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Abstract: The computers used for Railway 
Automation have increasing their level of safety and 
availability, especially for providing expected answer 
to Unattended Train Operation. 

To achieve these demanding requirements, relevant 
answers have to be addressed. In this article, we 
first present the architecture of our computer, based 
on a vital coding processing, and its embedded 
redundancy feature, which both allow the 
achievement of an efficient architecture providing the 
high availability requested by the above mentioned 
Railway Applications.  

We then present the principles used in the safety 
design and used to bring out the safety evidences.  
We will specifically highlight the safety and 
performance issues raised by assembling two single 
vital computers into a redundant configuration. 
Nevertheless, we have to stress that in our choice of 
design, the redundancy is used only to address the 
availability goal. 

Keywords: Availability, Safety, Redundancy, 
Computer, Railway Applications 

1. Introduction 

The computers used for Railway Automation have 
increasing needs on safety and availability.  In the 
case of Unattended (Manless) Train Operation those 
requirements became unconditional; the availability 
goals are very high to avoid any major disruption of 
operation. Such operation cannot afford a total stop 
of traffic due to any single failure. 

In addition to these high availability requirements, 
the complexity of functions and the system 
performances are increasing significantly. 

To achieve these demanding requirements, an 
appropriate answer has to be given. The computer 
design cannot be anymore seen as a single 
computer with a redundancy, but as a pair of 
computers providing a vital fault tolerant system. 

Our redundancy protocol based on fault tolerant 
principle makes two redundant computer units work 
as symmetrically as possible. The achievement of 
the consistency of the two units makes possible to 
switch to any computer at anytime, without taking 
any care, neither at the application level nor at the 
system level. This valuable point has the benefit of 
reducing the complexity of the system and the safety 

analyses. We can say that the switching process is 
seamless from the functional part of the application 
and from the system point of view. 

In order to understand the specificities of our 
redundancy protocol, we first introduce the 
architecture of our computer, based on a vital coding 
processing (Sect. 2), without the redundant 
architecture. We then present our previous 
redundancy principles (Sect. 3). We finally introduce 
the integrated redundancy feature, which provides 
the high availability requested by the above 
mentioned Railway Applications (Sect. 4), starting 
from the principles and goals, then switching to the 
inner design. For conclusion, we address the 
benefits and limitations of our vital fault tolerant 
system. 

2. Vital Computer Overview 

The DIGISAFE© XME vital computer is the upgrade 
of the DIGISAFE© platform, used on railways 
system automation since 1989: SACEM systems [5], 
then on METEOR (Paris L14, in Unattended Train 
Operation) in 1998, and New-York Canarsie Line in 
2005. 

This vital computer is based on vital coding 
techniques using a single processor. These 
techniques guarantee that any computation which 
does not comply with the relevant specified software 
will be detected in a safe manner. In other words, 
either the source code is compiled, linked, uploaded, 
and executed as intended; or the vital computer 
detects the error (with a very high probability) and 
set itself in a safe mode. 

 

2.1 Architecture 

The DIGISAFE vital computer is the platform used in 
CBTC railway applications for the onboard vital 
controller and for the wayside vital controller. This 
computer is used to fulfill SIL4 sub-systems 
requirements [2]. The DIGISAFE© architecture has 
been described precisely in [4]. For the 
comprehension of this paper, we nevertheless 
provide a short description hereafter. 
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Figure 1: Architecture without redundancy 

 

In order to fulfill this role, DIGISAFE© secures all the 
processing from the inputs to the outputs, including 
the different layers of the software architecture. 

The vital analog wired inputs are processed by 
dedicated vital boards, which convert the input signal 
into a coded time-stamped message, which in turn is 
sent to the inner layers of processing. The 
acquisition and the coding of the inputs are both 
consistent with the SIL4 safety level requirements. 

Cyclically, the vital application is triggered. The 
inputs are then used in regular computations which 
produce finally the outputs. In order to check that 
these computations are handled properly with 
respect to the source code, all vital data are coded. 
Each vital variable consists in two fields. The first 
field is the functional part Xf, which contains the 
requested value of the variable (an integer, boolean, 
array...) and it is processed by regular computation. 
The second field is the coded part Xc  of the variable, 
it contains all the information required to secure the 
computations and values, it is processed by 
dedicated vital algorithms. 

