
HAL Id: hal-02269811
https://hal.science/hal-02269811

Submitted on 23 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A High Availability Vital Computer for Railway
Applications: Architecture & Safety Principles

Sylvain Baro

To cite this version:
Sylvain Baro. A High Availability Vital Computer for Railway Applications: Architecture & Safety
Principles. Embedded Real Time Software and Systems (ERTS2008), Jan 2008, Toulouse, France.
�hal-02269811�

https://hal.science/hal-02269811
https://hal.archives-ouvertes.fr

 Page 1/9

A High Availability Vital Computer for Railway Applications:
Architecture & Safety Principles

Sylvain Baro1

1: Siemens Transportation Systems, 150 avenue de la République – BP 101 – 92323 Châtillon CEDEX

Abstract: The computers used for Railway
Automation have increasing their level of safety and
availability, especially for providing expected answer
to Unattended Train Operation.

To achieve these demanding requirements, relevant
answers have to be addressed. In this article, we
first present the architecture of our computer, based
on a vital coding processing, and its embedded
redundancy feature, which both allow the
achievement of an efficient architecture providing the
high availability requested by the above mentioned
Railway Applications.

We then present the principles used in the safety
design and used to bring out the safety evidences.
We will specifically highlight the safety and
performance issues raised by assembling two single
vital computers into a redundant configuration.
Nevertheless, we have to stress that in our choice of
design, the redundancy is used only to address the
availability goal.

Keywords: Availability, Safety, Redundancy,
Computer, Railway Applications

1. Introduction

The computers used for Railway Automation have
increasing needs on safety and availability. In the
case of Unattended (Manless) Train Operation those
requirements became unconditional; the availability
goals are very high to avoid any major disruption of
operation. Such operation cannot afford a total stop
of traffic due to any single failure.

In addition to these high availability requirements,
the complexity of functions and the system
performances are increasing significantly.

To achieve these demanding requirements, an
appropriate answer has to be given. The computer
design cannot be anymore seen as a single
computer with a redundancy, but as a pair of
computers providing a vital fault tolerant system.

Our redundancy protocol based on fault tolerant
principle makes two redundant computer units work
as symmetrically as possible. The achievement of
the consistency of the two units makes possible to
switch to any computer at anytime, without taking
any care, neither at the application level nor at the
system level. This valuable point has the benefit of
reducing the complexity of the system and the safety

analyses. We can say that the switching process is
seamless from the functional part of the application
and from the system point of view.

In order to understand the specificities of our
redundancy protocol, we first introduce the
architecture of our computer, based on a vital coding
processing (Sect. 2), without the redundant
architecture. We then present our previous
redundancy principles (Sect. 3). We finally introduce
the integrated redundancy feature, which provides
the high availability requested by the above
mentioned Railway Applications (Sect. 4), starting
from the principles and goals, then switching to the
inner design. For conclusion, we address the
benefits and limitations of our vital fault tolerant
system.

2. Vital Computer Overview

The DIGISAFE© XME vital computer is the upgrade
of the DIGISAFE© platform, used on railways
system automation since 1989: SACEM systems [5],
then on METEOR (Paris L14, in Unattended Train
Operation) in 1998, and New-York Canarsie Line in
2005.

This vital computer is based on vital coding
techniques using a single processor. These
techniques guarantee that any computation which
does not comply with the relevant specified software
will be detected in a safe manner. In other words,
either the source code is compiled, linked, uploaded,
and executed as intended; or the vital computer
detects the error (with a very high probability) and
set itself in a safe mode.

2.1 Architecture

The DIGISAFE vital computer is the platform used in
CBTC railway applications for the onboard vital
controller and for the wayside vital controller. This
computer is used to fulfill SIL4 sub-systems
requirements [2]. The DIGISAFE© architecture has
been described precisely in [4]. For the
comprehension of this paper, we nevertheless
provide a short description hereafter.

 Page 2/9

Figure 1: Architecture without redundancy

In order to fulfill this role, DIGISAFE© secures all the
processing from the inputs to the outputs, including
the different layers of the software architecture.

The vital analog wired inputs are processed by
dedicated vital boards, which convert the input signal
into a coded time-stamped message, which in turn is
sent to the inner layers of processing. The
acquisition and the coding of the inputs are both
consistent with the SIL4 safety level requirements.

