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Highlights :  

3 to 5 bullet points (maximum 85 characters, including spaces, per bullet point) 

- Phenotypic plasticity can influence the rate of evolution of insects 

- The rate of evolution will depend on how plasticity alters the strength of selection 

- The response to selection will also depend on plasticity alters trait correlations 

- More studies are needed to address this question in insects 

 

Abstract (100-200 mots) 

Faced with a rapidly changing environment, phenotypic plasticity allows for the production of a 

diversity of intra-generational responses, but the subsequent consequence inter-generational 

evolutionary processes is still difficult to predict. In this article, we review theory and empirical 

studies addressing this question in insects by considering three scenarios. Adaptive plasticity that 

should lead to slow or no evolution. Non-adaptive phenotypic plasticity to new environmental 

conditions that should lead either to extinction or, on the contrary, to rapid evolutionary change. 

The third scenario deals with how plasticity alters the variance selection acts upon. These 

scenarios are then discussed by highlighting the effects of genetic correlations between 

phenotypes. We conclude that more studies are needed in insects to better understand the 

relationship between phenotypic plasticity and evolutionary processes. 

 

Introduction  
 

The first response of organisms to environmental change is often through plasticity in 

behavior, physiology, or other environmentally sensitive traits [1–3]. Such plasticity is by 

definition a non-evolutionary response to the environment, because it occurs within the 

generation of an individual. However, a long-standing question in evolutionary biology is 

whether the plasticity observed within generations influences subsequent evolutionary change 
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across generations [1–3].  Understanding the relationship between plasticity and evolution has 

taken on increased importance in the context of rapid global change as historic patterns of 

temperature and rainfall are simultaneously changing in a directional manner and showing 

increased variability [4,5].  

Insects, like other ectotherms exhibit plasticity in a suite of traits related to temperature 

(reviewed in [5]), and because of their relatively fast generation times also have the potential to 

rapidly evolve [6]. Insect populations are therefore good models for considering the relationship 

between plasticity and evolution. For example, the life cycles of insects living at higher latitudes 

have evolved plastic responses to specific environmental cues that help them survive cold 

winters, but climate change is increasingly disrupting the reliability of these cues [5]. How might 

this disruption alter patterns of plasticity and subsequent evolutionary change? Our goal here is 

to provide possible answers to this question by reviewing evolutionary theory and presenting 

different scenarios for how plasticity will alter the rate of adaptive evolution. Where possible, we 

use empirical studies of insects as examples to illustrate these concepts.  

The evolutionary response of a trait to an episode of selection is dependent on the strength 

of directional selection and the amount of genetic variance [7].  Thus, understanding how 

plasticity impacts the heritability or additive genetic variance/covariance for a trait, and the 

strength of selection should allow for predicting the rate of evolutionary change in a population. 

Indeed, a traditional perspective is that plasticity slows the rate of evolutionary change because 

most of the phenotypic variance is environmentally induced and non-heritable [3]. Under such 

conditions even strong selection will fail to produce an evolutionary response. However, it is 

now generally accepted that plasticity is itself a trait that exhibits genetic variation and has the 

capacity to evolve [8]. If plasticity itself is heritable, then a critical question becomes how a 

particular environment alters the distribution of phenotypes within a population relative to the 

optimal phenotype (e.g. [1–3].). We focus on three scenarios: 1) adaptive plasticity, where the 

environment predictably shifts the distribution of phenotypes towards the optimum, 2) non-

adaptive plasticity, where the environment predictably shifts the distribution of phenotypes away 

from the optimum, and 3) effect on variance, where the environment alters the range of variance 

available for selection to act on (reviewed in [3]). Below we expand on these ideas in more detail 

and the implications for insects dealing with global change. 

 

I Adaptive Plasticity 

 

Adaptive plasticity is used here in the sense of beneficial plasticity, i.e. that allows 

individuals to have a higher fitness in the new environment than it would be if not plastic 

[3,9,10]. There are many examples of adaptive phenotypic plasticity in insects. In butterfly 

species, seasonal plasticity (i.e. polyphenism - [11]) with regard to adult colour pattern [12–15] 

has received considerable attention and was shown to be adaptive [16–20]. Another well 

documented example is the case of diapause induction, the cessation of reproduction and/or 

suppressed metabolism as a strategy to persist through harsh conditions (reviewed in [5]).  

