
HAL Id: hal-02269786
https://hal.science/hal-02269786

Submitted on 23 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Timing Requirement Description Diagrams for
Real-Time System Verification

B Fontan, P de Saqui-Sannes, Ludovic Apvrille

To cite this version:
B Fontan, P de Saqui-Sannes, Ludovic Apvrille. Timing Requirement Description Diagrams for
Real-Time System Verification. Embedded Real Time Software and Systems (ERTS2008), Jan 2008,
Toulouse, France. 8p. �hal-02269786�

https://hal.science/hal-02269786
https://hal.archives-ouvertes.fr

 Page 1/8

Timing Requirement Description Diagrams for Real-Ti me System
Verification

B. Fontan1, 2, P. de Saqui-Sannes1, 2, L. Apvrille3

1: LAAS-CNRS
7 Avenue du Colonel Roche, 31077 Toulouse Cedex 04, France

2: University of Toulouse

ISAE
10 avenue Edouard Belin - BP 54032 - 31055 Toulouse cedex 4

3: institut TELECOM, TELECOM ParisTech
2229 route des Crêtes, B.P. 193, 06904 Sophia-Antipolis Cedex, France

bfontan@isae.fr, pdss@isae.fr, ludovic.apvrille@telecom-paris.fr

Abstract : TURTLE is a real-time UML profile
introduced a few years ago to address the analysis,
design and deployment of time-constrained systems.
The profile has a formal semantics. Further, it is
supported by an open source toolkit: TTool. The
latter enables formal verification of TURTLE models
without specific knowledge of mathematical
notations or formal languages. This paper proposes
to extend TURTLE to cover the requirement capture
phase, to check a model against formally expressed
temporal requirements, and to achieve temporal
requirement traceability. TURTLE is extended with
SysML requirement diagrams. Non-formal and
formal requirements are both handled. Timing
Requirement Description Diagrams are introduced to
formally express temporal requirements. TRDDs are
based on UML Timing Diagrams. A Hybrid Power
Management Unit of a Hybrid Vehicle serves as
example.

Keywords : Methodology, UML, SysML, Temporal
Requirement, Formal Verification.

1. Introduction

TURTLE [3] [4] is a real-time UML [16] profile
supported by TTool (TURTLE toolkit [19]). The latter
enables formal verification of real-time systems
models. In particular, verification may be guided by
observers.

The profile and TTool have recently been extended
to support SysML [18] requirement diagrams.
TURTLE requirement diagrams may contain informal
requirements expressed in natural language. They
may also include temporal requirements expressed
in a chronogram style, using a Timing Requirement
Description Diagram. A TRDD serves as starting
point for automated synthesis of observers.

The paper is organized as follows. Section 2
presents the TURTLE profile. It also introduces a

methodology for the design of real-time embedded
systems, relying on TURTLE and its SysML
extensions. Section 3 introduces requirement
description diagrams and TRDDs. Metamodels are
introduced. Also, TRDDs’ expression power is
discussed. Section 4 applies TURTLE to a Hybrid
Power Management Unit of a Hybrid Vehicle.
Section 5 concludes the paper.

2. TURTLE

2.1 Overview of the TURTLE profile

TURTLE (Timed UML and RT-LOTOS Environment)
is a SysML/UML profile for real-time system analysis
and design [3] [4] [20]. The profile has a formal
semantics expressed by translation to RT-LOTOS
[8]. It is implemented by TTool [19], an open source
toolkit interfaced with two formal verification tools:
RTL [17] and the BCG Tool of the CADP Toolkit [6]
(the use of BCG is not addressed in this paper).
Formal verification works as follows: TTool
transforms a TURTLE model into an RT-LOTOS
specification, and the latter’s reachability graph is
generated by RTL.

Formal verification may be applied to the two groups
of UML diagrams customized by TURTLE1: (1)
analysis diagrams (interaction overview and
sequence diagrams), and (2) design diagrams (class
and activity diagrams).

