D Laroudie

An End-to-End Model Based Tool Chain for Architecture Exploration

Keywords: Tools Chain, Model Based Development, E/E Architecture

This paper will present how it is possible to federate the usage of the design tools around a framework based on an Eclipse Front-End to describe, simulate and test real time embedded systems enabling users to deeply explore their E/E designs.

Introduction

In the world of E/E (Electrical/Electronic) design, the methodologies of the software development were for a long time established around different and complementary activities which follow in general the V cycle: System Design / General Design / Detailed Design / Implementation / Unitary Test / Integration Tests / Delivery. Engineers with different technical skills (System Architects, Software Designers, Test engineers,...) whom support the various engineering activities throughout the development cycle and more largely throughout the system development process, use various methodologies supported by various tools.

Nowadays, in « Embedded World », engineers have to cope with the design of highly sophisticated systems whose the main features are:

• Expected high level functionalities which are extremely complex, • Future systems integrating ready-to-use components (i.e. : IP component ; e.g. Autosar SWC),

• Many software components communicating and distributed on many computation units (ECU..).

In this situation, tasks previously sequential have to be performed in parallel. It also required for engineers to collaborate on tasks such: Design, Simulation, Test and Integration with intent to increase the re-use along the V cycle.

Accordingly, the approach, which consists in federating the use of the tools of E/E model based design around a system level framework, is innovating.

In particular, this paper will show how it makes it possible to increase the re-use, the quality and the automation of the low value and time consuming tasks.

The E/E architecture

The current embedded systems contain a collection of consistent electronic components realizing functions. The E/E architecture is the synthesis of this assembling. Each high level function supported by this architecture is based on:

• A functional view, • A hardware view,
• A mapping of the functional view on the hardware view.

This collection of views is one of the possible representation of the targeted E/E architecture. These views can be described statically (e.g.: a sketch) and dynamically (e.g.: a behavioral model).

They bring each a part of the response. Ones compared to the others have to be consistent to insure a correct design and associated to the « modeling/simulation » principle, each of the views can be validated.

The functional view of the E/E architecture

The static functional view can be described using tools like Visio, Word, PowerPoint, Simulink or StateMate (empty subsystems) or others, in a graphical way. Engineers can also use tabular based tools like Excel or others to describe such a view.

Once this view has been described, some consistent rules can be applied at this level (e.g.: « No flow in the air ») to help designers to validate and verify this design level and improve the quality of this design step.

The dynamic functional view can be simulated by using tools like Simulink or StatMate. These latter are totally fitted to this task. As the functional view, the static hardware view can be described in a graphical way using tools like Visio, Word, PowerPoint and engineers can also use tabular based solutions. Some consistent rules can also be defined and applied (e.g.: « All ECUs connected to at least one network »).

The simulation of such a view needs a dedicated tool which integrates behavioral models of ECUs, Sensors, Actuators, Networks and Wires.

These models must describe accurately these components from the HW level (numerical/analogical behavior) to the SW one (low level software). These models should cover:

The mapping view of the E/E architecture

This view summarizes how functions are allocated on ECUs (on tasks) and how flows inter-ECUs are allocated on Networks (on signals, in frames). As before, the static description can be achieved in a graphical way or by using tabular based solutions.

Here, it is necessary to have a bridge with networks communication matrix and a tabular view seems to be well adapted to describe the set of mapping information:

• Allocation of functions on tasks,

• Allocation of flow on networks,

• Selection of tasks activation period,

• …

Consistent rules can also be applied also (e.g.: « all functions have to be integrated into software tasks »). At this stage, the static design can be considered as finished.

The simulation of the mapping view needs a dedicated tool. It has to integrate at the same time, models from the functional and the hardware view.

It has to be well-adapted to simulate both the functional level and the non-functional one (OS, networks, HW) and interaction between the two (i.e.:« the software on its platform »). Here, one of the use case is to proceed to one allocation choice to another very easily and without «breaking everything ».

At this stage, it's out of question to design E/E System level models by hand. To succeed in this task, only technologies like model generationtransformation, can achieve this goal.

ECU #4

Input This collaborative System engineering framework is built on 4 great principles: flexibility, opening, facility of deployment and facility of maintenance and leans on 3 pillars: This solution brings answers to the general problem "Does the System fit in the box?"