The coded part contains a static signature 
representative from the occurrence of the variable 
and of the operations used on the variable, an 
arithmetic part representative from Xf, and a time-
stamp in order to guarantee the freshness of the 
variable. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Logical tool- and execution-chain 

Any data, message, equipment is called off-code 
when the variable (Xf,,Xc) is not consistent with 
regard to the code, and in-code when it is. 

To make easy the use of such coded variables, and 
to use them as regular variable at the application 
level, primitive operations on these data (OPELs) are 
defined in order to manipulate the code itself. This 
also brings the benefit of encapsulating the 
manipulation of the code in a dedicated part of the 
computer. 

To make the check easier, a specific tracer is used. 
It allows propagating the code status. If one 
computation leads to an off-code status, the tracer 
remains off-code. 

Vital digital messages are transmitted between 
equipment. These messages are transmitted through 
non-vital layer seen as black boxes, but are packed 
in a specific form, called a vital message. The 
packing function uses a specific code in order to 
check the integrity of the message Only vital 
applications are able to modify or create a message 
without damaging it. A damaged (off-code) message 
is detected by the receiver, thanks to the code. 
Given equipment are only able to pack in-code 
messages if they are themselves in-code. 

The analog wired outputs are first worked out by the 
Vital Application, and then are sent to the DIGISAFE 
bus, in order to command through the vital output 
boards, the vital output signal. The vital output data 
is sent with its code and a time-stamped. The output 
board applies functionally the output. A vital 
checking is made at any time in order to verify the 
consistency of the actual status of the output and the 
expected status considered at the application level. 
To do so, the dynamic controller (CKD) reads vitally 
the code of the actual status and checks if the value 
complies with the expected value. If a discrepancy is 
detected, the outputs are de-energized (vitally 
guaranteed). 

Dedicated sensors can be used with the DIGISAFE 
computer. The most common are the odometer 
(coded phonic wheel, or optical speed sensor) and 
the transponder reader. Both are vital, precise, and 
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involved in the process of computing the train 
position and speed. 

Of course, apart from these vital I/O and software 
computations, DIGISAFE allows the handlings of 
non-vital streams, as well as the execution of non-
vital task. 

 

2.2 Properties 

The safety properties of this architecture are 
numerous: 

The safety proof of the computer does not rely on 
the digital component of the computer (processor, 
memory, network, etc.) but only on the protection 
offered by the code, which complies with the SIL4 
safety levels requirements; 

This safety principle guarantees that any error which 
may occur on any vital part of the application, would 
lead to an error in the vital outputs (and the 
messages). It will cause these outputs to be off-
code. This also leads to the fine property that all the 
software and data which have an impact on the 
values of the vital outputs are required to use the 
OPELs. In other words, the software parts which do 
not use the OPELs do not need to be considered 
during the safety analyses on the application. 

The principles used for the time-stamping of the 
outputs code have the property that this code can 
only be consistent with the values of the outputs if 
the outputs are applied at the proper time. This 
allows (together with a vital clock) to guarantee that 
the proper cycle time is enforced. 

To sum up, if anything leads to an error during the 
processing of the cycle, the outputs will be off-code, 
and de-energized: one DIGISAFE computer 
guarantees alone the safety. This is indeed sufficient 
to guarantee the safety behavior of our applications. 

Nevertheless, the railway applications become more 
and more complicated, and need more than a simple 
control/command calculator: the computers involved 
in the operation of a line cannot be reset without 
severely impairing the system availability of the line. 

This is particularly true for Unattended Train 
Operation, when a reset of an onboard computer 
could paralyze the train in a tunnel, until manual 
recovery handled by an operator. 

For this reason, redundancy is required to prevent a 
single failure to impact the passenger service. 

3. Applicative Redundancy 

Our previous architecture (DIGISAFE for the Meteor 
– Paris L14) already used redundancy. On this 
platform, redundancy is handled through two 
redundant computers (each one being a DIGISAFE 
computer), among which at most one can be active 
(vitally guaranteed by the hardware). Both units are 

able to communicate through a serial link. The 
outputs are merged within a hardware OR gate. In all 
the Vital Application, in every safety functions the 
following is required: 

• Defining the function behavior, when the unit 
is active. 