TURTLE diagrams may be edited using TTool. As
shown by Figure 1, TTool translates all the diagrams
into TIF, a TURTLE Intermediate Format expressed
in native TURTLE [4]. TIF is made up of “basic”
design diagrams. TIF serves as starting point to
generate either an RT-LOTOS specification or
executable Java code. Java code generation is out
of scope of the paper.

1 [4] also presents Deployment Diagrams (not addressed in this
paper).

 Page 2/8

Figure 1 shows that observers are automatically
generated from requirement diagrams. Observers
are translated into TIF and connected to the TIF form
of relevant class and activity diagrams of the
system’s model.

Figure 1: Main functions implemented by the
TURTLE toolkit

2.2 The TURTLE Methodology

This section introduces the four-step methodology
depicted by Figure 2. A previous methodology was
presented in [4]; it cover steps (2) (3) and (4) (see on
Figure 2, the dashed rectangle labeled by “previous
methodology”). This paper proposes an enhanced
methodology whose advantage is twofold. In (1),
non-functional temporal requirements are depicted in
a chronogram style by using a TRDD (Timing
Requirement Description Diagram). Second, the
TRDD serves as starting point for generating an
observer in charge of guiding formal verification in
step (3). Note that temporal requirement traceability
is also of prime concern.

Figure 2: The TURTLE Methodology

Glossary:
RD Requirement Diagram

TRDD Timing Requirement Description Diagram

TM Traceability Matrix

UCD Uses Cases Diagram

SD Sequence Diagram

IOD Interaction Overview Diagram

CD Class Diagram

AD Activity Diagram

TIF TURTLE Intermediate Format

The requirement capture phase (step (1)) starts with
a requirement diagram (RD) definition. Each node in
the RD defines one requirement in plain text, which
means that the requirement in question is informal
(in the sense that it is written in, e.g., English and not
using a language whose syntax and semantics are
formally defined). Both functional and non functional
temporal requirements (TR) may be respectively
expressed by use cases and TRDDs (Timing
Requirement Description Diagram).

The two dashed lines in Figure 2, between steps (1)
and (3), indicate that observers may be generated
from TRDDs to be associated with design diagrams
(CD and AD). Automatic synthesis algorithms and
metamodels are described in [20].

Also in (4), a traceability matrix is automatically
generated from the results collected by the
observers. Verification implements a reachability
analysis approach. The output is a graph (RG) that
can be minimized into a quotient automaton (QA)
[14]. To check whether a given desirable property
holds or not, we use either the RG or the QA.

In section 4, this methodology is exemplified over a
Hybrid Power Management Unit of a Hybrid Vehicle.

3. Temporal Requirement Description Language

3.1 Related Work

This section surveys various modelling techniques
that might have been used to extend TURTLE with a
requirement description language. The objective is to
present the rationale behind the definition of
TURTLE’s requirement diagrams, including TRDDs.

Beyond the support of requirement capture, SysML
offers system engineers a UML-based notation
which is less software centric than UML 2.1 [16]. For
instance, [22] proposes an extended SysML with
bond graphs. The extended notation enables
description of energy flows between mechanical
blocks located inside one system. Unlike [22],
TURTLE reuse SysML block diagrams and ignores
the functional design style inherent to SysML blocks.

TURTLE requirement diagrams differ from SysML
ones for they allow one to formally express
requirements and to associate them with verification
results.

TIF

RT- LOTOS
Specification

RD TRDD

TM

Formal verification
guided by observers

Insertion

Reachability Graph

Functional Requirement :
Use Case

Previous methodology [4]