Cyclically, the vital application is triggered. The
inputs are then used in regular computations which
produce finally the outputs. In order to check that
these computations are handled properly with
respect to the source code, all vital data are coded.
Each vital variable consists in two fields. The first
field is the functional part Xf, which contains the
requested value of the variable (an integer, boolean,
array...) and it is processed by regular computation.
The second field is the coded part Xc of the variable,
it contains all the information required to secure the
computations and values, it is processed by
dedicated vital algorithms.

The coded part contains a static signature
representative from the occurrence of the variable
and of the operations used on the variable, an
arithmetic part representative from Xf, and a time-
stamp in order to guarantee the freshness of the
variable.

Figure 2: Logical tool- and execution-chain

Any data, message, equipment is called off-code
when the variable (Xf,,Xc) is not consistent with
regard to the code, and in-code when it is.

To make easy the use of such coded variables, and
to use them as regular variable at the application
level, primitive operations on these data (OPELs) are
defined in order to manipulate the code itself. This
also brings the benefit of encapsulating the
manipulation of the code in a dedicated part of the
computer.

To make the check easier, a specific tracer is used.
It allows propagating the code status. If one
computation leads to an off-code status, the tracer
remains off-code.

Vital digital messages are transmitted between
equipment. These messages are transmitted through
non-vital layer seen as black boxes, but are packed
in a specific form, called a vital message. The
packing function uses a specific code in order to
check the integrity of the message Only vital
applications are able to modify or create a message
without damaging it. A damaged (off-code) message
is detected by the receiver, thanks to the code.
Given equipment are only able to pack in-code
messages if they are themselves in-code.

The analog wired outputs are first worked out by the
Vital Application, and then are sent to the DIGISAFE
bus, in order to command through the vital output
boards, the vital output signal. The vital output data
is sent with its code and a time-stamped. The output
board applies functionally the output. A vital
checking is made at any time in order to verify the
consistency of the actual status of the output and the
expected status considered at the application level.
To do so, the dynamic controller (CKD) reads vitally
the code of the actual status and checks if the value
complies with the expected value. If a discrepancy is
detected, the outputs are de-energized (vitally
guaranteed).

Dedicated sensors can be used with the DIGISAFE
computer. The most common are the odometer
(coded phonic wheel, or optical speed sensor) and
the transponder reader. Both are vital, precise, and

CPU

Vital Processing
 Unit

I/O boards
I/O boards

I/O boards

I/O boards

Specific I/O
boards

PhW , TW link.. COTS

Compact PCI bus

DIGISAFE bus

I/O

Executing

…….
Source file

x:= x+y
…….

Executable code
325F674E20
20300DFF0

Compiling

Computer Unit

Loading

The vital
coding

covers

all these steps

 Page 3/9

involved in the process of computing the train
position and speed.

Of course, apart from these vital I/O and software
computations, DIGISAFE allows the handlings of
non-vital streams, as well as the execution of non-
vital task.

2.2 Properties

The safety properties of this architecture are
numerous:

The safety proof of the computer does not rely on
the digital component of the computer (processor,
memory, network, etc.) but only on the protection
offered by the code, which complies with the SIL4
safety levels requirements;

This safety principle guarantees that any error which
may occur on any vital part of the application, would
lead to an error in the vital outputs (and the
messages). It will cause these outputs to be off-
code. This also leads to the fine property that all the
software and data which have an impact on the
values of the vital outputs are required to use the
OPELs. In other words, the software parts which do
not use the OPELs do not need to be considered
during the safety analyses on the application.

The principles used for the time-stamping of the
outputs code have the property that this code can
only be consistent with the values of the outputs if
the outputs are applied at the proper time. This
allows (together with a vital clock) to guarantee that
the proper cycle time is enforced.

To sum up, if anything leads to an error during the
processing of the cycle, the outputs will be off-code,
and de-energized: one DIGISAFE computer
guarantees alone the safety. This is indeed sufficient
to guarantee the safety behavior of our applications.

Nevertheless, the railway applications become more
and more complicated, and need more than a simple
control/command calculator: the computers involved
in the operation of a line cannot be reset without
severely impairing the system availability of the line.

This is particularly true for Unattended Train
Operation, when a reset of an onboard computer
could paralyze the train in a tunnel, until manual
recovery handled by an operator.