• Defining the function behavior, when the unit 
is passive. 

• Transmitting the proper data to the 
redundant unit, in order to guarantee that the 
passive unit has the proper information to be 
able to switch to the active state. 

• Analyzing in order to find if a sequence of 
switching over is able to lead to an unsafe 
behavior of the system. 

 

This leads to the interleaving of the functional part of 
the application with the redundancy processing; 
adding complexity to the design and making more 
difficult the safety analyses of the functions. 

After Meteor, another approach was investigated, in 
order to implement a completely integrated 
redundancy solution, relying on the same hardware, 
and completely seamless at the application level. 

4. Integrated Redundancy 

The main principle governing the design of the 
integrated redundancy function is the complete 
separation between the redundancy management 
and the software application. This leads to an 
encapsulation of the applicative software in the 
redundancy manager (Sec_Red), as seen on Fig. 3. 
All the inputs are provided to Sec_Red which is able 
to modify them depending on the values of these 
same inputs for the remote unit, and depending on 
its internal state (redundancy mode). Each 
application then computes its outputs, modifying its 
internal states, but this computation only happen if 
allowed by redundancy. Lastly, the outputs are 
provided to Sec_Red to decide if permissive outputs 
are generally allowed, and if a given output must be 
force to a restrictive state. 
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Redounded Equipment

Unit A Unit B

Vital Application Vital Application

Sec Red

 

Figure 3: Logical architecture of the redundancy 

 

4.1 Goal 

The goals of the integrated redundancy protocol are: 

1. to be able to maintain a service in case of 
any single failure in the data processing 
chain; 

2. to guarantee that the switching between 
both equipment are always safe (ensuring 
the consistence in the behavior of both 
units); 

3. to separate the applicative processing from 
the redundancy algorithms  (the applicative 
software is never aware if it is currently 
active or passive); 

4. to become an "off the shelf" solution, usable 
on all our Railway Automation projects; 

5. and of course, to be safe, compliant with 
SIL4 requirements, and certified by an 
independent assessor. 

 

4.2 Overview of the functionalities 

Sec_Red is governed by two modes: isolated or 
redundant. While isolated, only one unit (the Active 
unit) is running the Applicative Software and allowed 
to apply permissive outputs. While redundant, both 
units (Active and Passive) are running the 
Applicative Software, and both are applying their 
wired outputs, while only the Active unit sends 
messages to remote equipment. In this mode, it is 
essential to prevent inconsistent behavior or 
decisions of both units. Moreover, whatever the 
mode is, commutation between both Active/Passive 
states must always be safe: 

• if the current mode does not authorize 
commutation, the equipment must fall back 
into a safe restrictive mode; 

• the behavior of the newly Active unit must be 
consistent with the "promises" made by the 
former Active unit. 

 

In order to maintain safety, the Applicative Software 
must also be executed at each cycle (on at least one 
unit), with fresh inputs and with a correct applicative 
context. The computed outputs must be applied in 
the cycle in which they are computed. 

 

4.3 Assumptions 

In order not to depend on the underlying 
applications, some assumptions must be made on 
the equipment and applicative software, especially 
on the semantic of the Inputs/Outputs. The first 
assumption (linked to our DIGISAFE platform), 
guarantees that being redundant is not necessary for 
safety. 

H1: Each unit, on its own, always behaves 
safely. 

The redundancy protocol must be able to alter the 
I/O in a safe way. In particular, it must always be 
safe to change the value of a binary wired input or 
output to False, and it is always safe to lose a 
message. 

H2: All binary wired I/O are "oriented" within 
the system: True being a permissive value 
and False being a restrictive value. 

H3: Discarding or losing a message (input or 
output) is always safe. 

Lastly, the initialization state of the applicative 
software must always be safe. 

H4: The behavior of the Applicative Software 
must be safe (restrictive) at initialization 
time. 

 

4.4 Hardware architecture 

This redundancy protocol is also designed for a 
specific hardware architecture made up of two 
redundant units, each one being a DIGISAFE 
computer as described above in Sect. 2. Each of 
these computers are linked to its own wired inputs 
(which must generally be provided by the same 
equipment) and to the inter-equipment network 
(used for I/O messages). 