(1)
Requirement

Capture

(2)
Analysis

(3)
Design

(4)
Verification

Observation
Points Observer’s

automatic
synthesis

CD
AD

UCD
IOD SD

Non Functional
Temporal

Requirement

RTL

Generation

Translation

Generation
TURTLE

Intermediate
Format

(TIF)
RT-LOTOS

Specification

Generation

Formal Verification

Requirements

Observers

Automatic

Synthesis

Analysis Design

OR

System Model

RTL

Contribution s
presented in
this paper

RD

TRDD

 Page 3/8

In KAOS (Keep All Objective Satisfied [13])
requirements are expressed by means of logic
formulas written in RT-LTL (Real Time Linear
Temporal Logic). KAOS also includes a method for
goal driven requirement elaboration. The KAOS tool
Objectiver [15] enables analysts to elicit and specify
requirements in a systematic way and to achieve
traceability from requirements to goals. The interest
of the KAOS methodology is to formalize and trace
functional and non-functional requirements (including
security, safety, accuracy, cost, performance)
throughout the design cycle. In this paper, we also
link (temporal) requirements to our formalism and we
integrate requirement capture and requirement
traceability.

Scenario based modelling techniques are also
candidates for temporal requirement description. The
verification process consists in matching [5]
scenarios and the model of the system. For instance,
Timed Use Case Maps [11] (see TUCM in table 1)
describe Use Cases Interactions including absolute
time with a master clock and relative time constraints
(Duration, Timer). Also, Visual Timed events
Scenario [5] (see VTS in table 1) represent events
interactions. An event represents an action which
potentially occurs inside the system. VTS includes
time representation. It may express partial orders
and relative time constraints between events. Finally,
Live Sequence Charts [9] (LSC in table 1) extend
Messages Sequence Charts (MSC) to represent
scenarios. LSC enable distinction between possible
and necessary scenarios.

Name TUCM VTS LSC

Reference [11] [5] [9]

Formal
Language

Clocked
Transition
Systems

Timed
Computation Tree

Logic

Bücchi
Automata

Verification
type

Model
Checking

Model Checking
(UPPAAL/Kronos)

Model
Checking

Table 1: Scenario-based visual languages with
formal semantics

The scenario-based description languages
discussed so far have a formal semantics, and so
have TRDDs. TRDDs reuse the concept of
observation points introduced in VTS. Nevertheless,
TRDDs do not implement a scenario paradigm,
which seems appropriate for the analysis phase, but
not the requirement capture one.

To reduce the gap between requirement capture and
formalization, temporal requirements might also be
represented using Timing Diagrams. The latter make
it possible to represent temporal requirements in an
easy to read and formal way. The formalism used by
the ICOS toolbox [10] is similar to timing diagrams.
Real Time Symbolic Timing Diagrams (RT-STD in

table 2) are applied to SoC design. Regular Timing
Diagrams [2] (see RTD in table 2) improve the
situation: they enable representation of partial order
between diagrams.

Name RT-STD RTD TRDD

Reference [10] [2] This paper

Formal
Language

Bücchi
Automata

Symbolic
Values

RT-LOTOS

Type of
verification

Model
Checking

Model
Checking

Observers

Table 2: Visual Languages based on Timing
Diagrams

Overall, we favor the timing diagram paradigm for its
main concepts may be reused and adapted to
express temporal requirements. Accordingly, TRDDs
are based on timing diagrams.

3.2 Requirement Diagram (RD)

A SysML requirement is a test case [18] stereotyped
by <<requirement>> and characterized by four
attributes: (1) an identifier; (2) a text (an informal
description of the requirement); (3) a type
(“functional” or “non-functional”); (4) a risk level
(“high” or “low”) depending on whether the
requirement is strong or weak, respectively.

The TURTLE requirement diagram in Figure 3
includes an informal requirement and a formal one.
Both address the same system constraint: “the
process must be completed within 10 time units”.

Figure 3: Example of a TURTLE Requirement
Diagram

A Requirement Diagram may also describe a
requirement refinement, a derivation, and a
verification. In Figure 3, an informal requirement
(stereotyped by <<Requirement>>) is derived (cf. the
dependency relation stereotyped by <<derive>>) into
a formal requirement (stereotyped by <<Formal
Requirement>>). The latter is to be verified using an
observer (stereotyped by <<TObserver>>). Thus, the
“Formal Requirement” serves as starting point for
formal verification. The text in the informal
requirement is replaced by a Timing Requirement

Violated_Action= «KO_P»

TRDD= <P_TRDD>

 Page 4/8

Description Diagram (TRDD) in the formal
requirement (see section 3.3).

