
HAL Id: hal-02269792
https://hal.science/hal-02269792

Submitted on 23 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Accurate Events Synchronization in a System-on-Chip
Navigation Receiver

Benoit Priot, Arnaud Dion, Guillaume Beaugendre, Raghuveer Kasaraneni

To cite this version:
Benoit Priot, Arnaud Dion, Guillaume Beaugendre, Raghuveer Kasaraneni. Accurate Events Syn-
chronization in a System-on-Chip Navigation Receiver. International Conference on Localization and
GNSS, Jun 2019, Nuremberg, Germany. pp.1-5. �hal-02269792�

https://hal.science/hal-02269792
https://hal.archives-ouvertes.fr


�

���������	
���������������������	�	�������	���������	�������������
�	������������	��������

��������������	��	��������
�������	������

�
�����������������	���������������������������

������ �	� ��� �
��� ����		� ��
�	������ ����� �������	� ���� ��� � ��� 	���� ������	��

��	�������	������� �	����������������������������������������
�		�������

���	��	���������������������������	����
����	���������

�����������	�
��	��� ��

�

�

�

�

an author's https://oatao.univ-toulouse.fr/24180

Priot, Benoit and Dion, Arnaud and Beaugendre, Guillaume and Kasaraneni, Raghuveer Accurate Events

Synchronization in a System-on-Chip Navigation Receiver. (2019) In: International Conference on Localization and

GNSS, 4 June 2019 - 6 June 2019 (Nuremberg, Germany).



Accurate Events Synchronization in a
System-on-Chip Navigation Receiver

Benoı̂t Priot
ISAE-SUPAERO

University of Toulouse, France
benoit.priot@isae-supaero.fr

Arnaud Dion
ISAE-SUPAERO

University of Toulouse, France
arnaud.dion@isae-supaero.fr

Guillaume Beaugendre
ISAE-SUPAERO

University of Toulouse, France
guillaume.beaugendre@isae-supaero.fr

Raghuveer Kasaraneni
ISAE-SUPAERO

University of Toulouse, France
raghuveer.kasaraneni@isae-supaero.fr

Abstract—A System-On-Chip design and synchronization de-
tails of a navigation receiver are presented. The architecture of
the GNSS receiver is easily modifiable and offers the capability
of accurate time management, thanks to the use of a co-design
approach. The purpose of such a platform is to allow real
time validation of research algorithms. A secondary application
is education, as this platform can be used to study signal
demodulation and navigation.

The receiver is fully functional, but further developments are
still undergoing. Results demonstrate accuracy, flexibility and
ease of use of the system.

Index Terms—GNSS receiver, System-On-Chip

I. INTRODUCTION

Event and timing management in a Global Navigation
Satellite Systems (GNSS) receiver is critical. Indeed, the
standard position, velocity and timing (PVT) solution is based
on the propagation delay estimation from the receiver to each
satellite in view. Thus, GNSS receivers typically involve high
sampling frequency, event synchronization and low latency
closed control loops.

Designing a real embedded receiver to study algorithms is a
complex task for most research laboratories. There is two usual
solutions to tackle this problem : the Field-Programmable
Gate Arrays (FPGA) based System-On-Chip (SOC) or pure
software using SDR approach. Due to the implementation
of matrix of binary operators, architectures based on FPGA
allow an interesting concurrent and real-time signal processing
[1]. The latency of computations in an FPGA is completely
deterministic by their very construction, downto a clock cycle.
However, designing applications to be ported on FPGA is usu-
ally complex and lacks the flexibility of software application
for fixed architecture processor. The typical solution is then
to use the Software Defined Radio (SDR) approach where
all the computations are performed by high performance/high
frequency Digital Signal Processors (DSP). Software receivers
are already proposed to scientific or industrial community [2].
However, as the architecture is fixed, they are not suited when
targeting highly integrated embedded applications or intended

Funded by Occitanie region.

for performance, such as power consumption, memory usage
or high computations. Whatever the performance of the DSP,
it is limited by the fixed number of operators and by the
bandwidth of the memory [3]. The classical approaches of
hardware (HW) and software (SW) design are very different,
as are their design languages : VHDL and C. We used a mod-
ern approach based on SystemC language [5] and High Level
Synthesis (HLS) tools in a coherent and common design flow
for HW and SW. Such design environment allows to emulate
both HW and SW module execution before implementation. It
is a great advantage for validating and debugging, as well as
making it evolve rapidly according to the emulation results.