For this reason, redundancy is required to prevent a
single failure to impact the passenger service.

3. Applicative Redundancy

Our previous architecture (DIGISAFE for the Meteor
– Paris L14) already used redundancy. On this
platform, redundancy is handled through two
redundant computers (each one being a DIGISAFE
computer), among which at most one can be active
(vitally guaranteed by the hardware). Both units are

able to communicate through a serial link. The
outputs are merged within a hardware OR gate. In all
the Vital Application, in every safety functions the
following is required:

• Defining the function behavior, when the unit
is active.

• Defining the function behavior, when the unit
is passive.

• Transmitting the proper data to the
redundant unit, in order to guarantee that the
passive unit has the proper information to be
able to switch to the active state.

• Analyzing in order to find if a sequence of
switching over is able to lead to an unsafe
behavior of the system.

This leads to the interleaving of the functional part of
the application with the redundancy processing;
adding complexity to the design and making more
difficult the safety analyses of the functions.

After Meteor, another approach was investigated, in
order to implement a completely integrated
redundancy solution, relying on the same hardware,
and completely seamless at the application level.

4. Integrated Redundancy

The main principle governing the design of the
integrated redundancy function is the complete
separation between the redundancy management
and the software application. This leads to an
encapsulation of the applicative software in the
redundancy manager (Sec_Red), as seen on Fig. 3.
All the inputs are provided to Sec_Red which is able
to modify them depending on the values of these
same inputs for the remote unit, and depending on
its internal state (redundancy mode). Each
application then computes its outputs, modifying its
internal states, but this computation only happen if
allowed by redundancy. Lastly, the outputs are
provided to Sec_Red to decide if permissive outputs
are generally allowed, and if a given output must be
force to a restrictive state.

 Page 4/9

Redounded Equipment

Unit A Unit B

Vital Application Vital Application

Sec Red

Figure 3: Logical architecture of the redundancy

4.1 Goal

The goals of the integrated redundancy protocol are:

1. to be able to maintain a service in case of
any single failure in the data processing
chain;

2. to guarantee that the switching between
both equipment are always safe (ensuring
the consistence in the behavior of both
units);

3. to separate the applicative processing from
the redundancy algorithms (the applicative
software is never aware if it is currently
active or passive);

4. to become an "off the shelf" solution, usable
on all our Railway Automation projects;

5. and of course, to be safe, compliant with
SIL4 requirements, and certified by an
independent assessor.

4.2 Overview of the functionalities

Sec_Red is governed by two modes: isolated or
redundant. While isolated, only one unit (the Active
unit) is running the Applicative Software and allowed
to apply permissive outputs. While redundant, both
units (Active and Passive) are running the
Applicative Software, and both are applying their
wired outputs, while only the Active unit sends
messages to remote equipment. In this mode, it is
essential to prevent inconsistent behavior or
decisions of both units. Moreover, whatever the
mode is, commutation between both Active/Passive
states must always be safe:

• if the current mode does not authorize
commutation, the equipment must fall back
into a safe restrictive mode;

• the behavior of the newly Active unit must be
consistent with the "promises" made by the
former Active unit.

In order to maintain safety, the Applicative Software
must also be executed at each cycle (on at least one
unit), with fresh inputs and with a correct applicative
context. The computed outputs must be applied in
the cycle in which they are computed.

4.3 Assumptions

In order not to depend on the underlying
applications, some assumptions must be made on
the equipment and applicative software, especially
on the semantic of the Inputs/Outputs. The first
assumption (linked to our DIGISAFE platform),
guarantees that being redundant is not necessary for
safety.

H1: Each unit, on its own, always behaves
safely.

The redundancy protocol must be able to alter the
I/O in a safe way. In particular, it must always be
safe to change the value of a binary wired input or
output to False, and it is always safe to lose a
message.

H2: All binary wired I/O are "oriented" within
the system: True being a permissive value
and False being a restrictive value.

H3: Discarding or losing a message (input or
output) is always safe.

Lastly, the initialization state of the applicative
software must always be safe.

H4: The behavior of the Applicative Software
must be safe (restrictive) at initialization
time.

