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Abstract In the context of waves in periodic me-
dia, we propose an iterative algorithm that deter-
mines an optimal material distribution to reach tar-
get e�ective dispersive properties. It relies on an
homogenized model of this medium, an update pro-
cedure based on the topological derivative concept,
and on an e�cient FFT-accelerated method to solve
cell problems.
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Introduction We are interested in standing
waves in unbounded two-dimensional domains
�lled with a periodic medium, e.g. antiplane
elastic shear waves. The material is made of
cells Y` = `Y , where Y is the reference unit cell
and ` the characteristic periodicity length (Fig.
1). At circular frequency ω, the wave amplitude
u` obeys the equation:

∇ ·
(
µ`∇u`

)
+ ρ`ω

2u` = 0, (1)

where µ` and ρ` are the Y`-periodic shear modu-
lus and density of the medium.

In the long wavelength regime (λ > `), the
motion can be described approximatively by the
superposition of a slowly varying mean �eld U
and higher-order (in ε = `/λ) oscillating correc-
tors. Given an e�ective (homogenized) model
satis�ed by U , the e�ective dispersion of the
medium is characterized by the variations of the
phase velocity c(k,d) = ω(k,d)/k of a plane
wave U(x) = exp(ikd · x) when the wavenum-
ber k and direction d vary. Here we adopt the
following direction-dependant dispersion indica-
tor:

γ(d) :=
∂2c2(k,d)

∂k2

∣∣∣∣
k=0

. (2)

In this work, the goal is to optimize the
material distribution within the unit cell Y to
reach some target e�ective dispersive proper-
ties, in particular to maximize their anisotropy.
The proposed method relies on four main com-
ponents: a second-order homogenized e�ective
model, the topological derivatives of the model's
coe�cients, an iterative topological optimiza-
tion algorithm for the unit cell, and an e�cient

ℓ ≪ λ

Ba(z) =z+aB

b

a ≪ ℓ

Figure 1: Periodic material and small phase change

�xed-point FFT method to evaluate these topo-
logical derivatives at each iteration. These com-
ponents are now described in more details.

Second-order homogenized model The two-
scale asymptotic homogenization method [1,3] is
a popular way to derive an e�ective model from
the equation (1). One obtains a fourth-order
wave equation for the mean �eld U :

µ0 : ∇2U + ω2%0U

+ `2
[
µ2 :: ∇4U + ω2%2 : ∇2U

]
= 0, (3)

where (µ0, %0,µ2,%2) are constant tensors com-
puted by solving cell problems over Y [3], �:�
and �::� indicate inner products between second-
and fourth-order tensors, and ∇j = ∇(∇j−1).
Moreover, this model coincides with the one ob-
tained by the Bloch-Floquet wave method (see
[1, Sect. 3] for the case ρ` = 1). The dispersion
indicator γ de�ned by (2) is then simply given
by:

γ(d) = 2`2
[
%2 ⊗ µ0 − %0µ2

(%0)2

]
:: (d⊗d⊗d⊗d).

(4)

Topological optimization of the unit cell

To reach a target dispersive behavior, one �rst
de�nes a cost functional to be minimized, e.g.

J(Y ;d1,d2, . . . ,dNd
) =

1

2

 Nd∑
j=1

wj [γ(dj)]
αj

 ,

(5)
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where each exponent αj is �xed to 2 (resp −2)
to minimize (resp. maximize) the dispersion in
direction dj and the positive constants wj are
user-de�ned weights that balance the contribu-
tion of each term in the cost functional. This
cost functional depends on the cell Y implicitely
through the homogenized coe�cients that inter-
vene in the expression (4) of γ.

An iterative topological optimization algo-
rithm, already used in microstructural optimiza-
tion of static properties [2], is then adapted to
the present situation. We restrain ourselves to
two-phase cells, which are described thanks to
a level-set function ψ. At each iteration, the
update of this function is based on the concept
of topological sensitivity (TS) of the cost func-
tional to an in�nitesimal phase change at point
z, supported by a small disc Ba of size a � `,
as depicted in Figure 1. This TS, denoted DJ ,
is the leading-order coe�cient of the following
expansion of the perturbed cost functional Ja:

Ja = J + (a/`)2DJ(z) + o
(
(a/`)2

)
.

The negative minima of the map z 7→ DJ(z)
thus indicates the locations in Y where a small
phase change would decrease J the most. Fol-
lowing [2], the level-set update ψn → ψn+1 is
done by partial projections of ψn onto the TS
DJ . The algorithm stops when the optimality
condition DJ > 0 is reached, indicating a local
minimum of J .

Computational considerations At each it-
eration, the TS DJ is computed by simple alge-
braic combinations of the TSs of the four coe�-
cients (µ0, %0,µ2,%2) whose evaluation requires
the resolution of 12 direct and adjoint scalar po-
tential problems on the current material con�g-
uration of the cell Y , as speci�ed in [3].

To solve these problems, we adopted the FFT-
accelerated algorithm proposed by Moulinec and
Suquet in the 90's (see e.g. the introduction
of [4]), that permits (i) a meshless representa-
tion of the unit cell as an image, (ii) a very sim-
ple implementation of the whole procedure and
(iii) good computational performances.

An example of microstructure obtained with
the proposed procedure is presented in Fig. 2.
We also note that a similar study is conducted
in [1], using the shape derivative of the homog-
enized coe�cients rather than their topological
derivative to update the level-set.
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Figure 2: Microstructure optimization to maximize
the dispersion in the directions θ = ±π/4 and mini-
mize it in the directions θ = 0, π/2 (Nd = 4 in the
de�nition (5) of J). The unit cell is discretized into
128 × 128 pixels and initialized with a random dis-
tribution of materials 1 (white pixels) and 2 (black
pixels). The material ratios are µ2/µ1 = 6 and
ρ2/ρ1 = 1.5. The optimality condition was reached
after 9 iterations. (a) Initial unit cell, (b) �nal unit
cell, (c) resulting microstructure (3×3 unit cells) and
(d) �nal dispersion indicator γ.
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