The purpose of this work is to develop a GNSS platform
for research labs and academic institutions. It offers various
possibilities:

• Critical management of time which is the core of a GNSS
receiver,

• Full access to the architecture,
• Rapid and easy reconfigurations of the architecture,
• Validation on HW targets of the algorithms developed on

SW (Matlab or Octave) receiver.
First, a review of the co-design flow and the distributed
GNSS architecture will be presented. We will demonstrate
the versatility of the approach, from algorithm to architecture.
Then a description of the innovative time management and
illustrative results will be shown. As stated previously, this
is the core of a receiver, and control loop latency should be
bounded as tight as possible.

II. SYSTEM DESIGN

In order to create a flexible distributed architecture for a
bi-constellation (GPS/Galileo) GNSS receiver, new seamless
co-design and high level synthesis tools have been used. The
receiver, so-called low-level layer, supports the demodulation
of signals, the acquisition and tracking of satellites in view,
and leads to the generation of pseudo-ranges (and Doppler
frequencies) between the receiver and the satellites. The
navigator, so-called high-level layer, converts the receiver-to-
satellite pseudo-ranges into PVT solutions. From this generic



architecture, a standard receiver/navigator is implemented. It
is designed to operate with GPS L1 C/A and Galileo E1
signals. The development, based on SystemC language [5],
is supported by the implementation of a sequential functional
simulator in Matlab or Octave (Matlab compatible GNU
software). This flow is presented in fig. 1. From the co-
design architecture developed on dedicated third party tools,
a real-time implementation of the standard receiver/navigator
is performed on a hardware platform. Such implementation
is based on existing development boards, i.e., the Zedboard
(based on Xilinx Zynq-7000), with a radio-frequency (RF)
front-end extension board. Such generic development boards
are therefore inexpensive. An earlier version of this receiver
has been used to assess the performances of computational
error mitigation techniques [6] due to current leakage in
components or due to low battery level.

Fig. 1. Seamless design flow.

A simplified block diagram of the architecture considered in
this contribution is shown in fig. 2, with the following blocks:

1) RF Front End which provides samples coming from
either an antenna or a file to the system

2) The Data IQ Handler which hands out the incoming
samples to the appropriates blocks.

3) The Acquisition which searches for satellites from the
received signal

4) Tracking loops which follow satellite signals
5) The Manager deals both with acquisition and tracking

processes. It also initializes and monitors the tracking
loops.

6) The Measurer which converts observable coming from
tracking loops into raw measurements (pseudo-range,
Doppler frequency, carrier phase), and the Navigator
which calculates the PVT solution.

SpaceStudio is a C/C++ framework created by SpaceCode-
sign for developing applications to speed-up performance us-
ing CPU and FPGA without knowing the underlying hardware
infrastructure of these technologies [7]. The development of
applications is intuitively partitioned to target heterogeneous
computing platforms (e.g., System-On-Chip). Designers ex-
plore, analyze, profile, and validate designs using the SpaceS-
tudio solution. Using SpaceStudio co-design, we performed
the partitioning HW / SW with the SystemC language that

Fig. 2. block diagram of the architecture.

allows to generate IP with Vivado High Level Synthesis. This
novel implementation technique offers more flexibility as no
VHDL coding is required except for the interfaces with the
front-end. Thus, except for loop filters, the tracking loops
are HW-based. Fast computation capabilities (acquisition Fast
Fourier Transform (FFT) and channel tracking) are supported
by the HW part (PL). High level computation algorithms with
less time constraints (loop filters, raw measurement, navigator)
are supported by the SW part using a softcore processor (PL)
as well as the ARM processor (PS).

