J-F Rolland
email: rolland@irit.fr

J-P Bodeveix
email: bodeveix@irit.fr

D Chemouil

M Filali
email: filali@irit.fr

D Thomas
email: dave.thomas@astrium.eads.net

Towards a formal semantics for AADL execution model

Keywords: architecture description languages, dynamic properties, formal semantics, model checking

In this paper, we present a specification in TLA+ of an AADL execution model. This formal specification is used for deriving a prototype verification tool for AADL within the TOPCASED development environment.

Introduction

Model driven engineering has put forward a set of techniques and tools to enhance the production of reliable software. In this context, architecture description languages are now well accepted as a way to express the relevant dynamic properties that one must first specify and then ensure. Since, we are at the model level, in order to specify and ensure, in a sound way, these dynamic properties, we must rely on a well defined execution semantics. Our work is related to that topic. More precisely, we are interested in enhancing the precise semantics of the AADL execution model by a formal semantics. More precisely, we look for specifying formally relevant fragments of the AADL execution model. For this purpose, we have used the TLA+ [START_REF] Lamport | Specifying Systems:The TLA+ Language and Tools for Hardware and Software Engineers[END_REF] language. TLA+, the Temporal logic of Actions is well suited for describing, in an abstract way, the behavior of a system.

Actually, TLA+ has already been used to specify as well hardware protocols, e.g., memory protocols, as software protocols, e.g., distributed consensus protocols.

The rest of this paper is organized as follows:

Section 2 introduces AADL and the features we are interested in. Section 3 presents the main features of our formal model. Section 4 presents the prototype that we have elaborated.

Section 5 discusses our perspectives with respect to our formal model and to our tool. Section 6 draws some conclusions.

AADL

AADL [START_REF]SAE AS5506 : Architecture Analysis and Design Language (AADL)[END_REF] is an architecture design language standardized by the SAE. This language has been created to be used in the development of real time and embedded systems. As a successor of MetaH [8], AADL capitalizes more than 10 years of experiments. MetaH is a language developed by Honeywell Labs and used in numerous experiments in avionics, flight control, and robotic applications. AADL also benefits from the knowledge on ADLs acquired at CMU during the development of several ADLs, like ACME [START_REF] Garlan | ACME: An Architecture Description Interchange Language[END_REF] and Wright [START_REF] Allen | A Formal Approach to Software Architecture[END_REF].

2. [START_REF]SAE AS5506 : Architecture Analysis and Design Language (AADL)[END_REF] The language AADL includes all the standard concepts of any ADL: components, connectors used to describe the interface of components, and connections used to link components. We are concerned with transition systems.

While their state spaces can be defined using variables with values in sets as just given, TLA+ definitions are used to introduce the following:

-The set of initial states, using a predicate usually called Init.

-The set of transitions, using action

Prototype

Framework

In this section, we outline the different tools our framework relies on. For each one, we give its main features.

Osate: OSATE [START_REF] The | An Extensible Open Source AADL Tool Environment (OSATE)[END_REF], Open Source AADL Tool Environment, is an Eclipse [START_REF] Budinsky | Eclipse Modeling Framework[END_REF] plugin dedicated to the edition of AADL models. The metamodel of AADL is described in EMF, the Eclipse language for metamodels. This tool provides the backend for manipulate AADL models in text or XMI. Moreover it includes some analysis tools. We implement a small part of the thread life cycle, as defined in the first part of the paper.

We don't take into account the errors, activation or deactivation mechanisms.

Currently the thread behavior generator is a simple translator. It generates a standard behavior: at the end of the execution the thread send a data on each data and event data ports and emit an event on each port.

Properties

In the current version of the prototype we check for three type of properties, the schedulability of the system, the size of buffers, and the protection of shared data.

These three type of properties are verified by the model checker. The shedulability analysis takes into account periodic and aperiodic threads. Aperiodic threads are dispatched on the reception of an event. We considers that there are two type of shared variables, protected or not protected. In the first case a thread can access to the variable only if it is not already in use. In the latter case we consider that the scheduling guarantee the integrity of the data. When a property is violated, the model checker gives the trace of an execution trace that leads to the violation of the property.

Perspectives

In this section we describe the current and future work performed around AADL and the framework presented here.

Modes

We started to study the mode mechanisms described in the AADL standard. A first paper will be published in [START_REF] Rolland | Modes in asynchronous systems[END_REF]. In this paper we describe the behavior of a system during a mode switch. This description has been done in TLA+. properties in our models we will be able to describe some interactions between threads during their executions. The same type of technique can be applied for defining more precisely the instants where a share data is accessed.

Generating thread behavior

In this work the behavior of threads can not be parameterized. An AADL extension exists to define the behavior of threads, it is the behavioral annex [START_REF] França | The AADL behaviour annex experiments and roadmap[END_REF]. We should use this language as an entry point for our generator to derivate the behavior of threads in TLA. We we should also mention that our work is currently the starting point for the translation from AADL to Fiacre: the verification pivot language of TOPCASED. Moreover, our work has also been used as the starting point for the translation [START_REF] Bodeveix | A mapping from AADL to Java-RTSJ[END_REF] between a subset of AADL and the real time specification for Java:

RTSJ [START_REF] Wellings | Concurrent and Real-Time Programming in Java[END_REF].