Formal requirements such as the one depicted in
Figure 3 serve as starting point to generate
observers intended to guide verification. As shown
by Figure 3, an observer contains two attributes.
First, the diagrams field indicates the diagram for
which observer are meant to be generated. It may be
either an analysis or a design diagram. The second
field, named Violated_Action specifies the label
(identifier) to be used by the observer to denote the
requirement’s violation. The same label will be used
in the reachability graph output by TTool and RTL, in
such a way one may easily set up a
correspondence.

The metamodel of TURTLE Requirement Diagram is
depicted by Figure 4. In TURTLE, a Requirement
Diagram (TRequirement_Diagram class) extends the
SysML Requirement Diagram
(::SysML::Requirement diagram class). It is made up
of three types of nodes: informal requirements
(TInformal_Requirement class), formal requirements
(TFormal_Requirement class) and observers
(TObserver class).

Informal and formal requirements are new
stereotypes defined from SysML Requirement
(::SysML::Requirement class). A formal requirement
derives from an informal one (association labelled by
derive).

TObserver is a new stereotype defined from SysML
stereotype “TestCase” (::TTDTestingProfile::
TestCase class) which corresponds to the device
used for requirement verification. An observer
verifies only one formal temporal requirement
(represented by the association labelled by verify
which binds a “TestCase”, an observer in this paper,
with a formal requirement described by a TRDD).

Class diagram1 package metamod_obs {1/7}

<<metaclass,icon,browserNode>>

::SysML::Requirement

<<stereotype>>

TInformal_Requirement

Text: String
Kind={Functionnal, Non_Functionnal,Performance}
Risk={High,Low}

<<stereotype>>

TFormal_Requirement

Kind={Non_Functionnal,Performance}
Risk={High,Low}

<<browserNode,diagramRestrictions,metaclass>>

::SysML::'Requirement diagram'

<<stereotype>>

TObserver

<<stereotype>>

::TTDTestingProfile::TestCase

<<browserNode,diagramRestrictions>>

TRequirement_Diagram

 *

 *

*

*

*

*

<<browserNode,diagramRestrictions>>

TRDD

 1

 1

Package_ref

Package_name:String

 1

 1

Violated_Action

VA_ID:String

1

1

derives

1

1derives

1

1

verifies

1

1

verifies

1

1

// TURTLE Requirement Diagram Metamodel

compose

*

 1

compose

*

 1

Figure 4: Metamodel of TURTLE Requirement
Diagram

3.3 Timing Requirement Description Diagram
(TRDD)

A TRDD describes one temporal requirement. The
TRDD in Figure 5 refers to a process which must
complete within 10 time units. The process is defined
by two actions “Start_Process” and “End_Process”
that we call “observations points”. The latter are
modeled above the TRDD lifeline. This latter
includes a temporal frontier (equal to 10 time units in
this example). The “temporal frontier” distinguishes
between two time periods - OK and KO - that
correspond to a requirement satisfaction and
violation, respectively.

Figure 5: Timing Requirement Description Diagram

Note. Figure 5 uses two comments (“Observation
points” and “Requirement Lifeline”) which are not
part of the metamodel.

The TRDD metamodel is presented in Figure 6. A
TRDD (TRDD class) extends UML Timing Diagrams
[16] (Value Lifeline Timing Diagram). A TRDD
contains an attribute n_TRD whose value equals the
number of elements in the TRDD requirement
description (OK or KO).