One dedicated binary input is the Active/Passive 
input. This input is provided by a specific device 
guaranteeing (vitally) that the Active/Passive input 
can be Active (i.e. True) on at most one of the units 
at the same time. 
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The wired binary outputs of both redundant units are 
sent through an OR gate, which has the effect of 
choosing the most permissive. 

These two computers are linked together by a serial 
link used for the exchange of inter-units messages. 

Both computers are also synchronized very precisely 
(~ 10

-5
 s). However, this synchronization is not vitally 

guaranteed. It is of course necessary for the 
equipment to operate properly, but is not considered, 
as soon as safety is concerned. As for the safety 
part, the only property that is known is that the 
hardware clocks of both computers are safety 
clocks. The relative drift of both clocks is therefore 
vitally bound by a given threshold. 

 

4.5 Synchronization and time 

As mentioned in Sect. 4.4, the synchronization is 
very precise, but is not to be used for safety (simple 
failures may lead to a loss of synchronization). 

As far as safety is concerned, there is therefore no 
hardware synchronization. Nevertheless, in order to 
be allowed to compare the I/O of both units, a 
minimal synchronization is due. In order to enforce 
this, a counter is managed on each unit, namely the 
Vital Logic Clock (VLC). At initialization time, the 
passive unit synchronizes its own Vital Logic Clock 
to the active's one. At the beginning of each cycle, a 
message is exchanged between both units to 
compare both VLC. 

All messages sent between both units are also time-
stamped with the VLC. Hence despite there is no 
synchronization, it is guaranteed that as soon as the 
asynchronism exceeds one cycle, both units are 
unable to communicate with each other. This is 
sufficient to trigger the Passivation, in order to switch 
back to isolated (unredounded) mode, as described 
below in Sect. 4.9 

 

4.6 Vital Inputs 

Two kinds of Vital Inputs must be handled by 
Sec_Red: wired binary inputs which can only be 
True or False; and Vital messages, sent by other 
equipment, which can contain any kind of values. 
These messages usually contain a vital header, with 
data such as an emission time-stamp, the identity of 
the sender and addressee, etc. 

As for the wired binary inputs, Sec_Red only 
distinguished redounded inputs from "unredundant" 
inputs. These "unredundant" inputs are left as is, and 
should usually be used only by the redundancy. 
Examples of these are the Active/Passive binary 
input, or the current state of the unit. 

On the other hand, redounded binary inputs are 
generally supposed to be the same for each unit. 
The inputs are exchanged (via the serial link), and 

each unit compare its own inputs with the remote 
unit's inputs. 

If a discrepancy is detected, it could either be 
because of a small asynchronism (lower that one 
cycle, as seen above), either because of a failure in 
the input acquisition. Because the acquisition of the 
inputs is vitally guaranteed by the DIGISAFE 
hardware, the only possible failure is to see the input 
at False while it should be True. 

Therefore in case of discrepancy, the permissive 
input is kept on both units, and sent to both Vital 
Applications. The particular case of an asynchronism 
together with a one cycle length restrictive input is 
detected, in order to prevent any restrictive state to 
be masked (see Fig. 3 below). 

Unit A

Unit B

A or B  

Figure 3: Masking of a restrictive input 

 

As for the Vital Messages, they are compared 
between both units. If one of the units missed some 
messages, they are therefore sent, in order to 
ensure that all units will see all messages (a 
message is always considered as permissive data). 

Of course, either for the wired binary inputs, or for 
the message, this process of comparing and 
providing the more permissive data may sometime 
fail (e.g. serial link error). In this case, either 
restrictive inputs or local inputs are provided to the 
unit. This will cause that the Vital Applications of 
both units will not receive the same inputs, which in 
turn will lead to a discrepancy in the applicative 
contexts of both units. At the end, this will probably 
cause a discrepancy in the outputs emitted by both 
units. 

The redundancy protocol will not prevent the 
discrepancy to appear in the context. It will only react 
by controlling the inconsistent outputs, and by 
triggering a Passivation if the discrepancy lasts. This 
is described in Sect. 4.8 and 4.9. 