III. EVENT AND TIME MANAGEMENT

Events refer to a given process of the receiver associated to
a specific time. They can be related to a specific temporal char-
acteristic of the GNSS signal or to a time-based functionality
of the receiver. Based on the architecture of the system, events
can be classified into four classes: new sample reception,
acquisition and tracking channel initialization, tracking, and
measurement.

A. New sample reception

Compared to the architecture presented in [8], the novelty
of this project is the direct connection of the front-end to
tracking loops. Indeed, no buffer is present at the input of the
tracking channels. In addition, the tracking loops are parallel
and autonomous. Due to this design, the computational load of
the ARM processor is reduced as it only needs to configure the
different tracking channels (for initialization and measurement
process) and to retrieve the observations when available. The
direct connection also implies that samples must be processed
as soon as they arrive, because a single loss of sample will
strongly affect the performance of the receiver.

In our architecture, the Data IQ handler block is used to
manage and to dispatch the incoming samples from the GNSS
receiver front-end. The Data IQ handler updates a sample
counter register, referred to as Ns, which is accessible for
all other blocks requiring time synchronization. The receiver
reference time trx is then defined by:

trx = t0rx +Ns/Fs (1)



where t0rx is the initial reference time referenced against GPS
time, and Fs is the sampling frequency.

The sample counter is crucial for the synchronization and
timing between the different blocks because all the other
events will be related to a specific sample, as described further.

B. Acquisition and tracking channel initialization
In our architecture, we use a single acquisition block for the

whole tracking channels. First, the signal is stored over a fixed
period of 8.192ms. The value given by the sample counter
for the first recorded sample is also memorized. This value
is referred to as Nacqui

s . Then, we compute the correlation
between the signal and a local replica using a FFT-based
correlation implementation. This allows to estimate the code
delay τ , Doppler frequency fd and signal-to-noise ratio. In
case of detection, this information is sent to the channel
manager in order to compute the value of the sample counter
corresponding to the beginning of a code PRN of the satellite.
This value, referred to as N init

s , is computed following the
equation:

N init
s = Nacqui

s + Fs(kT
rx
c − τ) (2)

k is an arbitrary integer chosen such as:

N init
s > Ns + FsTcomputation (3)

where Ns is the current value of the sample counter, and
Tcomputation is the computation and communication delay of
the channel manager.

This equation takes into account the estimated duration of
the received PRN code affected by the Doppler effect. This
value is referred to as:

T rx
c = Tc/(1 + fd/fL1) (4)

where Tc is the standard duration of a PRN code (1 ms for
GPS L1 C/A code), and fL1 is the value of L1 frequency.
Then the manager initializes a tracking channel by sending
the PRN ID of the satellite, the Doppler frequency and N init

s

to the tracking block. Satellite signal tracking automatically
starts when the value of the sample counter register is equal
to N init

s .
Using Equation (2) and (4) it is possible to bound the

maximum time lapse for this initialization, depending on the
precision of acquisition results and the dynamic of the vehicle.
For example, with a Doppler frequency error of 200Hz and
a time lapse of 5s, the error on the estimated starting time
of the code PRN is about 0.635µs. This value is lower than
the chip period, which is 0.9775µs for GPS L1 C/A and
Galileo E1-B/C signals. Thus the tracking channels can be
initialized. Also, the dynamic of the vehicle can also be taken
into account, as an acceleration of 1m/s2 induce a Doppler
rate of 5.255Hz/s, and a maximum Doppler frequency error
of 26.3Hz after 5s.