Class diagram2 package metamod_obs {2/7}

<<browserNode,diagramRestrictions>>

TRDD

n_TRD:Integer

<<metaclass,browserNode>>

::TTDMetamodel::LifeLine

Requirement_Lifeline

<<metaclass>>

::TTDMetamodel::Diagram

 1

 1

<<icon>>

Requirement_State

Label={OK,KO}
N:Integer

 1..N

 1..N

<<metaclass,browserNode>>

::TTDMetamodel::State

<<icon>>

T_F

Label=">|<"
Date_of_TF:Integer

 0..N-1

 0..N-1

<<icon>>

Begin

Label ="<"

<<icon>>

End

Label= ">"

1

1

1

1

Observation_Points

Name_of_Action:String
Name_of_TObject:String

1

1
<<icon>>

Start_Action

Label=" | "

<<icon>>

Capture_Action

Label="_|_"

// Timing Requirement Description Diagram Metamodel

 1

 1

Figure 6: Metamodel of TRDD

As shown in Figure 5, a TRDD is made up of:

• One Requirement Lifeline (Requirement_Lifeline
class, see Figure 6) which contains one Begin
and End symbols, N Requirement States (OK or
KO) and N-1 Temporal Frontiers.

10

OK KO

Begin
Temporal Frontier

End

Observation_Points

Requirement_Lifeline

End_Process Start_Process

 Page 5/8

• Two Observation Points (Observation_Points
class, cf. Figure 6) which correspond to those
events describing requirement observations.
Start_Action models the beginning of a
requirement capture. Capture_Action models the
end of the requirement capture.

3.4 Expression power of TRDDs

The purpose of this section is to exemplify which
type of Temporal Requirement (TR) may be
modelled using a TRDD. Two classes of TRs are
identified in [WAH 94]:

• Requirements where time is expressed in a
qualitative way. This class of requirements
exclusively considers partial order between
events.

• Requirements where time is expressed in a
quantitative way. This class of requirements
considers both the order of events and temporal
distances between these events.

This paper focuses on temporal requirements where
time is represented in a quantitative way.

This kind of requirement corresponds to bounded
promptness properties [1] resulting from the class of
safety properties. This kind of requirement must
have a deadline after which a property is not
satisfied [1]. This implies that the system must be
temporally bounded; otherwise, it cannot be verified.

Table 3 presents temporal requirements
corresponding to the bounded promptness
properties defined in [1]. The relation which denotes
that a system S satisfies a requirement R is written
S╞ R.

Kind of TR Definition

Promptness
R ensures that an event must occur before a
deadline Tmax. S╞ R is true if this event
occurs before Tmax.

Minimal Delay
R ensures that an event must occur after a
minimum time Tmin. S╞ R is true if this
event occurs after Tmin.

Punctuality
R ensures that an event must occur at one
punctual date T. S╞ R is true if this event
occurs at the T date.

Periodicity
R ensures that an event must occur regularly
at modulo T dates. S╞ R is true if this event
occurs at modulo T dates.

Interval Delay

R ensures that an event must occur
between/outside a temporal interval]Tmin;
Tmax[. S╞ R is true if this event occurs
between/outside temporal interval]Tmin;
Tmax[.

Table 3: Temporal Requirements taxonomy based
on [1]

As shown in Figure 7, different patterns of TRDD are
compared with the Temporal Requirements (TRs)
presented in Table 3. We distinguish between three
classes of TRDD patterns (see Figure 7):

• a) TRDDs with one temporal frontier where
corresponding events must occur before/after T
time units. These requirements correspond to
Promptness and Minimal Delay requirements,
respectively.

• b) TRDDs with two temporal frontiers where
corresponding events must occur
between/outside the interval]T1; T2[. These
requirements correspond to Interval Delay and
Punctuality Requirements, respectively. A TRDD
with two temporal frontiers T1 = T-1 and T2 =
T+1 corresponds to Punctuality Requirement on
date T. Punctuality is verified on both sides of
date T. Note: Integer bounds are supported.

• c) TRDDs with N temporal frontiers and N+1
requirement states (OK or KO), where P1 and
P2 represent two possibilities of requirement
states (OK or KO). This kind of requirements is
not referred in the taxonomy presented in Table
3. Thus, TRDDs make it possible to express
requirements not listed in Table 3.