It is therefore never dangerous to introduce a 
discrepancy in the context, as soon as the inputs 
provided to each unit are fresh and correct. 
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4.7 Application and Context 

As seen above, it is not dangerous to introduce a 
discrepancy in the (variable) states of both units. 
There is nevertheless a property needed to define if 
the context is safe or not. 

The context can be defined as the set of all the vital 
variables handled by the Vital Applications, together 
with their values. 

A context is called well formed at the beginning of 
the cycle n, if one of the following conditions is true: 

• either it is the initialization context of the 
Vital Application; 

• or it was well formed at the beginning of the 
cycle n – 1, the Vital Application has been 
executed during the cycle n – 1, with fresh 
inputs; 

• or the local unit is passive, the remote unit is 
active, the context of the remote unit at the 
beginning of the cycle n is well formed, and 
is equal to the context of the passive unit at 
cycle n. 

 

This notion of well formed context is representative 
of an application which executes itself cycle after 
cycle, without ever missing to react to restrictive 
inputs. 

This leads to three different cases. At initialization 
time, as soon as the unit detects it is active, it is 
allowed to start executing the Vital Application. It is 
however checked that its context is the initialization 
context. The active unit must continue to execute the 
Vital Application at each cycle, to maintain a well 
formed context. 

In the other hand, the passive unit does not execute 
the Vital Application. But as soon as both units are 
ready, the active unit starts to send "context slices" 
to the passive unit, which copies them. This process 
usually takes several cycles. This process is made 
such that after the transmission is finished, if variable 
of the context changed their values, the difference is 
then sent to the other unit. This may also take 
several cycles to finish. If the performance of the 
serial link is too low and the context evolves too 
quickly, it can even become a never ending story! 
This way of transmitting context is close to [1]. 

All this transmission and copy process is not vitally 
guaranteed. As soon as the transmission is finished, 
a "photography" representative of the contexts is 
taken. From this point, the passive unit starts to 
execute the Vital Application at each cycle. Its 
outputs are however not applied (maybe an error 
occurred during the copy of the context), but are 
compared at each cycle to the active unit's outputs. 

During a few following cycles, the "photos" are then 
compared, using a vital algorithm. If at the end of this 
comparison, the algorithm concludes that the 

"photos" where equal, both units are allowed to 
switch into redounded mode: from now, the passive 
unit start to apply its own outputs, and commutation 
is allowed and safe. 

It must also be noted that all this process is 
managed by the redundancy software itself. The only 
data available to the Vital Application is a boolean 
value indicating whether or not it must be executed! 

Even if both contexts are well formed, a discrepancy 
may appear between both units (usually because of 
a slight divergence between inputs which was not 
compensated by the protocol). It is therefore 
necessary to cover hazards at output level, as 
explained in the next section. 

 

4.8 Vital Outputs 

As for the vital inputs, the outputs are either binary 
wired outputs, or messages sent to some remote 
equipment. Each unit sends its outputs to the remote 
one, and these inputs are then processed. If the unit 
is not allowed to apply its outputs, the wired outputs 
are forced to restrictive state, and the sending of the 
message is forbidden (this is for example the case if 
the unit is passive and isolated). In the other cases, 
the outputs are compared in order to detect 
discrepancy. 

Discrepancy on the Vital Output may appear for two 
reasons, mostly, it will be due to a divergence in the 
contexts. Sometime, it will also be caused by a 
failure in the boards responsible for the application of 
the vital wired outputs. In this case, the failure will be 
covered by the hardware OR gate which chose the 
permissive output between both (each unit being 
intrinsically safe, it is not hazardous to apply an OR 
in case of failure). 

The other case of discrepancy appears when there 
is a divergence between both applicative contexts. 

Three kind of hazard needs to be considered: 

 

Hazard 1: outputs are erroneous w.r.t. the expected 
behavior. 

Example: the inputs indicate that an event occurs, 
which should cause the train to brake (application of 
a restrictive output "No Emergency Braking"), but 
due to a discrepancy, the output is not commanded 
to restrictive. 