4.4 Hardware architecture

This redundancy protocol is also designed for a
specific hardware architecture made up of two
redundant units, each one being a DIGISAFE
computer as described above in Sect. 2. Each of
these computers are linked to its own wired inputs
(which must generally be provided by the same
equipment) and to the inter-equipment network
(used for I/O messages).

One dedicated binary input is the Active/Passive
input. This input is provided by a specific device
guaranteeing (vitally) that the Active/Passive input
can be Active (i.e. True) on at most one of the units
at the same time.

 Page 5/9

The wired binary outputs of both redundant units are
sent through an OR gate, which has the effect of
choosing the most permissive.

These two computers are linked together by a serial
link used for the exchange of inter-units messages.

Both computers are also synchronized very precisely
(~ 10

-5
 s). However, this synchronization is not vitally

guaranteed. It is of course necessary for the
equipment to operate properly, but is not considered,
as soon as safety is concerned. As for the safety
part, the only property that is known is that the
hardware clocks of both computers are safety
clocks. The relative drift of both clocks is therefore
vitally bound by a given threshold.

4.5 Synchronization and time

As mentioned in Sect. 4.4, the synchronization is
very precise, but is not to be used for safety (simple
failures may lead to a loss of synchronization).

As far as safety is concerned, there is therefore no
hardware synchronization. Nevertheless, in order to
be allowed to compare the I/O of both units, a
minimal synchronization is due. In order to enforce
this, a counter is managed on each unit, namely the
Vital Logic Clock (VLC). At initialization time, the
passive unit synchronizes its own Vital Logic Clock
to the active's one. At the beginning of each cycle, a
message is exchanged between both units to
compare both VLC.

All messages sent between both units are also time-
stamped with the VLC. Hence despite there is no
synchronization, it is guaranteed that as soon as the
asynchronism exceeds one cycle, both units are
unable to communicate with each other. This is
sufficient to trigger the Passivation, in order to switch
back to isolated (unredounded) mode, as described
below in Sect. 4.9

4.6 Vital Inputs

Two kinds of Vital Inputs must be handled by
Sec_Red: wired binary inputs which can only be
True or False; and Vital messages, sent by other
equipment, which can contain any kind of values.
These messages usually contain a vital header, with
data such as an emission time-stamp, the identity of
the sender and addressee, etc.

As for the wired binary inputs, Sec_Red only
distinguished redounded inputs from "unredundant"
inputs. These "unredundant" inputs are left as is, and
should usually be used only by the redundancy.
Examples of these are the Active/Passive binary
input, or the current state of the unit.

On the other hand, redounded binary inputs are
generally supposed to be the same for each unit.
The inputs are exchanged (via the serial link), and

each unit compare its own inputs with the remote
unit's inputs.

If a discrepancy is detected, it could either be
because of a small asynchronism (lower that one
cycle, as seen above), either because of a failure in
the input acquisition. Because the acquisition of the
inputs is vitally guaranteed by the DIGISAFE
hardware, the only possible failure is to see the input
at False while it should be True.

Therefore in case of discrepancy, the permissive
input is kept on both units, and sent to both Vital
Applications. The particular case of an asynchronism
together with a one cycle length restrictive input is
detected, in order to prevent any restrictive state to
be masked (see Fig. 3 below).

Unit A

Unit B

A or B

Figure 3: Masking of a restrictive input

As for the Vital Messages, they are compared
between both units. If one of the units missed some
messages, they are therefore sent, in order to
ensure that all units will see all messages (a
message is always considered as permissive data).

Of course, either for the wired binary inputs, or for
the message, this process of comparing and
providing the more permissive data may sometime
fail (e.g. serial link error). In this case, either
restrictive inputs or local inputs are provided to the
unit. This will cause that the Vital Applications of
both units will not receive the same inputs, which in
turn will lead to a discrepancy in the applicative
contexts of both units. At the end, this will probably
cause a discrepancy in the outputs emitted by both
units.

The redundancy protocol will not prevent the
discrepancy to appear in the context. It will only react
by controlling the inconsistent outputs, and by
triggering a Passivation if the discrepancy lasts. This
is described in Sect. 4.8 and 4.9.

It is therefore never dangerous to introduce a
discrepancy in the context, as soon as the inputs
provided to each unit are fresh and correct.