2. 4

 4 Scheduling strategy Thread models: Threads are the only components that have an execution semantics. AADL supports the classic types of dispatch protocols, a thread can be declared as periodic, aperiodic, sporadic or background. All the standard properties (WCET, deadline,...) used to described a realtime system exist in AADL. Threads have two predeclared event ports : dispatch and complete. The dispatch port is used for aperiodic or sporadic threads. If this port is connected all other ports of the thread do not trigger the dispatch. It's a very common behavior for an aperiodic or a sporadic thread to send an event on completion. In AADL, we do not specify when an event is sent. The complete event ports used to send an event at the end of the execution. Basic scheduling strategy: All the thread have the same life cycle, this cycle can be represented as an automaton. All threads start in the awaiting dispatch state. The dispatch condition depends on the thread's type. If the thread is periodic it will be dispatched at every period. At this time, delivery occurs for all its input ports. An aperiodic or a sporadic thread that does not have its dispatch ports connected is dispatched each time it receives an event. Delivery occurs only for the port that triggers the dispatch and the data ports. If its dispatch port is connected, it is dispatched each time it receives an event on this port, and delivery occurs for all its others ports. The thread in the active state that has the maximum priority starts or continues its execution. The priority of the thread is determined by the chosen scheduling policy (RMA, EDF, LLF). This policy is specified by a property of the model. When a thread is dispatched it can have a higher priority than the executing thread. In this case, the executing thread is preempted and goes back to the active state. When a thread ends its execution it goes to the "awaiting_dispatch" state until its next dispatch. At this time, all the output data ports of the thread are read and their content is sent to their respective destination ports. Impact of shared data on scheduling: The precedent behavior is slightly modified when we used shared variables with concurrency control. In order to take into account the shared variables we just have to add a state to the automaton. When an executing thread tries to access to a locked shared variable, it goes to this state. It can go back to the active state when the variable is released. Here, we do not specify when the data is locked. It depends on the implementation used. If the implementation describes the behavior of the thread in a very precise way, you can lock the shared variable for a very short time, just when it is accessed. But if the model describes a very abstract behavior, the most strict implementation is to lock the shared variable when the thread starts its execution and to unlock it at the end of the execution.

Figure 1 :

 1 Figure 1: Thread's life cycle

 predicates. An action is a formula containing primed (next state) variables and unprimed (current state) variables. Such a formula describes the relation between the current state and next state values of the variables. Time in TLA+: In this section we present a way of representing the evolution of time and the expression of time constraints. As TLA does not have pre-defined constructions to manipulate time, we use an explicit time approach proposed by Lamport. The basic principle used by Lamport is obvious, we add a variable called "now". The evolution of this variable represents the evolution of time. This variable is manipulated trough an operation tick, this operation increases the value of "now". In order to express time constraints we can use three kind of timers: -expiration timer: The tick operation does not change the value of the timer. It is set to a value greater than now and the timeout occurs when now = timer. -count down timer: The tick decrease the value of the timer. The timeout occurs when timer = 0. -count up timer: The tick increase the value of the timer. The timeout occurs when the timer equals a predefined constant. Timers can be set up in the tick operation, or in other part of the next transition.3.2 General architecture We have developed a generic TLA architecture easily customizable. The kernel and ports modules model the behavior of the execution model described in the AADL standard. The "threads behavior" module contains the behavior of each thread. This behavior is represented be a simple relation between the input of a thread and it's output. We consider that the calculation is atomic, even if the thread can be preempted. The AADL model is a set theory representation of an AADL model. All the threads, ports, shared variables are represented by sets, the interface of a thread is defined by relations (associations between ports, shared variables and threads). The properties are also represented by relations. The mapping between an AADL model and this configuration module is really easy and can be done automatically. The kernel module contains the representation of the thread's life cycle, and shared variables mechanisms. We model in this module all the scheduling. For each type of ports we have a corresponding module in TLA. Each of these modules represent all the ports of its type, for example the out data port module represents all the output data ports of the models. These modules are parameterized by the sets and relations defined in the module representing the AADL model. Another way to represent ports would have been to create one module for each port of the model but the generation from an AADL model would have been harder.

Figure 2 :

 2 Figure 2: Global structure of our TLA specification

Figure 3 :

 3 Figure 3: Structure of data ports

Topcased

 figure:

Figure 4 :

 4 Figure 4: TOPCASED architecture

Figure 5 : architecture of the application 4 . 2

 542 Figure 5: architecture of the application

Figure 6 :

 6 Figure 6: Timing of communication in AADL

5 . 4

 54 have already done several experimentations for the definition of the semantics of the behavioral annex in TLA. It follows that the integration within our framework should be straightforward. Evolution of the prototype The translation schemes defined in our prototype are very simple and must be detailed and validated. Currently the edition of an AADL model an the translation into TLA modules can be made in the TOPCASED environment. We also want to integrate the process of model checking to this environment in order to have a single integrated tool. 5.6 Scalability At this time we only try this prototype on small examples. With some realistic models the generation of TLA modules should work well. But the model checking of real models with TLC might be too long. We have to test our prototype in such case and possibly choose another model checker. 6. Conclusion In this paper, we have presented our current work concerning the formalization of the AADL execution model. This work has made us much more confident about the understanding of the basic AADL execution model mechanisms. We have also related our first experiments on the use of the transformation tool Acceleo. Aside, from the perspectives given in the preceding section,

Aknowledgements: We would like to thank Peter Feiler for initial discussions about this work.