This hazard is prevented by the following: 

• the inputs are fresh and guaranteed to be 
safe; 

• either the applicative context is well formed, 
or the outputs are forced to restrictive 
values; 

• the execution of the Vital Application is 
guaranteed to be safe. 
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These three properties together guarantee that if the 
Emergency Braking is not applied on one of the 
units, it is necessarily because it does not need to be 
applied: therefore the error is done by the unit which 
commands the braking. Hence it is safe not to apply 
this braking. 

 

Hazard 2: the wired outputs are correct, but the 
discrepancy introduces a dangerous antagonism. 

Example: 

The train is stopped in station, and the doors are 
closed. Unit A decides that the train should leave the 
station, therefore it Authorizes Traction. On the other 
hand, Unit B decides that the train should allow the 
passenger exchange, therefore it Unlocks the Doors. 

Each of this behavior would be correct and safe on 
its own, but the OR gate would cause the equipment 
to allow both traction and door opening! 

In order to avoid this case, on each unit, Sec_Red 
compares the output of the local unit with the output 
of the remote unit (receive via the serial link). If no 
discrepancy occurs, the outputs of the local unit are 
applied as is. If a discrepancy is detected, for each 
output where this discrepancy exists, the transition 
from restrictive to permissive is forbidden (see 
Fig. 4).  

Unit A
(before Sec_Red)

Unit B

Unit A

(after Sec_Red)

A or B

 

Figure 4: Inconsistent wired outputs 

Hence if one the unit A was permissive and stays 
permissive (it was previously Authorizing Traction), 
while unit B switches to restrictive, the output of A 
(then the OR) is still permissive. But if A is not 
allowing to Unlock the Doors, and B did not, but now 
try to Unlock, the discrepancy will prevent B to 
switch to permissive. The Unlocking of the Doors is 
therefore prevented until the end of the discrepancy. 

It is easy to prove that this forbidding is sufficient to 
avoid the case of antagonistic outputs: a dangerous 
discrepancy can only occur at cycle n if it exists at 

cycle n – 1, but it does not exists at cycle 0 when all 
the outputs are restrictive. 

In this case, the consequence of the forcing to 
restrictive is that the train will not be able to start up, 
neither to open door, until both units agree, or the 
passive unit is passivated (~ 1 s). 

 

Hazard 3: unit B does not enforce the behavior 
promised by unit A. 

Example: 

The wayside equipment sends a (not vital) message 
to the onboard equipment asking if it can stop before 
a given limit. Unit A is active, and receives the 
message. It decides that stopping is possible. 
Therefore it memorizes a mandatory stop before the 
limit, and sends back to the wayside controller a vital 
message to acknowledge the fact that the train will 
stop. Unit B is passive, and does not receive the 
message (or decides that this stop is not possible). 
Therefore it does not memorize the stop and does 
not answer to the wayside equipment. 

When the wayside controller receives the message 
from Unit A, it is allowed e.g. to move a switch in 
downstream the acknowledged limit. But Unit A fails, 
a commutation is triggered, and B becomes active 
and isolated. The limit will not be enforced, and the 
train will probably run of the rails! 

In this case, the safety is enforced by Sec_Red by 
the specific processing of the vital output messages: 
a message is allowed to be send only if both units 
are trying to send it, and both messages are equal. 

In our example above, Sec_Red will therefore 
prevent A to send the message: even if the limit is 
overrun, the wayside would not have move the 
switch point because no permissive data would have 
been received. 

 

Even if discrepancy on the outputs is covered, it is 
not good for the system to let them last: messages 
are not sent, wired outputs cannot move to 
permissive... the system cannot properly function 
while it occurs. It is therefore necessary when it 
occur to fall back in isolated mode when a unit alone 
(preferably the one that function properly) can take 
all the decisions. This is the purpose of the 
passivation function. 

 

4.9 Passivation 

When the discrepancy on the outputs is lasting more 
than a few cycles (parameter), the process of 
passivation is triggered. The purpose of this process 
is to ensure that at the end, both units will be 
isolated. 

The passivation must occur quickly, in order to limit 
the number messages that will be lost during the 
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discrepancy (if too many messages are lost, the 
addressee will consider that the communication is 
lost, and will step in a safe and restrictive mode). 

