”, IRISA, 2006.

[18] A.Wellings. Concurrent and Real-Time

Programming in Java. Wiley, 2004.

[19] Jean-Paul Bodeveix, Raphael Cavallero, David

Chemouil, Mamoun Filali and Jean-François

Rolland. A mapping from AADL to Java-

RTSJ.International Workshop on Java

Technologies for Real-time and Embedded

Systems (JTRES), Vienna, Austria, 26/09/07-

28/09/07}}, ACM International Conference

Proceeding Series, pages 165—174.

8. Glossary

AADL:Architecture Analysis & Design Language

ADL: Architecture Design Language

ATL: Atlas Transformation Language

CMU: Carnegie Mellon Universitie

EMF: Eclipse modeling Framework

OSATE: Open Source AADL Tool Environment

TOPCASED: Toolkit in Open Source for Critical

Applications & Systems Development

UML: Unified Modeling Language

SEI: Software Engineering Institue

XMI: XML Metadata Interchange

Page 10/10

http://www.acceleo.org/pages/home/en