Figure 7: Comparison between TRDD patterns and

requirements presented in table 3

All the requirements defined by a TRDD might be
periodic (Periodicity Requirement). Observers built
upon TRDDs may restart on the first point of
observation as soon as the second point was met,
and if the temporal requirement is satisfied.

4. Case Study: Hybrid Power Management of a
Hybrid Vehicle

4.1 Overview

The battery of a hybrid vehicle (HV) is often solicited
by the engine for the propulsion and cannot reload
permanently. It is thus necessary to reload it when
the car produces energy, e.g. during the deceleration
or braking phases (represented in Figure 9 by
dashed areas). Figure 8 depicts the evolution of

OK

Start_Action

KO

Capture_Action

P1

Capture_Action

Start_Action

P2

(c

T
KO

Start_Action

OK

Capture_Action

T

(a

OK
Start_Action

KO
T1

(b

OK
T2

Tn

KO

Start_Action

OK KO
T1 T2

Capture_Action Capture_Action

Promptness Minimal Delay

Interval Delay Interval Delay
Punctuality with T1=T-1 and T2=T+1

None referenced Requirement

 Page 6/8

mechanical and electrical power over time; they are
depicted by the red and blue curves, respectively.

The scenario depicted in Figures 8 and 9
corresponds to a standard city trip where the driver
pushes the pedal accelerator, releases it, then slows
down and pushes the brake pedal (e.g. at a red
traffic light). This scenario is used in the model
presented in 4.3.

Figure 8: Evolution of mechanical and electrical
power during time

Figure 9 presents, on the one hand, the interactions
of the pilot with the brake (B) and accelerator (A)
pedals (e.g. in Braking phase the driver pushes on
the brake pedal) and, on the other hand, the timing
diagram which includes dates where the battery
must be charged at Ti and Tf dates, with a
authorized latency d which corresponds to the
system response time.

TimeB
at

te
ry

S
ta

te Discharge ChargeCharge

Acceleration Cruising Braking

Ti+ d Tf+ d

B A B A B A

Driver pedals

Figure 9: Hybrid Power Management Temporal
Requirement

4.2 Requirement Capture

Figures 8 and 9 serve as references for building the
Requirement Diagram depicted in Figure 10.
Temporal requirements during the Cruising and
Braking phases are formalized by the two TRDDs
presented in Figure 10.

4.3 Design

Design diagrams include one class diagram (CD)
and a set of timed activity diagrams (AD).

Figure 11 shows the class diagram of the hybrid
vehicle which contains Pedal_units class with the
accelerator and brake pedals, CAN_Bus class which
represents the CAN network, MicroCont class is a
model of the microcontroller and motor of the HV

and Battery class which is concerned by the
requirements depicted in Figure 10. We intentionally
add a model of the driver (Driver class) which
represents the scenario depicted by Figure 9
(Acceleration, Cruising and Braking).

Figure 10: Requirement Diagram and TRDD of
HPMU Temporal Requirements

One may observe that the TURTLE Classes are
composed by relations attributed with an associative
class labeled by “Synchro”. Indeed, TURTLE objects
rendezvous in a LOTOS fashion [8], via
communication gates described with OCL relations.

Figure 11: Architecture specified in a TURTLE Class
Diagram

Tf Tf+d
KO OK KO

Brake.Driver
Charge.Battery

Ti Ti+d

KO OK KO

Cruise.Driver Charge.Battery

TRDD= <FB_HPMU> TRDD= <FC_HPMU>

ViolatedAction =
‘’FB_HPMU_KO

ViolatedAction =
‘’FC_HPMU_KO

 Page 7/8

4.4 Verification guided by observers

Observers are synthesized from one TRDD to a TIF
specification. This specification is composed with the
TIF translation of the CD and ADs. Observers and
observed objects also communicate by rendezvous.
Of interest to us is the “time limited offer” temporal
operator which limits the amount of time that may be
allocated to offering a rendezvous.

