Jim Krodel 
  
Technology Changes In Aeronautical Systems

Keywords: Formal Methods, Object Oriented Technology, Model, Airborne Software, Software Technology, Software Approval

Guidance for producing airborne software today must be developed to the expectations of ED-12B/DO-178B "Software Considerations in Airborne Systems and Equipment Certification".[1] EASA and the FAA have formally recognized this 'objectivebased' aviation software guidance and it has proven to be extremely successful in the development of safe, in-service, operational aircraft containing software. Since its publication in 1992, ED-12B/DO-178B has gain respect as a standard that meets the goals of safety in the airborne community. However recent technology advances such as Object Oriented Technology, Model Based Design, Software Tools and Formal Methods have applied methods that require elaboration of how the ED-12B/DO-178B objectives will be met. This paper discusses the approach for introducing new technologies with legacy aviation standards.

Introduction

ED-12B/DO-178B has established the respect of the aviation community, but it has also gained respect in other domains such as rail, nuclear, and medical. Even today, after 15 years of use, the guidance in ED-12B/DO-178B remains a viable approach to support the certification of aviation systems. However the emergence of software related technologies over these past 15 years has 'stretched' how certification applicants apply these technologies given the original foundations laid in ED-12B/DO-178B.

International certification authorities have drafted several papers to assist with the application of these technology issues such as Object Oriented Technology, but this approach does not permit the general aviation software developer to participate in the paper or position development. Clearly, the certification authority wants to recognize how to properly apply these technologies, but because of the noteworthy safety record of ED-12B/DO-178B, they are cautious of new technology adoption. On the other hand some of these technologies can provide additional safety benefit in handling the large computer intensive systems being built into today's aircraft. This dilemma is being worked by the joint international group WG-71 / SC-205. This group is working to retain the successful core tenets of ED-12B/DO-178B, while permitting a mechanism to introduce technology specific or method specific supplemental guidance.

ED-12B/DO-178B

2.1 Early Development of ED-12B/DO-178B ED-12B/DO-178B provides a means of developing software for airborne systems and although other means are possible, the excellent aviation software safety record since ED-12B/DO-178B's inception demonstrates its effectiveness.

ED-12B/DO-178B was originally based on the FARs/JARs of both the US and European aviation regulatory authority and was developed jointly by RTCA, Inc. based in Washington, DC and EUROCAE based in Malakoff, France. Both RTCA and EUROCAE form special committees and working groups to develop guidance in producing aviation systems. In this case they jointly formed guidance to develop software in airborne systems and equipment. The aviation certification authorities have recognized the software guidance developed by these joint groups since the mid 1990's, but when we considers the several years it took to generate this guidance we can see that the guidance is based on software technology knowledge as it was in the mid 1980's.

To build an airborne certified system, several other standards are used including ARP-4761 (Safety Methods), ARP-4754 (System Development Process), DO-254 (Hardware Development Process), and of course ED-12B/DO-178B (Software Development Process). ED-12B/DO-178B is used once the system is defined and safety requirements are allocated to the software. Certifying a system is a multi-step process as defined by the previously mentioned documents. Figure 1 shows how these documents and steps interrelate. Step 1: With the aircraft requirements, determine the functions to be performed.

Step 2: Perform an Aircraft Functional Hazard Assessment (FHA) per ARP4761 and identify failure conditions and effects.

Step 3: These failure conditions and effects permit effective allocation of the system requirements

Step 4&5: With system functions established a system Functional Hazard Analysis can be performed to develop the systems architecture (redundancy, safe modes of operation, etc.)

Step 6: A Preliminary System Safety Assessment (PSSA) is then performed on the system architecture based on the system FHA to determine if the associated requirements and architecture meet safety objectives.

Step 7: Finally, the system (including the supporting software) can be implemented.

There are other considerations, throughout this process such as a Common Cause Analysis (CCA) on the system, its architecture and associated implementation to avoid any common mode errors. With these steps completed, a proper System Safety (SSA) Assessment and a demonstration of compliance to these guiding documents, the system can be certified.

It is clear with this view of the system development that software is simply part of the overall system and ED-12B/DO-178B simply guides developers what to do to permit usage of that software on the system. Indeed ED-12B/DO-178B tells the user "what" should be done to develop systems with software, but not "how". The how is defined by the developer via their plans.

A set of plans such as Plan for Software Aspects of Certification (PSAC), Software Quality Assurance Plan (SQAP), Software Configuration Management Plan (SCMP), Software Verification Plan (SVP), and Software Development Plan (SDP) provides insight into the approaches to defining how the user will meet the objectives of ED-12B/DO-178B as applied to the requirements, design, code and verification processes of the developing software.