In the other hand, must also leave a sufficiently long 
time for a commutation to occur if needed: the 
commutation could take a few cycles before being 
effective. This is necessary if the active unit fails, 
and a discrepancy occur. 

The passivation must also guarantee that in all case 
(including the loss of the serial link, several 
commutations...) the passive unit will be isolated 
before the active unit. If the active unit is isolated 
before the passive, it will not control its output as 
requested in the Sect. 4.8. The passive unit will do 
its own control (against restrictive outputs) thus 
forbidding transitions from restrictive to permissive, 
but the active unit will have no limitation. 

The process of passivation is therefore conducted 
using state machines that are triggered in case of 
discrepancy, but also when a unit is not able to 
receive the inter-unit message used for the 
transmission of Sec_Red commands and states. 

 

4. Conclusion 

Sec_Red has been used for the first time on the on-
board and wayside controllers for the resignalling 
into a CBTC system of the New York City Metro line 
L (Canarsie). It has since been used on two different 
kinds of equipment with a different design in both 
driverless metro lines (VAL) of the Roissy-Charles 
De Gaulle Airport in France. 

This succeeded in proving that the goal to develop 
an "off the shelf" product to manage the redundancy 
in our vital systems is reached. 

An issue remains on the processing of some 
particular inputs: the tachometers. These devices 
provide the on-board controller with precise (and 
safe) data on the kinematics of the train. Each kind 
of tachometer has particular properties on the timing 
of the data it provides. For availability purpose, it is 
also better to wire redundant tachometers on the 
redundant units, but this raises two issues: 

1. The tachometers are precise, but subject to 
complex error models. Therefore the inputs 
provided by all the tachometers (at one 
given time) will never be equal. It is 
necessary for each new kind of tachometer 
to develop a specific add-on to Sec_Red, 
which will handle the merge of the data 
provided by the sensors attached to each 
unit. 

2. In order to reach good system 
performances, it is unacceptable to consider 
that in safety, the sensors of each unit are 
out of synchronization of one full cycle. It is 

therefore necessary to provide a way to 
check the quality of the synchronization 
between both units with a far better precision 
that one whole cycle, and with a confidence 
level compliant with safety applications 
(SIL4). 

 

The other main issue was that even if the 
redundancy protocol was seamless for the 
application part, at specification level, it was not as 
true as we hoped at implementation level. The 
reintegration part is costly for the CPU and our 
applications are bound to run in a limited cycle time. 
Fine optimization was therefore required in order to 
allow our applications to run flawlessly, these 
optimizations where also correlated to the way of 
handling the reintegration. For example, big arrays of 
time-out variables decremented at each cycle 
generate evolutions of the context that could prevent 
the reintegration to finish (see Sect. 4.7). It is better 
here to memorize the end time of the time-out, and 
to compare it at each cycle to the current time. 

Nevertheless, these complexities are insignificant, 
compared to the difficulty of handling the whole 
redundancy processing at applicative level! 
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7. Glossary 

CBTC: Communication Based Train Control 

Context: The state of the Vital Application. Equivalent 
to the list of all variables handled by this 
application 

In-code: State of a variable, message, I/O, 
equipment when the Vital Code is correct 
(no failure has been detected) 

I/O: Inputs/Outputs 

Non-vital: Any device or concept whose failures are 
innocuous as long as safety is concerned 

Off-code: State of a variable, message, I/O, 
equipment when the Vital Code is broken (a 
failure has been detected) 

OPEL: Primitive operations on coded data (from the 
French OPération ELémentaire) 

Passivation: Sec_Red process that lead to isolated mode 

Sec_Red: The redundancy manager software (from 
SECurity REDundancy) 

SIL4: Safety Integrity Level 4, the highest level of 
requirements for safety applications [2] 

Unit: Each redundant computer 

VCP: Vital Coded Processor 

VLC: Vital Logic Clock 

Vital: Any device or concept whose failures may 
lead to an unsafe behavior of the system 

Vital Application: The vital part of the software executed 
on the computer 

Wayside: The Wayside controller (as opposed to the 
on-board controller) is the part of the system 
which tracks the train on the track (using 
data sent by the trains themselves) and 
allocates them "movement limits". 