Figure 12 shows the translation process to generate
the observer checking for the F_Brake_HPMU
requirement. The behavior of the observer is
generated starting from the TRDD. First of all, two
tables are created to isolate various labels from the
TRDD which denotes a requirement satisfaction or
violation (see Translation table of TRDD in the
observer activity diagram in Figure 12). These tables
explain how to build the heart of the observer activity
diagram. This embryonic observer’s behavior (see
Figure 12) is made up of time limited offers, each of
them observing one temporal frontier of the TRDD.
Additionally, the observer is assembled “upside
down”.

Figure 12: Observers automatic synthesis for the
F_Brake_HPMU Requirement

The observer’s activity diagram is extended
according to the two following rules:

1. The first observation point called “Start” is
synchronized with the “Brake” signal of the
Driver Class. The observer does not block if two
actions “Start” are executed before one action
“End” occurs.

2. Since the formal requirement’s risk level is set to
“high” (see Figure 12), the observer stops the
system’s execution once the property is not
satisfied. The observer executes the actions
(stop_i actions) that preempt each active class
of the system.

Note: Observers synthesis algorithms and
metamodels are detailed in [20].

Finally, Figure 13 shows how the results of formal
verification of temporal requirements are displayed in
a traceability matrix. The latter is automatically built
by TTool from the reachability graph. In this
example, formal requirements F_Brake_HPMU and
F_Cruise_HPMU are violated (see the KO labels in
the satisfiability column).

The reachability graph generated from the model
with no observer contains 50 states and 60
transitions. Adding one observer leads to distinguish
between two situations. If the requirement is
satisfied, the graph has 53 states and 63 transitions.
Otherwise, the graph has 78 states and 92
transitions. A requirement violation introduces new
states in the graph. Additional paths are introduced
to characterize the requirement violation and the pre-
emption messages.

Figure 13: Traceability Matrix of Hybrid Power
Management Unit Requirements

5. Conclusions and Future Work

TURTLE is a real-time UML profile designed with
formal verification in mind. The profile was recently
extended with SysML requirement diagrams. The
objective is to formally verify temporal requirements.

The paper shows how SysML requirement diagrams
are supported by the profile. Formal temporal
requirements are expressed with TRDDs, a
graphical language based on UML Timing Diagrams.
The paper’s contribution lies in the possibility to
automatically derive observers from temporal
requirements defined by Timing Requirement
Description Diagrams. TTool automatically inserts
these observers in the relevant design diagrams
(class and activity diagrams) as a premise to guide
the verification process.

Translation table of TRDD in the observer
activity diagram (behavior)

KO OK KO

Brake.Driver Charge.Battery

Tf Tf+d

KO OK KO

i=0 i=1 i=2

TRDD

Position

Label

Embryonic
behavior of

observer

1. Anti -blocking system

2. Preemption of the system’s execution

Building direction

 Page 8/8

The observer-based verification approach proposed
in the paper reuses the RT-LOTOS code generator
included in TTool as well as the RTL verification tool.
TTool also generates Java code from TURTLE
models. We plan to extend the proposed approach
to the TURTLE deployment phase of communicating
systems. Additionally, observers will be generated in
the Java executable code as simulation probes.

6. References

[1] R. Alur and T.A. Henzinger, “Real-time logics:
Complexity and expressiveness.” Information and
Computation, Volume 104, pp. 35-77, 1993.

[2] N. Amla, E.A. Emerson, and K.S. Namjoshi,
“Efficient Decompositional Model Checking for
Regular Timing Diagrams”, In Conference on
Correct Hardware Design and Verification Methods
(CHARME 1999). Springer-Verlag, pp. 67-81,
September 1999.

[3] L. Apvrille, J.-P. Courtiat, C. Lohr and P. de Saqui-
Sannes, “TURTLE: A Real-Time UML Profile
Supported by a Formal Validation Toolkit”, IEEE
Trans. on Software Engineering, Volume 30,
Number 7, pp. 473-487, July 2004.