Therefore, this functional design allows us to take into ac-
count the non-deterministic delay resulting from computation
process and from communications between blocks while en-
suring the synchronization of tracking loops with the incoming
signal.

C. Tracking

In our architecture, the tracking loops are divided into four
functional blocks as shown in the diagram presented in fig. 3.
The different blocks are defined by their activation time. They
are executed following a cascaded chain of events, and have
different working frequencies. These blocks are defined as
follow:

1) the NCO Correlator, activated at each new sample com-
ing from the Data IQ handler,

2) the Integrator Synchronizer, activated at each end of
code coming from the NCO Correlator,

3) the LoopEstimator, activated at each integrator output
coming from the Integrator Synchronizer,

4) the DataDecoder, activated at each end of bit coming
from the Integrator Synchronizer.

Fig. 3. block diagram of the tracking channels.

The NCO Correlator block is composed of three functional
blocks: carrier NCO, code NCO and correlators. At each new
sample, the carrier phase φ and code phase ϕc of the respective
NCO are incremented. Once the code phase reaches the end
of the PRN code table (1023 chips for GPS L1 C/A signal), an
End of Code event is triggered, and outputs of the correlators
are sent to the Integrator Synchronizer block.

The Integrator Synchronizer block is composed of the bit
synchronization and of the integrators. At each End of Code
event, the value of the code counter Nc is incremented and
is used to trigger two events. One is the End of Integration
event, which triggers the send of the outputs of the integrators
to the LoopEstimator. The second is the End of Bit event,
which triggers the send of the bit value to the DataDecoder
block, and triggers the reset of the code counter.

The LoopEstimator block is composed of the phase and
delay discriminators, and of the phase and delay loop filters. It
updates the commands of the NCO, and estimates the Doppler
frequency. It does not generate any event as the NCO processes
the latest commands values available using dedicated registers.
A delay can be observed between the End of Code from the
NCO Correlator block and the update of the NCO command,
which could be reduced by the optimization of computation
in the tracking loop.

The DataDecoder block main task is to decode the frame
of the navigation message in order to retrieve information



such as ephemeris data of the satellites and time, using the
bitstream from Integrator Synchronizer block. It also includes
a preamble detector, a bit counter Nb, and a frame counter Nf .
The frame counter is updated thanks to the timing information
of the navigation message.

D. Measurement

The purpose of measurements is to retrieve the valuable
information associated to the same reference time trx from all
the tracking channels. This information is sent to the Measurer
Navigator block in order to elaborate raw measurements, in
particular pseudo-range measurements. The pseudo-ranges are
computed following the equation:

PR = (trx − tsv)/c (5)

where c is the speed of light, trx is the receiver reference
time associated with the measurement, and tsv is the satellite
transmission time, given by:

tsv = Tchipϕc + TcNc + TbNb + TfNf (6)

where Tchip is the chip period, Tc is the PRN code period,
Tb is the bit period, and Tf is the frame period. As described
previously, ϕc comes from NCO Correlator, Nc comes from
Integrator Synchronizer, and Nb and Nf come from DataDe-
coder.

Fig. 4. Event time diagram.

In order to synchronize the measurements for the whole
tracking channels, we use the Data IQ handler block to trigger
a Measurement event when the value of the sample counter
register is equal to Nmeas

s by using a Do Measurement flag.
Then the NCO correlator block of each channel, which is the
only block of the tracking channel activated at each sample,
is tasked to fetch the data and send them to the Measurer
Navigator block.

However, due to the cascaded architecture of the tracking
loops, a challenge is to wait for the Integrator Synchronizer

and the DataDecoder to finish their computation, while not
blocking the NCO Correlator process. The solution selected
for our architecture, illustrated in fig. 5, is described as
follow: First, the NCO Correlator saves the value of the
carrier phase and code phase. Then, in case of End of
Code, we set a Measurement Enable flag to zero, and resume
NCO Correlator process. When Measurement Enable is set
to one, the NCO Correlator collects remaining data and send
it to the Measurer Navigator block. This process ensures the
coherency and the datation of the raw measurements, even in
case computation or communication delay.

