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Abstract:  In  this  paper,  we  present  a 

specification  in TLA+ of an AADL execution 

model.  This  formal  specification  is  used  for 

deriving a prototype verification tool for AADL 

within  the  TOPCASED  development 

environment.
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1. Introduction

Model  driven  engineering  has  put  forward  a 

set  of  techniques  and  tools  to  enhance  the 

production of reliable software. In this context, 

architecture  description  languages  are  now 

well  accepted  as  a  way  to  express  the 

relevant  dynamic  properties  that  one  must 

first specify and then ensure. Since, we are at 

the  model  level,  in  order  to  specify  and 

ensure,  in  a  sound  way,  these  dynamic 

properties,  we  must  rely  on  a  well  defined 

execution  semantics.  Our  work  is  related  to 

that topic. More precisely, we are interested in 

enhancing the precise semantics of the AADL 

execution model by a formal semantics. More 

precisely,  we  look  for  specifying  formally 

relevant  fragments  of  the  AADL  execution 

model.  For  this  purpose,  we  have  used  the 

TLA+ [5] language. TLA+, the Temporal logic 

of Actions is well suited for describing, in an 

abstract  way,  the  behavior  of  a  system. 

Actually,  TLA+  has  already  been  used  to 

specify  as  well  hardware  protocols,  e.g., 

memory protocols, as software protocols, e.g., 

distributed consensus protocols. 

The rest of this paper is organized as follows: 

Section 2  introduces AADL and the features 

we are interested in.  Section 3 presents the 

main features of our formal model. Section 4 

presents  the  prototype  that  we  have 

elaborated.  Section  5  discusses  our 

perspectives with respect to our formal model 

and  to  our  tool.  Section  6  draws  some 

conclusions. 

2. AADL

AADL [1] is  an architecture design language 

standardized by the SAE.  This  language has 

been created to be used in the development 

of  real  time  and  embedded  systems.  As  a 

successor of MetaH [8], AADL capitalizes more 

than  10  years  of  experiments.  MetaH  is  a 

language developed  by  Honeywell  Labs  and 

used  in  numerous  experiments  in  avionics, 

flight control,  and robotic applications. AADL 

also  benefits  from  the  knowledge  on  ADLs 

acquired at CMU during the development of 

several ADLs, like ACME[6] and Wright[7].

2.1 The language

AADL  includes  all  the  standard  concepts  of 

any  ADL:  components,  connectors  used  to 

describe  the  interface  of  components,  and 

connections used to link components. The set 

of AADL's components can be divided in three 
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partitions, the software components (process, 

thread, thread group, subprogram, and data), 

the  hardware  components  (processor,  bus, 

memory,  device),  and a System component. 

Components can communicate through ports, 

synchronous calls, and shared data. A process 

represents  a  virtual  address  space,  or  a 

partition,  this  address  space  includes  the 

program  defined  by  its  sub-components.  A 

process must contain at  least  one thread or 

thread  group.  A  thread  group  is  a  logical 

organization of threads in a process. A thread 

represents a sequential flow of execution, it's 

the  only  AADL  component  that  can  be 

scheduled. A subprogram represents a piece 

of  code  that  can  be  called  by  a  thread  or 

another  program.  A  data  models  a  static 

variable used in the code, they can be shared 

by threads or processes.

A processor is an abstraction of the hardware 

and the software in charge of the scheduling 

and  the  execution  of  threads.  The  memory 

represents  any  platform  component  that 

stores  data  or  binary  code.  The  buses  are 

communication  channels  used  to  connect 

different  hardware  components.  The devices 

represent  interfaces  between  the  system 

described and its environment.

Systems  allow  to  compose  software 

components with hardware components. The 

interactions can be defined at a logical and a 

physical  level.  At  a  physical  level,  software 

components  are  associated  to  hardwares 

component, a thread to a processor, or a data 

to a memory for example. The logical level is 

used to describe the communication between 

hardware and software. At a logical level we 

can  define  communication  connections 

between processors or  devices and software 

components.

AADL uses the notion of mode to determine a 

set  of  active  components.  This  mechanism 

allows to describe dynamic architectures. The 

set of active components can be modified by 

the reception of an event.