[4] L. Apvrille, P. de Saqui-Sannes, R. Pacalet and A.
Apvrille, "Un environnement de conception de
systèmes distribués basé sur UML", Annals of
Telecommunications, Volume. 61, Number 11/12,
pp. 1347-1368, November 2006.

[5] V. Braberman, N. Kicillof and A. Alfonso, “A
Scenario-Matching Approach to the Description and
Model-Checking of Real-Time Properties“, Volume
31, Number 12, pp. 1028-1041, IEEE Transactions
on Software Engineering, December 2005.

[6] CADP Website, http://www.inrialpes.fr/vasy/cadp/

[7] H. Chockel and K. Fisler, “Temporal Modalities for
Concisely Capturing Timing Diagrams”, Correct
hardware design and verification methods, 13th
IFIP WG 10.5 advanced research working
conference, CHARME’05, Saarbrücken, Germany,
October 2005.

[8] J.P. Courtiat, C.A.S. Santos, C. Lohr and B. Outtaj,
“Experience with RT-LOTOS, a Temporal
Extension of the LOTOS Formal Description
Technique”, Computer Communications, Volume
23, Number 12, pp. 1104-1123, 2000.

[9] W. Damm and D. Harel. “LSCs: Breathing Life into
Message Sequence Charts”, Formal Methods in
Systems Design, Volume 19, Number 1, pp. 45-80,
2001.

[10] M. Fränzle and K. Lüth, “Visual Temporal Logic as
Rapid Prototyping Tool”, Computer Languages,
Volume 27, pp. 93-113, 2001.

[11] J. Hassine, J. Rilling and R. Dssouli, “Timed Use
Case Maps“, In System Analysis and Modeling:
Language Profiles, 5th International Workshop,
SAM 2006, Kaiserslautern, Germany, pp. 99-114,
June 2006.

[12] C. Jard, J.-F. Monin and R. Groz, “Development of
Veda, a Prototyping Tool for Distributed

Algorithms,” IEEE Transactions on Software
Engineering, Volume 14, Number 3, pp. 339-352,
March 1988.

[13] A. Van Lamsweerde, “Goal-Oriented Requirements
Engineering”, System Objectives to UML Models to
Software Specifications, Wiley, 2006.

[14] R. Milner, “Communication and Concurrency,”
Prentice Hall, 1989.

[15] Objectiver Website, http://www.objectiver.com/

[16] Object Management Group, “Unified Modeling
Language Specification”, Version 2.1.1,
http://www.omg.org/docs/formal/07-02-03.pdf

[17] RTL Website, http://www.laas.fr/ RT-LOTOS/

[18] Object Management Group, “System Modeling
Language Specification”, Version 1.0,
http://www.SysML.org/docs/specs/SysML-v1-Draft-
06-03-01.pdf

[19] TTool Website, http://labsoc.comelec.enst.fr/turtle/

[20] B. Fontan, P. de Saqui-Sannes et L. Apvrille,
« Synthèse d’observateurs à partir d’exigences
temporelles », 14ième conférence Langages et
Modèles à Objets (LMO 2008), Montréal, Canada,
Mars 2008.

[21] M. Hause, F. Thom and A. Moore, “Inside SysML,”
IEEE Computing & Control Engineering, pp. 10-15,
September 2005.

[22] S. Turki and T. Soriano, “A SysML extension for
Bond Graph support,” 5th Int. Conference on
Technology and Automation, Thessaloniki, Greece,
October 2005.

8. Glossary

AD Activity Diagram

BGC Binary-Coded Graphs

CADP Construction and Analysis of Distributed
Processes

CD Class Diagram

HPMU Hybrid Power Management Unit

HV Hybrid Vehicle

IOD Interaction Overview Diagram

OCL Object Constraint Language

RD Requirement Diagram

RTL Real Time Laboratory

SD Sequence Diagram

TIF TURTLE Intermediate Format

TM Traceability Matrix

TR Temporal Requirement

TRDD Timing Requirement Description Diagram

TTool TURTLE Toolkit

TURTLE Timed UML and RT-LOTOS Environment

UCD Uses Cases Diagram