 Page 6/9

4.7 Application and Context

As seen above, it is not dangerous to introduce a
discrepancy in the (variable) states of both units.
There is nevertheless a property needed to define if
the context is safe or not.

The context can be defined as the set of all the vital
variables handled by the Vital Applications, together
with their values.

A context is called well formed at the beginning of
the cycle n, if one of the following conditions is true:

• either it is the initialization context of the
Vital Application;

• or it was well formed at the beginning of the
cycle n – 1, the Vital Application has been
executed during the cycle n – 1, with fresh
inputs;

• or the local unit is passive, the remote unit is
active, the context of the remote unit at the
beginning of the cycle n is well formed, and
is equal to the context of the passive unit at
cycle n.

This notion of well formed context is representative
of an application which executes itself cycle after
cycle, without ever missing to react to restrictive
inputs.

This leads to three different cases. At initialization
time, as soon as the unit detects it is active, it is
allowed to start executing the Vital Application. It is
however checked that its context is the initialization
context. The active unit must continue to execute the
Vital Application at each cycle, to maintain a well
formed context.

In the other hand, the passive unit does not execute
the Vital Application. But as soon as both units are
ready, the active unit starts to send "context slices"
to the passive unit, which copies them. This process
usually takes several cycles. This process is made
such that after the transmission is finished, if variable
of the context changed their values, the difference is
then sent to the other unit. This may also take
several cycles to finish. If the performance of the
serial link is too low and the context evolves too
quickly, it can even become a never ending story!
This way of transmitting context is close to [1].

All this transmission and copy process is not vitally
guaranteed. As soon as the transmission is finished,
a "photography" representative of the contexts is
taken. From this point, the passive unit starts to
execute the Vital Application at each cycle. Its
outputs are however not applied (maybe an error
occurred during the copy of the context), but are
compared at each cycle to the active unit's outputs.

During a few following cycles, the "photos" are then
compared, using a vital algorithm. If at the end of this
comparison, the algorithm concludes that the

"photos" where equal, both units are allowed to
switch into redounded mode: from now, the passive
unit start to apply its own outputs, and commutation
is allowed and safe.

It must also be noted that all this process is
managed by the redundancy software itself. The only
data available to the Vital Application is a boolean
value indicating whether or not it must be executed!

Even if both contexts are well formed, a discrepancy
may appear between both units (usually because of
a slight divergence between inputs which was not
compensated by the protocol). It is therefore
necessary to cover hazards at output level, as
explained in the next section.

4.8 Vital Outputs

As for the vital inputs, the outputs are either binary
wired outputs, or messages sent to some remote
equipment. Each unit sends its outputs to the remote
one, and these inputs are then processed. If the unit
is not allowed to apply its outputs, the wired outputs
are forced to restrictive state, and the sending of the
message is forbidden (this is for example the case if
the unit is passive and isolated). In the other cases,
the outputs are compared in order to detect
discrepancy.

Discrepancy on the Vital Output may appear for two
reasons, mostly, it will be due to a divergence in the
contexts. Sometime, it will also be caused by a
failure in the boards responsible for the application of
the vital wired outputs. In this case, the failure will be
covered by the hardware OR gate which chose the
permissive output between both (each unit being
intrinsically safe, it is not hazardous to apply an OR
in case of failure).

The other case of discrepancy appears when there
is a divergence between both applicative contexts.

Three kind of hazard needs to be considered:

Hazard 1: outputs are erroneous w.r.t. the expected
behavior.

Example: the inputs indicate that an event occurs,
which should cause the train to brake (application of
a restrictive output "No Emergency Braking"), but
due to a discrepancy, the output is not commanded
to restrictive.

This hazard is prevented by the following:

• the inputs are fresh and guaranteed to be
safe;

• either the applicative context is well formed,
or the outputs are forced to restrictive
values;

• the execution of the Vital Application is
guaranteed to be safe.

 Page 7/9

These three properties together guarantee that if the
Emergency Braking is not applied on one of the
units, it is necessarily because it does not need to be
applied: therefore the error is done by the unit which
commands the braking. Hence it is safe not to apply
this braking.

Hazard 2: the wired outputs are correct, but the
discrepancy introduces a dangerous antagonism.

Example:

The train is stopped in station, and the doors are
closed. Unit A decides that the train should leave the
station, therefore it Authorizes Traction. On the other
hand, Unit B decides that the train should allow the
passenger exchange, therefore it Unlocks the Doors.