The  AADL  standard  describes  a  strict 

semantics  of  execution,  this  semantics  is 

customizable using properties. We will present 

only  a  subset  of  AADL.  We  don't  take  into 

account the hardware components. Modes are 

not modeled yet, but it is planned to integrate 

them  in  our  model.  We  will  present  this 

semantic  aspect  for  the  communication 

through  ports,  the  scheduling  and  the 

communication through shared data. 

2.2 Communication through ports

AADL  proposes  three  types  of  ports:  data, 

event and event data ports. A port is declared 

to  be  in  an  input,  output  or  input/output 

mode.  It  can  be  used  to  transmit  data  or 

control or both. Ports are used to describe the 

interface of a component.  Data transmitted 

through ports is typed. Each input port has a 

fresh variable to define the state of the port, if 

a port has not received anything between two 

thread dispatches this variable is set to false. 

A  buffer  is  also  associated  with  each  input 

port, when an output port sends a data or an 

event  it  modifies  these  buffers.  On  the 

dispatch of a thread these buffers are copied 

into  the  local  memory  of  the  thread.  Some 

properties permit to customize the behavior of 

event  and  event  data  ports.  The  property 

"Queue_size"  determines  the  maximum 

number  of  events  that  can  be  received. 

“Overflow_handling_protocol”  describes  the 

behavior of the port in case of overflow, the 

two default politics are drop newest and drop 

oldest.  The "Dequeue_protocol"  describe  the 

way elements in the queue are accessed, one 

by one ("OneItem") or all at once (“AllItems"). 

Data ports have the simplest behavior, data is 

sent at the end of the thread's execution and 

is  received  at  the  next  dispatch  of  the 

receiving thread. Event and event data ports 

have a very close behavior, they can send an 

event  or  event  data  anytime  during  the 
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execution of a thread. Events or events data 

sent  are  queued  in  the  destinations  ports. 

Input  event  and  event  data  ports  are 

delivered  at  the  dispatch  of  the  thread.  For 

periodic  threads  that  are  harmonic,  a  data 

connection can be declared as immediate or 

delayed. If the connection is delayed data is 

sent at the end of the period of the sending 

thread.  If  the  connection  is  immediate  the 

receiving thread must wait the sending thread 

to complete and it receives data at the start of 

its execution.

2.3 Communication through shared variables

As all AADL components, data has a type and 

an implementation. The internal structure of 

the  data  is  described  in  the  data 

implementation. We can specify that different 

components have a shared access to a data 

subcomponent  using  the  “require  data 

access” connector. The “provide data access” 

connector  is  used  to  represent  that  a 

component  allows  other  components  to 

access to one of its data subcomponent. The 

concurrency protocol used to access to a data 

is  defined  by  a  data  property  called 

“concurrency_control_protocol”.This 

concurrency  protocol  can  be  implemented 

through  different  concurrency  control 

mechanisms  such  as  mutex,  semaphore... 

The data is locked when the thread enters in a 

critical region, i.e. when the thread accesses 

to the data. But the AADL standard does not 

allow to describe precisely when the data is 

accessed.  The  “provide”  and  “required  data 

access”  connectors  have a  “Provide_Access” 

and  a  “Required_Access”  properties  used  to 

defined the different form of access needed or 

provided (read only, write only, read write).

2.4 Scheduling strategy

Thread  models:  Threads  are  the  only 

components  that  have  an  execution 

semantics. AADL supports the classic types of 

dispatch protocols, a thread can be declared 

as  periodic,  aperiodic,  sporadic  or 

background.  All  the  standard  properties 

(WCET, deadline,...) used to described a real-

time system exist in AADL. Threads have two 

predeclared  event  ports  :  dispatch  and 

complete.  The  dispatch  port  is  used  for 

aperiodic  or  sporadic  threads.  If  this  port  is 

connected all other ports of the thread do not 

trigger  the  dispatch.  It's  a  very  common 

behavior for an aperiodic or a sporadic thread 

to send an event on completion. In AADL, we 

do  not  specify  when  an  event  is  sent.  The 

complete event ports used to send an event 

at the end of the execution.

