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Introduction We are interested in standing waves in unbounded two-dimensional domains lled with a periodic medium, e.g. antiplane elastic shear waves. The material is made of cells Y = Y , where Y is the reference unit cell and the characteristic periodicity length (Fig. 1). At circular frequency ω, the wave amplitude u obeys the equation:

∇ • µ ∇u + ρ ω 2 u = 0, (1) 
where µ and ρ are the Y -periodic shear modulus and density of the medium.

In the long wavelength regime (λ > ), the motion can be described approximatively by the superposition of a slowly varying mean eld U and higher-order (in ε = /λ) oscillating correc- 

γ(d) := ∂ 2 c 2 (k, d) ∂k 2 k=0 . (2) 
In this work, the goal is to optimize the material distribution within the unit cell Y to reach some target eective dispersive properties, in particular to maximize their anisotropy.

The proposed method relies on four main components: a second-order homogenized eective model, the topological derivatives of the model's coecients, an iterative topological optimization algorithm for the unit cell, and an ecient Second-order homogenized model The twoscale asymptotic homogenization method [START_REF] Allaire | Optimization of dispersive coecients in the homogenization of the wave equation in periodic structures[END_REF][START_REF] Bonnet | Microstructural topological sensitivities of the second-order macroscopic model for waves in periodic media[END_REF] is a popular way to derive an eective model from the equation ( 1). One obtains a fourth-order wave equation for the mean eld U :

ℓ ≪ λ B a (z) =z+aB a ≪ ℓ
µ 0 : ∇ 2 U + ω 2 0 U + 2 µ 2 :: ∇ 4 U + ω 2 2 : ∇ 2 U = 0, (3) 
where (µ 0 , 0 , µ 2 , 2 ) are constant tensors computed by solving cell problems over Y [START_REF] Bonnet | Microstructural topological sensitivities of the second-order macroscopic model for waves in periodic media[END_REF], : and :: indicate inner products between secondand fourth-order tensors, and ∇ j = ∇(∇ j-1 ).

Moreover, this model coincides with the one obtained by the Bloch-Floquet wave method (see [START_REF] Allaire | Optimization of dispersive coecients in the homogenization of the wave equation in periodic structures[END_REF]Sect. 3] for the case ρ = 1). The dispersion indicator γ dened by ( 2) is then simply given by:

γ(d) = 2 2 2 ⊗ µ 0 -0 µ 2 ( 0 ) 2 :: (d ⊗ d ⊗ d ⊗ d). (4) 

Topological optimization of the unit cell

To reach a target dispersive behavior, one rst denes a cost functional to be minimized, e.g. is the leading-order coecient of the following expansion of the perturbed cost functional J a :

J(Y

; d 1 , d 2 , . . . , d N d ) = 1 2   N d j=1 w j [γ(d j )] α j   ,
J a = J + ) 2 DJ(z) + o (a/ ) 2 .
The negative minima of the map z → DJ(z) thus indicates the locations in Y where a small phase change would decrease J the most. Following [START_REF] Amstutz | Topological derivative for multi-scale linear elasticity models applied to the synthesis of microstructures[END_REF], the level-set update ψ n → ψ n+1 is done by partial projections of ψ n onto the TS DJ. The algorithm stops when the optimality condition DJ > 0 is reached, indicating a local minimum of J.

Computational considerations At each iteration, the TS DJ is computed by simple algebraic combinations of the TSs of the four coecients (µ 0 , 0 , µ 2 , 2 ) whose evaluation requires the resolution of 12 direct and adjoint scalar potential problems on the current material conguration of the cell Y , as specied in [START_REF] Bonnet | Microstructural topological sensitivities of the second-order macroscopic model for waves in periodic media[END_REF].

To solve these problems, we adopted the FFTaccelerated algorithm proposed by Moulinec and Suquet in the 90's (see e.g. the introduction of [START_REF] Moulinec | Convergence of iterative methods based on Neumann series for composite materials: Theory and practice[END_REF]), that permits (i) a meshless representation of the unit cell as an image, (ii) a very simple implementation of the whole procedure and (iii) good computational performances.

An example of microstructure obtained with the proposed procedure is presented in Fig. 2.

We also note that a similar study is conducted in [START_REF] Allaire | Optimization of dispersive coecients in the homogenization of the wave equation in periodic structures[END_REF], using the shape derivative of the homogenized coecients rather than their topological derivative to update the level-set. 

  tors. Given an eective (homogenized) model satised by U , the eective dispersion of the medium is characterized by the variations of the phase velocity c(k, d) = ω(k, d)/k of a plane wave U (x) = exp(ikd • x) when the wavenumber k and direction d vary. Here we adopt the following direction-dependant dispersion indicator:
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 1 Figure 1: Periodic material and small phase change

  where each exponent α j is xed to 2 (resp -2)to minimize (resp. maximize) the dispersion in direction d j and the positive constants w j are user-dened weights that balance the contribution of each term in the cost functional. This cost functional depends on the cell Y implicitely through the homogenized coecients that intervene in the expression (4) of γ. An iterative topological optimization algorithm, already used in microstructural optimization of static properties [2], is then adapted to the present situation. We restrain ourselves to two-phase cells, which are described thanks to a level-set function ψ. At each iteration, the update of this function is based on the concept of topological sensitivity (TS) of the cost functional to an innitesimal phase change at point z, supported by a small disc B a of size a , as depicted in Figure 1. This TS, denoted DJ,
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 2 Figure 2: Microstructure optimization to maximize the dispersion in the directions θ = ±π/4 and minimize it in the directions θ = 0, π/2 (N d = 4 in the denition (5) of J). The unit cell is discretized into 128 × 128 pixels and initialized with a random distribution of materials 1 (white pixels) and 2 (black pixels). The material ratios are µ 2 /µ 1 = 6 and ρ 2 /ρ 1 = 1.5. The optimality condition was reached after 9 iterations. (a) Initial unit cell, (b) nal unit cell, (c) resulting microstructure (3×3 unit cells) and (d) nal dispersion indicator γ.
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