Each of this behavior would be correct and safe on
its own, but the OR gate would cause the equipment
to allow both traction and door opening!

In order to avoid this case, on each unit, Sec_Red
compares the output of the local unit with the output
of the remote unit (receive via the serial link). If no
discrepancy occurs, the outputs of the local unit are
applied as is. If a discrepancy is detected, for each
output where this discrepancy exists, the transition
from restrictive to permissive is forbidden (see
Fig. 4).

Unit A
(before Sec_Red)

Unit B

Unit A

(after Sec_Red)

A or B

Figure 4: Inconsistent wired outputs

Hence if one the unit A was permissive and stays
permissive (it was previously Authorizing Traction),
while unit B switches to restrictive, the output of A
(then the OR) is still permissive. But if A is not
allowing to Unlock the Doors, and B did not, but now
try to Unlock, the discrepancy will prevent B to
switch to permissive. The Unlocking of the Doors is
therefore prevented until the end of the discrepancy.

It is easy to prove that this forbidding is sufficient to
avoid the case of antagonistic outputs: a dangerous
discrepancy can only occur at cycle n if it exists at

cycle n – 1, but it does not exists at cycle 0 when all
the outputs are restrictive.

In this case, the consequence of the forcing to
restrictive is that the train will not be able to start up,
neither to open door, until both units agree, or the
passive unit is passivated (~ 1 s).

Hazard 3: unit B does not enforce the behavior
promised by unit A.

Example:

The wayside equipment sends a (not vital) message
to the onboard equipment asking if it can stop before
a given limit. Unit A is active, and receives the
message. It decides that stopping is possible.
Therefore it memorizes a mandatory stop before the
limit, and sends back to the wayside controller a vital
message to acknowledge the fact that the train will
stop. Unit B is passive, and does not receive the
message (or decides that this stop is not possible).
Therefore it does not memorize the stop and does
not answer to the wayside equipment.

When the wayside controller receives the message
from Unit A, it is allowed e.g. to move a switch in
downstream the acknowledged limit. But Unit A fails,
a commutation is triggered, and B becomes active
and isolated. The limit will not be enforced, and the
train will probably run of the rails!

In this case, the safety is enforced by Sec_Red by
the specific processing of the vital output messages:
a message is allowed to be send only if both units
are trying to send it, and both messages are equal.

In our example above, Sec_Red will therefore
prevent A to send the message: even if the limit is
overrun, the wayside would not have move the
switch point because no permissive data would have
been received.

Even if discrepancy on the outputs is covered, it is
not good for the system to let them last: messages
are not sent, wired outputs cannot move to
permissive... the system cannot properly function
while it occurs. It is therefore necessary when it
occur to fall back in isolated mode when a unit alone
(preferably the one that function properly) can take
all the decisions. This is the purpose of the
passivation function.

4.9 Passivation

When the discrepancy on the outputs is lasting more
than a few cycles (parameter), the process of
passivation is triggered. The purpose of this process
is to ensure that at the end, both units will be
isolated.

The passivation must occur quickly, in order to limit
the number messages that will be lost during the

 Page 8/9

discrepancy (if too many messages are lost, the
addressee will consider that the communication is
lost, and will step in a safe and restrictive mode).

In the other hand, must also leave a sufficiently long
time for a commutation to occur if needed: the
commutation could take a few cycles before being
effective. This is necessary if the active unit fails,
and a discrepancy occur.

The passivation must also guarantee that in all case
(including the loss of the serial link, several
commutations...) the passive unit will be isolated
before the active unit. If the active unit is isolated
before the passive, it will not control its output as
requested in the Sect. 4.8. The passive unit will do
its own control (against restrictive outputs) thus
forbidding transitions from restrictive to permissive,
but the active unit will have no limitation.

The process of passivation is therefore conducted
using state machines that are triggered in case of
discrepancy, but also when a unit is not able to
receive the inter-unit message used for the
transmission of Sec_Red commands and states.

4. Conclusion

Sec_Red has been used for the first time on the on-
board and wayside controllers for the resignalling
into a CBTC system of the New York City Metro line
L (Canarsie). It has since been used on two different
kinds of equipment with a different design in both
driverless metro lines (VAL) of the Roissy-Charles
De Gaulle Airport in France.