Basic scheduling strategy: All the thread have 

the  same  life  cycle,  this  cycle  can  be 

represented  as  an  automaton.  All  threads 

start in the awaiting dispatch

state. The dispatch condition depends on the 

thread's type. If the thread is periodic it will be 

dispatched  at  every  period.  At  this  time, 

delivery  occurs  for  all  its  input  ports.  An 

aperiodic or a sporadic thread that does not 

have  its  dispatch  ports  connected  is 

dispatched  each  time  it  receives  an  event. 

Delivery occurs only for the port that triggers 

the dispatch and the data ports. If its dispatch 

port is connected, it is dispatched each time it 

receives an event  on this  port,  and delivery 

occurs for  all  its others ports.  The thread in 

the  active  state  that  has  the  maximum 

priority starts or continues its execution. The 

priority  of  the  thread  is  determined  by  the 

chosen  scheduling  policy  (RMA,  EDF,  LLF). 

This  policy is  specified by a  property  of  the 

model.  When  a  thread  is  dispatched  it  can 

have  a  higher  priority  than  the  executing 

thread.  In this  case,  the executing thread is 

preempted and goes back to the active state. 

When a thread ends its execution it goes to 

the  “awaiting_dispatch”  state  until  its  next 

dispatch.  At  this  time,  all  the  output  data 

ports of the thread are read and their content 

is sent to their respective destination ports.

Impact  of  shared  data  on  scheduling:  The 

precedent behavior is slightly modified when 
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we  used  shared  variables  with  concurrency 

control.  In  order  to  take  into  account  the 

shared variables we just have to add a state 

to the automaton. When an executing thread 

tries to access to a locked shared variable, it 

goes to this state. It can go back to the active 

state when the variable is released. Here, we 

do  not  specify  when  the  data  is  locked.  It 

depends on the implementation used.  If  the 

implementation describes the behavior of the 

thread in a very precise way, you can lock the 

shared  variable  for  a  very  short  time,  just 

when  it  is  accessed.  But  if  the  model 

describes a very abstract behavior, the most 

strict  implementation  is  to  lock  the  shared 

variable when the thread starts its execution 

and to unlock it at the end of the execution.

Figure 1: Thread's life cycle

3. A formal model for AADL execution 

model

In this section, we are concerned by setting a 

formal  semantics  for  the  AADL  execution 

model.  Although,  AADL  brings  precise 

semantics for real time  components, to the 

best of our knowledge, such   semantics has 

not  been  formalized  with  a  formal  notation 

yet.  The  goal  of  such  a  semantics  can  be 

twofold: 

− first  it  can  be  used  to  reason  about  an 

AADL design formally.  Actually,  since our 

semantics is stated in the TLA formalism, 

it  will  be  possible  to  perform  some 

properties  verification  through  model 

checking.

− second  it  can  be  used  as  a  formal 

specification  for  the  development  of  an 

AADL execution platform. One can imagine 

that  an  actual  implementation  would  be 

certified  with  respect  to  the  proposed 

model.

We  are  concerned  by  a  subset  of  the 

execution  model  only,  we  try  to  define  a 

subset small  enough to be formalized easily 

but  with  enough  expressiveness  to  perform 

small tests. The only components used in our 

model  are  threads  and  data.  The 

communication between threads can be done 

through  ports  or  shared  variables.  For  the 

scheduling,  we  consider  only  periodic  and 

aperiodic  threads.  We  implement  a  fixed 

priority  policy  for  the  scheduling,  with 

preemption,  and  a  simple  access  control 

protocol for shared variables.

3.1 A brief presentation of TLA+

Specification in TLA+: TLA+[5] specifications 

are  organized  into  modules.  A  module 

contains  constants,  variables,  assumptions 

and definitions. 

We  are  concerned  with  transition  systems. 

While their state spaces can be defined using 

variables  with  values  in  sets  as  just  given, 

TLA+  definitions  are  used  to  introduce  the 

following:

− The set of initial states, using a predicate 

usually called Init.

− The  set  of  transitions,  using  action 

predicates.  An  action  is  a  formula 

containing  primed  (next  state)  variables 

and  unprimed  (current  state)  variables. 