• A System level Authoring Tool, • A Simulation Tool, • A Test Authoring Tool.

A well defined process

This framework is based on a well defined process including the static and dynamic description of the 3 complementary views of an E/E architecture (functional, hardware and mapping).

The System Architect Tool leans on different descriptions including a Functional Description (functions and flows), a Hardware Description (ECUs, Networks, Sensors/actuators) and Mapping of the Functional Description on the Hardware one, not forgetting, the communication matrix and the interfaces of the behavioural description.

This System tool has been designed to easily enable not to re-enter project data of the design process, but importing them from tools like Simulink, StateMate, Scade, Rhapsody, etc. This is the cornerstone of this tool.

The System modelling phase primarily allows users to increase the quality by improving data consistency and re-use. The technical foundation of the tool is a UML metamodel containing the objects and their links (interrelation). This UML class model is designed to be closest possible from systems to represent. The model concepts group thus:

• The notion of functional view,

• The notion of hardware view,

• The notion of mapping.

The tool is developed in the Open source Eclipse (EMF) environment. Associated to the static description of the E/E system, the dynamic description gives the user the possibility to simulate the chosen E/E architecture by using models of different levels:

EE Data Editor

Architecture

• behavioral models of functions, • behavioral models of E/E System environment, • behavioral models of communication media, • behavioral models of ECUs.

(E/E System/software vision)

and by using engineering techniques of models transformation to generate the final model for simulation.

To create this simulation model, the inputs are the static architecture and the behavioral descriptions (functional/non functional levels). The activities perform during the simulation phase covered tests for normal/damaged and dysfunctional modes by faults injection means, in summary: Performances Analysis and Architecture Exploration.

The simulator

The simulator used by the framework is based on Geensys's solution: RT-Builder, which is a eventdriven simulator/debugger engine and allows users on one hand, to study by simulation the dynamic behaviour of their real time application software architecture (virtual prototype of the targeted application), on the other hand to reach early definition of optimal architecture choices (performances analysis).

The simulation allows multiple iterations on system performance evaluations; in a quick, simple and cost-effective manner, performance estimations of different types can be assessed, at different stages in the development cycle.

• Point to point response time,

• CPUs loads, • Load estimation for communications.

• ….

Users can either help define performance budgets requested by project teams in the early phase of system specification or help reevaluate impact of ECOs on the overall system performance during downstream development phases.

The comprehensive virtual prototype of the targeted application built by model generation, enable users to analyse various performance aspects of their system, eventually observe and "reason" on their application at different levels -functional level -untimed-as well as application execution level, taking into account functional and non functional architecture artefacts. That is to say:

• Monitor the execution of the functional parts, • Monitor the execution of the timed functional parts,

• Do performances analysis.

A fault injection mode further extends analysis capabilities at system level -RT-Builder fault analysis specifically looks at degraded modes and their effects on interactions between the application software and its execution platform (correlation between CPU states, networks and application), but also the nominal/degraded modes, do failures analysis and help in the diagnostic validation.

Architecture Exploration and Performances analysis

The RT-Builder event-driven simulator can be controlled interactively, randomly or by user scenarios. An integrated debugger gives the user possibilities like: step-by-step simulation, numerical traces generation, breakpoints, tokens display and complex observer creation capabilities (assertions).

A batch mode is also available. The debugger has also the possibility to monitor the flow of events and/or data between graphical components.

Simulation of the Scheduling

The simulation engine implemented in the tool is based on an event-driven simulation associated to simulated real time. In this context, GANT diagrams can be used to monitor the temporal behaviour of OS tasks, that is to say, the scheduling on the ECUs. It is possible to observe how the tasks are running, how the tasks are pre-empted, how the tasks are exchanging data, events… At this step, the simulator used in conjunction with the debbuger, can allow the user to detect interlocking problems because of the scheduling.

Figure 1: Simulation of the real time scheduling on several ECUs.

Simulation of the Communication

The simulation of bus communications helps to emphasize frames transfer time, queuing time during transmission and reception in FIFOs, but also give the timing execution and bus load. As the communication impacts the task scheduling (e.g.: by locking a task which waits for an event), these information can, of course, concern the user who tries to optimize its task distribution on ECUs of its architecture.