Fig. 5. Measure event time diagram.

IV. RESULTS AND DISCUSSION

The receiver has been completely implemented with six
GPS channels and is fully functional. It can be extended to as
many channels as can be fitted in the HW. For simulation and
debbuging purposes we used a recorded signal. We sampled
the GNSS signal with an SBX board mounted on an ETTUS
USRP X310. We are working to integrate the Analog Device
AD9361 RF board with the FPGA.

The test of this architecture has shown the capability to
initialize the channels from the results of the acquisition, re-
gardless of the computing delay of the acquisition. The results
obtained when using tracking loops (integrators, discrimina-
tors, Doppler frequency and C/N0) are shown in fig. 6, when



Fig. 6. Test results of the tracking loops.

initialized with acquisition outputs. The acquisition process
start at 0s. At approximately 1.9s, the acquisition provides its
results to the manager which configures the tracking loop. We
can see that the Doppler frequency is initialized. At 2.5 s, the
tracking loop starts the tracking process. From that moment,
the loop converges and work properly. In this test, the initial-
ization delay and the tracking start delay have been increased
intentionally, in order to validate channel initialization.

In addition to the development of the aforementioned co-
design architecture, one of the expected outputs is a Vivado
project (or EDK) compatible with the hardware platform,
targeted and validated on such platform.

V. CONCLUSION

This work demonstrates that co-design GNSS architecture
is of great interest to fix the complexity and non-flexibility
issues related to the use of FPGA. It offers both the capability
of a critical management of time and of an open and easily
modifiable architecture. The high level modelling and simula-
tion allows early key decisions and shortens the development
process [4].

ACKNOWLEDGMENT

This work has been funded by Occitanie region.

The authors would like to thank Dr Gaël Pagès for the work
on the software manager, as well as Space Codesign for the
technical support. The authors would also like to thank Dr
Anne-Emmanuelle Priot for her help and support.

REFERENCES

[1] F. B. Muslim, L. Ma, M. Roozmeh and L. Lavagno, ”Efficient FPGA
Implementation of OpenCL High-Performance Computing Applications
via High-Level Synthesis,” in IEEE Access, vol. 5, pp. 2747-2762, 2017.

[2] C. Fernandez-Prades et al., ”GNSS-SDR - An open source Global
Navigation Satellite Systems software-defined receiver,” Available online
at https://gnss-sdr.org/, Accessed: November 15,2018.

[3] C. Rowen, ”Engineering the complex SOC,” Prentice Hall, 2004.
[4] A. Dion, E. Boutillon, V. Calmettes, E. Liegon, ”A Flexible Imple-

mentation of a Global Navigation Satellite System (GNSS) receiver
for on-board satellite navigation,” 2010 Conference on Design and
Architectures for Signal and Image Processing (DASIP).

[5] T. Wieman, B. Bhattacharya, T. Jeremiassen, C. Schroder and B.
Vanthournout, ”An Overview of Open SystemC Initiative Standards
Development,” in IEEE Design & Test of Computers, vol. 29, no. 2,
pp. 14-22, April 2012.

[6] M. M. Hafidhi, E. Boutillon, A. Dion, ”Demo: Localisation in a faulty
digital GPS receiver,” 2016 Conference on Design and Architectures for
Signal and Image Processing (DASIP).

[7] L. Filion, M.-A. Cantin, L. Moss, G. Bois, M. Aboulhamid, ”A SystemC
Framework for Fast Exploration of Hardware/Software Systems,” 2007
Conference on Design and Verification , San Jose, 2007.

[8] M. Majoral, C. Fernandez-Prades, J. Arribas, ”Implementation of GNSS
Receiver Hardware Accelerators in All-Programmable System-On-Chip
Platforms,”.