Such  a  formula  describes  the  relation 

between the current state and next state 

values of the variables. 

Time  in  TLA+:  In  this  section  we present  a 

way of representing the evolution of time and 

the  expression  of  time  constraints.  As  TLA 

does  not  have  pre-defined  constructions  to 

manipulate  time,  we  use  an  explicit  time 

approach  proposed  by  Lamport.  The  basic 

principle used by Lamport is obvious, we add 

a variable called “now”. The evolution of this 

variable represents the evolution of time. This 
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variable  is  manipulated  trough  an operation 

tick,  this  operation  increases  the  value  of 

“now”. In order to express time constraints we 

can use three kind of timers:

− expiration timer:  The tick operation does 

not change the value of the timer. It is set 

to  a  value  greater  than  now  and  the 

timeout occurs when now = timer.

− count down timer:  The tick decrease the 

value  of  the  timer.  The  timeout  occurs 

when timer = 0.

− count up timer: The tick increase the value 

of the timer. The timeout occurs when the 

timer equals a predefined constant.

Timers can be set up in the tick operation, or 

in other part of the next transition. 

3.2 General architecture

We have developed a generic TLA architecture 

easily  customizable.  The  kernel  and  ports 

modules model the behavior of the execution 

model  described  in  the AADL standard.  The 

“threads  behavior”  module  contains  the 

behavior  of  each  thread.  This  behavior  is 

represented be a simple relation between the 

input of a thread and it's output. We consider 

that  the  calculation  is  atomic,  even  if  the 

thread can be preempted. The AADL model is 

a set theory representation of an AADL model. 

All  the  threads,  ports,  shared  variables  are 

represented by sets, the interface of a thread 

is defined by relations (associations between 

ports,  shared  variables  and  threads).  The 

properties  are also represented by relations. 

The  mapping  between  an  AADL  model  and 

this  configuration module  is  really  easy and 

can be done automatically.  The kernel module 

contains the representation of the thread's life 

cycle, and shared variables mechanisms. We 

model in this module all  the scheduling. For 

each type of ports we have a corresponding 

module  in  TLA.  Each  of  these  modules 

represent all the ports of its type, for example 

the out  data port  module represents  all  the 

output  data  ports  of  the  models.  These 

modules are parameterized by the sets  and 

relations defined in the module representing 

the  AADL  model.  Another  way  to  represent 

ports would have been to create one module 

for each port of the model but the generation 

from an AADL model would have been harder.

Figure 2: Global structure of our TLA 

specification

3.3 AADL ports

The structure of our application has an impact 

on  the  conception  of  operations.  We  don't 

have  simple  variables,  all  the  variables  are 

functions from a set of ports into a set of data, 

or  naturals.  For  example  a  simple  event 

counter  is  function  from  the  sets  of  input 

event ports. When we modify those variables 

we  have  to  calculate  the  relation  that 

associate modified ports to their new values 

and then modifies  the variable  according to 

this relation.

All the input ports have the same structure, a 

set  of  variables,  a  set  of  constants  and  an 

operation.  The  variables  used  are  a  buffer, 

filled by the input ports, a delivered variable 

and a fresh variable accessible from a thread. 

Each  input  module  contains  a  set  of  all  its 

ports,  some  additional  constant  relations 

describe the properties associated to a port. 

The  deliver  operation  describes  how  the 

elements  are  copied  from the  buffer  to  the 

delivered variable. 

Similarly all the output ports have a very close 

structure.  Each output  port  module  has  two 

sets  to define the input and output ports,  a 

variable  for  the  connections  between  ports, 

and some additional relations to describe the 
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properties associated to a port.  A “store” or 

“raise_event”  operation  describes  the 

behavior of the port.

Figure 3: Structure of data ports

Not all the AADL specification is modeled. We 

don't  use  immediate  or  delayed  connexion 

between ports, we use only the drop newest 

policy for event and event data ports. We just 

send event and event data at the end of the 

execution. We could specify that an event can 

be  sent  at  any  time  but  it  would  led  to  a 

model  on  which  we  could  not  do  any 

verification, the number of  generated traces 

being too big.