The Test Authoring Tool

The Test oriented Authoring Tool leans on one idea, the re-usabililty: test cases created at the design step, have to be reusable during integration and validation phases.

To enable this re-use, tests have to be written using a high-level language (a specification language and not a implementation one) ; a meta-model describing what a test case is, answers this requirement.

This tool has automatic model transformation means to make scenarios usable at the same time, for simulation tools or test benchs. The test cases edition is driven by the model (Model Based Testing).

This has as an interest to ease and make possible the test and the validation of the whole design model (thus containing models of ECUs -low and application levels-sensors, actuators, networks…) by System, Design, and Specification Engineers. It thus enables to perform definition works of test campaigns for the various levels of E/E architecture:

• Functional tests ,

• Communication tests,

• Services Layers tests,

• Nominal/Degraded tests,

• Diagnostic tests.

Positioning in the design flow

The described framework is positioned at the frontier of different skills of the Embedded Electronics.

System Engineers can simulate and analyze on its HW architecture model, the low level functions (communication, message switching, HW and SW modes, and middleware) and verify that the whole system behaves correctly. SW Design Engineers can test its design choices (grouping functions in a task, choice of the execution mode and the activation period of tasks…) and validate with Specification Engineers that the latter, do not have an influence on the functional requirements of the application.

Proof of concept

9.1 1 st Experimentation: One ECU: "Virtual results against real ones" To validate the level of accuracy of the simulation kernel of RT-Builder, a standard control/command law has been developped in Simulink and prototyped on a dSPACE HW.

Each function has been allocated to a task (event or timer-driven) and managed by a preemptive OS. The typical cycle time was the millisecond.

The functional results obtained in RT-Builder were accurate at 10 -12 , compared to the ones obtained on the dSPACE HW. 9.2 2 nd Experimentation: Several ECUs "Eases achievement of models of various configuration and distribution options very quickly."

This second example is based on a high level automotive application distributed on 6 ECUs, with 30 dedicated frames on 3 networks. Such application took around one men-year of work to be modelled in an Authoring tool. This modelization included:

• ECUs description (behaviour level) • Networks description (behaviour level) • Application level.

The final model was very complex to maintain and was representative of only one possibility of implementation (one possible mapping has been tested).

With the framework, such a work took around two month for one person to describe the whole system in the editor, to create the dedicated libraries and to generate a simulation model for RT-Builder.

It was very simple to generate models based on different mapping hypothesis and run the related simulation once the E/E model has been created and/or imported in part.

Conclusion

This paper illustrated each of the prime technology concepts of this framework of models generation, system description, functional description, hardware architecture description and mapping. It highlighted how can the different concepts be used to define a simple but comprehensive system metamodel, which -when combined with multifaceted models -make it possible to very quickly simulate the complete system, run what if analysis on various configuration and distribution options and give control back to development teams.

Glossary

 Figure 1: Functional view (The functional view is mainly composed of functions and functional flows.)

 Figure 3: Mapping view (The mapping consists of allocating functions and functional flows on architecture elements.)

Figure 4 :

 4 Figure 4: System tool import/export capabilities

Figure 2 :

 2 Figure 2 : Simulation of a Bus communication

Figure 3 :

 3 Figure 3 : Simulation of an application on its architecture.

 Denis is the pre-sales manager for "Model Based Design" products line in Geensys. He supports customers of Automotive, Aerospace, Defence and Space as an expert consultant and help them to deploy solutions around Verification and Validation concepts, offered by Geensys. denis.laroudie@geensys.com

	ECU: Electronic Control Unit
	CPU: Central Processing Unit
	FIFO: First In First Out
	EEPROM: Electrically Erasable Read Only Memory
	WCET: Worst Case Execution Time
	OS: Operating System
	EE: Embedded Electronics -Electrical/Electronic
	SW: Software
	HW: Hardware
	SCADE is a tool from Esterel Technologies,
	Simulink/Stateflow is a tool from The Mathworks,
	StateMate is a tool from I-Logix/Telelogic
	12. Biography
	Denis LAROUDIE
	(Author and Speaker)