Maturity of ED-12B/DO-178B

After several years of ED-12B/DO-178B use, it was clear that new software techniques were starting to stress the interpretation of its words and as such other standards documents were needed and created to further clarify and support ED-12B/DO-178B. For example in 2001, ED-94B/DO-248B was written and contains a set of discussion papers and frequently asked questions that assists in understanding the objectives to be met for those developing aviation software. [START_REF]B "Final Report for the Clarification of DO-178B Software Considerations in Airborne Systems and Equipment Certification[END_REF] In fact with the advent of new techniques since the inception of ED-12B/DO-178B, the task of approving software in certified system became very complex and the FAA developed their own document called the "FAA Job Aid" to assist them and others in understanding proper approaches to approving software in airborne systems.

New software techniques such as Object Oriented Technology, Model Based Design, Software Tools and Formal Methods have applied methods that require elaboration of how the ED-12B/DO-178B objectives will be met.

Object Oriented Technology

Compliance with the objectives of ED-12B/DO-178B is the primary means of obtaining approval of software used in civil aviation products. In 1992, when ED-12B/DO-178B was born, procedure programming was the predominant technique for organizing and coding computer programs. Consequently, ED-12B/DO-178B provides guidelines for software developed using a functional technique. OOT is a software development technique that is expressed in terms of objects and connections between those objects. Since object-oriented technology differs from the traditional functional approach to software development, satisfying some of the ED-12B/DO-178B objectives when using OOT may be unclear and/or complicated.

Although OOT is intended to promote productivity, increase reusability of software, and improve quality, uncertainty about how to comply with certification requirements has been a key obstacle to using OOT in airborne systems.

Due to this difficulty in applying ED-12B/DO-178B to the OOT domain, the FAA co-sponsored the Object-Oriented Technology in Aviation (OOTiA) project with the National Aeronautics and Space Administration (NASA) to address OOT challenges in aviation. The FAA, NASA, and other organizations developed workshops and this workshop committee produced a handbook specifically addressing object oriented technology. [START_REF]Draft Tools Supplement[END_REF] Issues with the technology that arose that were difficult to apply with ED-12B/DO-178B were the use of dynamic memory allocation / deallocation that is used in OOT primarily because it challenges the deterministic characteristics of airborne systems. Likewise traceability of the design and code, key to ED-12B/DO-178B's verification completeness objective, is difficult to demonstrate with OOT approaches.

Model Based Design

Model based design holds the hope of alleviating the burden of the costly development of today's aviation systems. Flight test or even tests conducted in special test equipment rigs are extremely costly and in many cases permit only 'black box' testing of the product under development, which typically does not fully test the robustness of the product.

If we can build a perfect model of the environment that the product will operate in, then we can more robustly test the product, its modes of operation and how it will detect and accommodate faults induced by the environment.

The "if" of the previous paragraph is in bold, and justifiably so, as it is a very big 'if'. If we can build a perfect model, then we could take credit for testing with that model and reduce the costly flight or rig test that are currently performed. And yet although we know that it is not likely, if we could build a perfect model, how would you determine the pedigree of the model? This is one aspect of product development that ED-12B/DO-178B did not address and as such clarification in this area is needed.

Formal Methods

Formal methods have always held the intrigue that we would be able to build a system so precise and exact that we know it would be correct. The foundations for such a claim are based on the specification of the system in a mathematical sense. Rushby defines formal methods as mathematically based techniques for the specification, development and verification of software and hardware systems that are based on formal logic, discrete mathematics, and computer-readable languages. [START_REF] Rushby | Formal Methods and the Certification of Critical Systems[END_REF] Formal methods allow properties of a system to be predicted from a mathematical model of the system.

We can think of formal methods in two parts, formal specification and formal verification. In formal specification we see the use of mathematics-based languages that provide precise, unambiguous descriptions of requirements and other development objects. In formal verification, we see deduction or proof that relies on a discipline that requires the explicit enumeration of all assumptions and reasoning steps. Formal verification also encompasses model checking, which is the process of automatically checking whether a given finite model of an object satisfies a given property.

Formal methods generally constitute a specification language and an accompanying tool or set of tools that are consistent, complete, and not ambiguous. The benefits promised by such languages and tools are the anticipated improvement of requirement quality, the reduction of specification errors and the permitting of verification techniques, which fully explore the behavior of a design.

Yet there are acknowledged limitations, such as not being able to fully establish the verification evidence for compatibility with the target hardware. Formal methods further cannot ensure that a formally specified requirement correctly meets its non-formal parent requirement(s) and it cannot verify anything that is not explicitly stated as a property. Along with this is a fear that formalizing requirements or designs may increase the effort required to specify them, particularly for complex systems. And finally although we would like to think we could precisely specify the system, somewhere in the life cycle, there will be at least some bit of informality. The assumptions made in translating requirements or designs from the informal to the formal may not be clear, or may misrepresent to some degree a sufficient model of the real system. "Traditional software development methods rely on human inspection and testing for validation and verification. Formal methods also uses testing, but they employ notations and languages that are amenable to rigorous analysis, and they exploit mechanical tools for reasoning about the properties of requirements, specifications, designs, and code. Practitioners have been skeptical about the practicality of formal methods. Increasingly, however, there is evidence that formal methods can yield systems of very high dependability in a costeffective manner, …." [START_REF]Software for Dependable Systems: Sufficient Evidence? Daniel Jackson[END_REF] ED-12B/DO-178B holds very little guidance in the area of formal methods. Formal methods are merely recognized as alternative methods that admittedly have limited applicability to the airborne community at the time when ED-12B/DO-178B was written. When using formal methods different forms of evidence may be used to substantiate its suitability in order to meet the intent of certain objectives from ED-12B/DO-178B, rather than the actual objectives. If a process is used to satisfy ED-12B/DO-178B that provides different evidence and does not directly meet the objectives, there is a need to demonstrate clearly that the alternate process is equivalent. The regulatory authorities have been rather uncomfortable with such a 'meet the intent' approach, and as such have been reticent to embrace formal methods as a recognized practice for airborne system and equipment development.