3.4 AADL Threads

Threads are the only elements of AADL with 

an  execution  semantics,  the  module 

corresponding to threads is the center of our 

architecture.  All  the  system's  variables  are 

declared in this module, all the instantiation of 

other  modules  are  also  done  here.  Threads 

are  represented  by  a  set,  the  interface  and 

the  different  properties  of  the  threads  are 

relations.

As for ports, we don't respect totally the AADL 

standard. Currently we use only periodic and 

aperiodic  threads.  For  aperiodic  threads  we 

support  only  one  type  of  dispatch.  We 

consider that the behavior of the thread is a 

simple  relation  between  its  input  and  its 

output.  Those  relations  are  described  in  a 

separate TLA module. 

The  principle  is  obvious,  we  just  have  to 

encode the automaton described in the first 

section.  A state of the figure corresponds to 

one  subset  of  the  “Thread”  set.  Each 

transition corresponds to a TLA operation, the 

evolution of the whole system is a disjunction 

of these operations. We have to ensure that 

transition  are  done  in  a  certain  order.  In 

accordance with the technique presented by 

Lamport, we use a global variable to represent 

time, and timers to model different protocols 

of scheduling. For example all threads have a 

deadline  timer,  initialized  at  the dispatch to 

the  value  of  the  deadline  property  of  the 

thread. This timer is decreased on each clock 

tick if  the thread is active or executing. If  it 

becomes  less  than  zero  the  deadline  is 

missed.  The  whole  system  acts  as  a 

stopwatch automaton, transitions are guarded 

by timers and these timers are decreased only 

in certain states.

4. Prototype

4.1 Framework

In this section, we outline the different tools 

our  framework  relies  on.  For  each  one,  we 

give its main features.

Osate:  OSATE[9],  Open  Source  AADL  Tool 

Environment,  is  an  Eclipse[14]  plugin 

dedicated to the edition of AADL models. The 

metamodel of AADL is described in EMF, the 

Eclipse  language  for  metamodels.  This  tool 

provides  the  backend  for  manipulate  AADL 

models in text or XMI.   Moreover it  includes 

some analysis tools.

Topcased:  The  TOPCASED  [3]  project  is 

concerned  by  the  definition  and the 

implementation  of  an  Open  Source 

Environment  for  the  development

of  Critical  Applications.  With  respect  to 

development  TOPCASED  supports the  so 

called  model  driven  engineering.  Actually, 

modeling  notations  like UML,  AADL,  SYSML 

and  SDL  are  currently  supported  by  the 

TOPCASED  toolkit. The  architecture  of 

TOPCASED  is  illustrated  by  the  following 

figure: 
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Figure 4: TOPCASED architecture

One  of  the  features  of  TOPCASED  is  to 

promote  the  use  of  the  so-called  pivot 

languages.  The  following  table  illustrates 

some  of  the  tools  currently  available  in 

TOPCASED  and  the  corresponding  pivot 

language. 

Purpose Pivot 

language

Tool

Data modeling 

and 

transformation

ecore ATL[15], 

Kermeta[17]

, Acceleo

Verification Fiacre Fiacre 

engine

Acceleo: Acceleo[10] is an open source code 

generator.  As  it  is  an eclipse plugin,  it  uses 

metamodels  described  in  EMF.  Even  if  it's 

main  usage  is  to  generate  code  from  UML 

models, it accepts other metamodels, notably 

AADL metamodel. From our point of view, one 

major advantage of Acceleo is that it allows to 

define Java services to be executed on nodes 

of XMI tree. This permit to call OSATE built in 

methods to recover information. For example, 

the period of  a  thread  can be defined as  a 

property of the thread group, of the thread, of 

the thread implementation...  OSATE supplies 

Java  methods  that  finds  this  kind  of 

information  wherever  it  is  defined.  At  last 

Accelleo is now part of TOPCASED.

TLA  tools:  TLA  tools  are  open  source.  They 

consist in:

− a syntactic analyzer;

− a LaTeX pretty printer ;

− a  model  checker  and  a  simulator  for  a 

subset of TLA.