This succeeded in proving that the goal to develop
an "off the shelf" product to manage the redundancy
in our vital systems is reached.

An issue remains on the processing of some
particular inputs: the tachometers. These devices
provide the on-board controller with precise (and
safe) data on the kinematics of the train. Each kind
of tachometer has particular properties on the timing
of the data it provides. For availability purpose, it is
also better to wire redundant tachometers on the
redundant units, but this raises two issues:

1. The tachometers are precise, but subject to
complex error models. Therefore the inputs
provided by all the tachometers (at one
given time) will never be equal. It is
necessary for each new kind of tachometer
to develop a specific add-on to Sec_Red,
which will handle the merge of the data
provided by the sensors attached to each
unit.

2. In order to reach good system
performances, it is unacceptable to consider
that in safety, the sensors of each unit are
out of synchronization of one full cycle. It is

therefore necessary to provide a way to
check the quality of the synchronization
between both units with a far better precision
that one whole cycle, and with a confidence
level compliant with safety applications
(SIL4).

The other main issue was that even if the
redundancy protocol was seamless for the
application part, at specification level, it was not as
true as we hoped at implementation level. The
reintegration part is costly for the CPU and our
applications are bound to run in a limited cycle time.
Fine optimization was therefore required in order to
allow our applications to run flawlessly, these
optimizations where also correlated to the way of
handling the reintegration. For example, big arrays of
time-out variables decremented at each cycle
generate evolutions of the context that could prevent
the reintegration to finish (see Sect. 4.7). It is better
here to memorize the end time of the time-out, and
to compare it at each cycle to the current time.

Nevertheless, these complexities are insignificant,
compared to the difficulty of handling the whole
redundancy processing at applicative level!

5. Acknowledgement

It is necessary to acknowledge here the work of all
Siemens Transportation Systems teams, who work
on the design, implementation and safety of the
integrated redundancy protocol. This in particular
includes David Dumont, Didier Essamé and Benoît
Fumery.

6. References

[1] A. Bondavalli and al.: "State restoration in a COTS-
based N-modular architecture", proceedings of
Object-Oriented Real-Time Distributed Computing,
(ISORC 98), 1998

[2] CENELEC: "Railway Applications - The
Specification and Demonstration of Reliability,
Availability, Maintainability and Safety (RAMS)", EN
50126, 1999.

[3] CENELEC: "Railway Applications –
Communication, signalling and processing systems
– Safety related electronic for signalling", EN
50129, 2003.

[4] P. Forin: "Vital Coded Microprocessor: Principles
and Applications for Various Transit Systems",
proceedings of IFAC-GCCT, Paris, France, 1989.

[5] C. Hennebert and G. Guilho: "SACEM: a Fault
Tolerant System for Train Speed Control",
proceedings of 23

rd
 int. conf. on Fault-Tolerant

Computing (FTCS-23), Toulouse, France, 1993.

 Page 9/9

 [6] J. A. McDermid and Q. Shi: "Secure composition of
systems", proceedings of the eighth Annual
Computer Security Applications Conference, 1992

7. Glossary

CBTC: Communication Based Train Control

Context: The state of the Vital Application. Equivalent
to the list of all variables handled by this
application

In-code: State of a variable, message, I/O,
equipment when the Vital Code is correct
(no failure has been detected)

I/O: Inputs/Outputs

Non-vital: Any device or concept whose failures are
innocuous as long as safety is concerned

Off-code: State of a variable, message, I/O,
equipment when the Vital Code is broken (a
failure has been detected)

OPEL: Primitive operations on coded data (from the
French OPération ELémentaire)

Passivation: Sec_Red process that lead to isolated mode

Sec_Red: The redundancy manager software (from
SECurity REDundancy)

SIL4: Safety Integrity Level 4, the highest level of
requirements for safety applications [2]

Unit: Each redundant computer

VCP: Vital Coded Processor

VLC: Vital Logic Clock

Vital: Any device or concept whose failures may
lead to an unsafe behavior of the system

Vital Application: The vital part of the software executed
on the computer

Wayside: The Wayside controller (as opposed to the
on-board controller) is the part of the system
which tracks the train on the track (using
data sent by the trains themselves) and
allocates them "movement limits".