Software Development and Verification Tools

We have all recognized that developing systems without the assistance of computerized tools would be impossible. And the range of sophistication of these tools is broad. ED-12B/DO-178B encourages the use of such tools, but is cautious when the tools are used to reduce or eliminate the objectives set forth in ED-12B/DO-178B. ED-12B/DO-178B divides tools that take some form of 'credit' for an objective into two categories, that is, those tools (development) that can directly affect the target software such as an auto-code generator tool, and those tools (verification) that can affect the verification of the target system. ED-12B/DO_178B states that development type tools must be created to the same rigor as that software criticality level of the target system. It is clear that ED-12B/DO-178B wants to assure that any tool taking credit for objectives has been qualified, such that its operation is correct and can be relied upon. A similar approach is taken for verification tools, but the rigor is somewhat less.

The cost for developing tools to this rigor can be rather high and it has made tool developers reluctant to provide their tools as 'qualified' to this level because of this cost burden. As such, airborne system developers are left with further burdensome and costly development practices because they cannot take credit for using the tool. The industry has recognized that further guidance in the use of development and verification tools to reduce system development costs is in order to permit a more cost effective development yet still one that would yield a safe system. [START_REF]Draft Tools Supplement[END_REF] 

Integrating New Technologies in Legacy Guidance

Since ED-12B/DO-178B's inception in 1992, it has become the foundation for all aviation-based systems that contain software components. Its track record is exceptional as noted before and as such the industry has been reluctant to make significant changes to it. An example of this is the work conducted by joint SC-190/WG-52, which clarified some of the issues with ED-12B/DO-178B, but was not permitted to change the core ED-12B/DO-178B document.

Even today, joint committee SC-205/WG-71 is trying to address the new technology needs of tools, formal methods, model-base design and object oriented technology yet in a manner that limits somewhat the scope of change to ED-12B/DO-178B.

The question arises is how can we keep the core tenants of successful guidance such as ED-12B/DO-178B yet still meet emerging technology needs? Further questions arise with regards to new technologies that may not even be recognized as viable approaches for the aviation domain. The solution that SC-205/WG-71 has devised is to minimally modify the core of ED-12B/DO-178B and provide a technology supplement that has a specific interface specification to the core document and objectives.

The approach taken is to amend the core document in such a way as to be receptive to the introduction of new technology. This is being accomplished by the production of a technology interface specification, which will define what must be addressed in a technology supplement to sufficiently address the new guidance a technology supplement may provide. Figure 2 pictorially shows the approach. Any issues that were raised with ED-12B/DO-178B were recorded in an issue list and the four aforementioned technologies were included on this issue list. The four technology supplements are being developed by sub-groups internal to SC-205/WG-71 that holds specialists in those areas of technology with a firm knowledge of the aviation domain and approval authority process. Each of the supplements being developed has participation from the certification authorities such that the guidance being developed will be one that the certification authorities can embrace. 

Conclusion

A guidance document for developing software in airborne systems and equipment, namely ED-12B/DO-178B has become deeply ingrained in those organizations that develop such products. This guidance has become a common ground for the understanding of developing, verifying, integrating and approving this software such that there is a high level of confidence in the deployed system's ability to perform its tasks safely.

As new approaches and technologies arise in the software development domain of such embedded systems an effective means for integrating these technologies to the core tenets of ED-12B/DO-178B has occurred. Specific areas being worked include Software Tools Technology, Model-Based Development Technology, Object Oriented Technology and Formal Methods. The approach taken is to develop technology supplements that abide to an overall core document interface specification such that the core document can effectively be applied to the new technology. This approach of developing supplemental guidance to a core guidance document such as ED-12B/DO-178B provides a basis for keeping pace with new emergent technologies without the need to rewrite the core document as these new technologies emerge.

Figure 1 :

 1 Figure 1: ED-12B/DO-178B System Development

Figure 2 :

 2 Figure 2: Technology Integration in Core Guidance

Acknowledgement

The author acknowledges the contribution of Scott Beecher of Pratt & Whitney in the preparation of this work and the efforts of joint SC-205/WG-71 that have been developed to date.

Glossary