Currently,  the  verification  process  is 

supported  by  the  TLC  model  checker. The 

proof  process  is  not  currently  supported  as 

such.  In  fact,  the  proof  process  can  be 

considered as supported in the cases where 

the  exhaustive  exploration  of  the  model  is 

possible. 

Architecture of the prototype: We use Acceleo 

to define templates that express the relation 

between  an  AADL  model  and  it's 

representation in TLA. We have one template 

for the generation of the architecture part of 

the model, plus non functional properties (the 

AADL_model module), and a template for the 

generation  of  the  TLA module  that  contains 

the behavior of threads. After editing an AADL 

model  we  can  generate  TLA  modules  by 

applying  these  templates.  The  generated 

modules  are  used  to  parametrize  our  TLA 

specification of the AADL execution model. We 

can then run the TLC model checker to verify 

some  properties  on  the  model.  In  the  next 

parts, we will show what kind of models and 

what kind of properties can be checked.

Figure 5: architecture of the application 

4.2 Restrictions on models

Here  we  have  to  deal,  with  two  types  of 

restrictions,  those  that  come  from  our 

representation  of  the  execution  model,  and 

those  that  come from our  translator.  In  the 

latter  case,  there  is  mainly  some  syntactic 

problems. In the translator we don't take care 

about  name-spaces,  but  in  the  TLA 
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representation,  we  can't  have,  for  example 

two  threads  with  the  same name.  In  AADL, 

nothing forbids two threads to have the same 

name if  they are not in the same container 

(same  process  for  example).  This  naming 

problems occurs for all AADL elements. Thus 

we have to take care of the different name we 

use in a model. This restriction can be easily 

circumvented  by  adding  to  each  element 

name the name of its container. As this work 

is done on the instantiation of an AADL model, 

the  other  solution  would  be  to  base  our 

translation  on  the  instance  of  the  AADL 

model. 

The  second  type  of  restrictions  comes  from 

our decision to use only a subset of AADL in 

the TLA specification. Here we will  try to list 

the major limitations of our model. As we said 

in the first part of the paper, we consider that 

threads are the only elements that have an 

execution  semantics.  The  communication 

between threads can be made through ports 

or shared variable. For the thread we need to 

give  all  the  needed  informations  for  the 

scheduling (period, wcet, deadline). A shared 

variable is represented as a data component 

accessed by threads. Each thread that access 

to  this  variable  must  have  a 

requires_data_access  port,  type of  access to 

the data is  defined in  the properties  of  this 

port.  We  consider  that  the  thread  lock  the 

data  at  the  beginning  of  its  execution  and 

release the lock at the completion time. For 

each event or event data port we define the 

length  of  the  queue.  The  communication 

between threads only happens at the dispatch 

time and at the completion time. 

Figure 6: Timing of communication in AADL

We implement a small part of the thread life 

cycle, as defined in the first part of the paper. 

We  don't  take  into  account  the  errors, 

activation or deactivation mechanisms. 

Currently the thread behavior generator is a 

simple  translator.  It  generates  a  standard 

behavior:  at  the  end  of  the  execution  the 

thread send a data on each data and event 

data ports and emit an event on each port.

4.3 Properties

In  the  current  version  of  the  prototype  we 

check  for  three  type  of  properties,  the 

schedulability  of  the  system,  the  size  of 

buffers,  and  the  protection  of  shared  data. 

These three type of properties are verified by 

the model checker. The shedulability analysis 

takes  into  account  periodic  and  aperiodic 

threads. Aperiodic threads are dispatched on 

the reception of an event. We considers that 

there  are  two  type  of  shared  variables, 

protected or not protected. In the first case a 

thread can access to the variable only if it is 

not  already  in  use.  In  the  latter  case  we 

consider  that  the  scheduling  guarantee  the 

integrity  of  the  data.  When  a  property  is 

violated, the model checker gives the trace of 

an execution trace that leads to the violation 

of the property. 

5. Perspectives

In  this  section  we  describe  the  current  and 

future work performed around AADL and the 

framework presented here.

5.1 Modes

We  started  to  study  the  mode  mechanisms 

described in the AADL standard. A first paper 

will  be  published  in  [11].  In  this  paper  we 

describe  the  behavior  of  a  system during a 

mode switch. This description has been done 

in TLA+. We try to study precisely all kind of 

mechanisms  that  can  be  part  of  the  mode 

switch.  As  this  is  a  very  abstract  vision  of 

mode switch, the aim of this initial description 
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is to capture the semantics of mode change; 

verifications should be possible once we have 

refined  this  initial  description  by  concrete 

implementation of mode switching. Currently, 

we  have  begun  to  sketch  Giotto  and  AADL 

mode switching. . Our goal is to integrate this 

work  in  the  framework  we  have  presented 

here.  This  would  give  us  the  possibility  of 

checking  timed  properties  on  the  mode 

switch,  for  example  we  could  check  that  a 

mode  switch  must  happen  in  less  than  a 

particular time. It is interesting to remark that 

mode mechanisms in  asynchronous  systems 

requires more attention than in synchronous 

systems [12],[13];  actually,  since we do not 

assume  the  basic  hypothesis  of  the 

synchronous  approach:  zero  time 

computation,  deterministic  concurrency  and 

instantaneous  communication,  we  have  to 

handle  the  transitional  aspects  related  to 

these concepts.  From our point  of  view,  the 

formal  specification  of  these  aspects  is 

challenging and is worth consideration.

5.2 Releasing constraints on communications

In  the  presented  work  we  impose  strong 

constraints on communications, i.e. we allow 

communications only on the dispatch and on 

the complete. Those restrictions are useful for 

the  model  checking  but.  Fortunately  AADL 

version 2 will introduce special properties for 

defining  more  precisely  the  timing  of 

communications.  By  integrating  those 

properties  in  our  models  we will  be  able  to 

describe  some interactions  between  threads 

during  their  executions.  The  same  type  of 

technique  can  be  applied  for  defining  more 

precisely the instants where a share data is 

accessed. 

5.3 Generating thread behavior

In this work the behavior of threads can not 

be parameterized.  An AADL extension exists 

to  define  the  behavior  of  threads,  it  is  the 

behavioral  annex[16].  We  should  use  this 

language as an entry point for our generator 

to derivate the behavior of threads in TLA. We 

have already  done several  experimentations 

for  the  definition  of  the  semantics  of  the 

behavioral  annex  in  TLA.  It  follows  that  the 

integration  within  our  framework  should  be 

straightforward.

5.4 Evolution of the prototype

The  translation  schemes  defined  in  our 

prototype  are  very  simple  and  must  be 

detailed and validated.  Currently  the edition 

of an AADL model an the translation into TLA 

modules  can  be  made  in  the  TOPCASED 

environment.  We also  want  to  integrate the 

process  of  model  checking  to  this 

environment  in  order  to  have  a  single 

integrated tool.

5.6 Scalability

At  this  time  we  only  try  this  prototype  on 

small  examples.  With  some realistic  models 

the generation  of  TLA modules  should  work 

well.  But the model checking of real models 

with TLC might be too long. We have to test 

our  prototype  in  such  case  and  possibly 

choose another model checker.

6. Conclusion

In this paper, we have presented our current 

work concerning the formalization of the AADL 

execution  model.  This  work  has  made  us 

much  more  confident  about  the 

understanding  of  the  basic  AADL  execution 

model mechanisms. We have also related our 

first  experiments  on  the  use  of  the 

transformation  tool  Acceleo.  Aside,  from the 

perspectives given in the preceding section, 

we  should  also  mention  that  our  work  is 

currently the starting point for the translation 

from  AADL  to  Fiacre:  the  verification  pivot 

language of  TOPCASED.  Moreover,  our  work 

has also been used as the starting point for 

the translation[19] between a subset of AADL 

and  the  real  time  specification  for  Java: 

RTSJ[18].
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8.  Glossary

AADL:Architecture Analysis & Design Language

ADL:  Architecture Design Language

ATL: Atlas Transformation Language

CMU: Carnegie Mellon Universitie 

EMF: Eclipse modeling Framework

OSATE: Open Source AADL Tool Environment

TOPCASED: Toolkit  in  Open Source for  Critical 

Applications & Systems Development

UML: Unified Modeling Language

SEI: Software Engineering Institue

XMI: XML Metadata Interchange
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