In the event of a rapid change in the environment, adaptive phenotypic plasticity is 

hypothesized to allow organisms to 1) adaptively modify traits over a very short (intra-

generational) timescale, 2) assist in the initial survival of populations, and 3) reduce the 

probability of extinction [21]. While this hypothesis has been the subject of much modelling 

work [22–26], it has received very little empirical evidence at this time. However, comparisons 

of phenotypic plasticity in invasive and native populations have been used to address this 



question.  Such studies are abundant in plants with mixed results [27]. In insects, the degree to 

which adaptive plasticity benefits to the first step of the invasion starts to be studied in 

Drosophilids [28] and in particular on the morphology of the wing, a very temperature sensitive 

trait that can evolve quickly and is probably adaptively [29,30]. For example, Loh et al [31] 

found significantly different plastic responses to temperature in the wing size of Brazilian vs 

African populations of Zaprionus indianus. Fraimout et al. [32] found that wing plasticity was 

associated to an effect on flight speed but did not find any significant differences in wing 

morphology plasticity between three populations of Drosophila suzukii. 

How should adaptive plasticity influence the rate of adaptive evolution?  If the phenotype 

is close to the optimum, then directional selection will be weak and the population should evolve 

slowly or not at all unless there is a substantial fitness cost to plasticity [1,3,33]. Quantitative 

genetic approaches [7] can be used to determine the optimum phenotype and the strength of 

selection. Another strategy is to compare the reaction norms of populations occupying different 

environments. If adaptive phenotypic plasticity weakens selection, then there should be little 

genetic differentiation between populations. For example, Ayrinhac et al. [34] compared 

populations of Drosophila melanogaster for chill coma recovery time, a very plastic trait 

depending on developmental temperature, and found the adaptive variation arose from 

phenotypic plasticity, not genetic differentiation. Similar conclusions have been obtained on 

other traits in Drosophila [35–38] and in some other species [39,40] but in many studies, this 

question is generally not specifically addressed, especially in the case of non-linear reaction 

norm. 

 

II. Non-Adaptive Phenotypic Plasticity 

While natural selection has led to the evolution of adaptive plasticity, not all plastic 

responses to the environment are adaptive. We define non-adaptive plasticity as an 

environmentally-induced change that shifts the phenotype further away from the phenotypic 

optimum [3,41]. Under such a definition, non-adaptive plasticity is not beneficial in terms of 

individual fitness. At the population level, the presence of non-adaptive plasticity is most likely 

to be found under novel environmental conditions where past selection has not had an 

opportunity to act on the genetic variation for plasticity [3]. Non-adaptive plasticity has two 

potential evolutionary outcomes. The first potential outcome is the extinction of the population. 

Extinction is always a possible outcome in response to a rapid or strong episode of selection, and 

any non-adaptive plastic response should exacerbate this possibility, particularly if the trait(s) 

involved are closely tied to fitness [23]. A second potential outcome is rapid adaptive evolution 

(e.g. [42]. Non-adaptive plasticity can facilitate rapid evolution by increasing the strength of 

selection, and given the presence of sufficient genetic variation, lead to adaptive changes in 

either the trait or the reaction norm of the trait [42,43]. In such a scenario, non-adaptive plasticity 

may be a transient phenomenon that is important during the early stages of adaptation when the 

difference between the plastic response and the local optimum are greatest and the strength of 

selection strongest. However, determining what the local optimum for any phenotype is, and the 

degree to which any given environment is really novel are challenging problems when 

attempting to assess non-adaptive phenotypic plasticity.  

In the context of global change, the critical question is: how often might insect populations 

exhibit non-adaptive plasticity?  In theory, two scenarios are expected to generate non-adaptive 

plastic responses to the environment: 1) countergradient selection, and 2) extreme environmental 

conditions (heatwaves, prolonged droughts, cold-snaps, etc..) that lie outside the historic range of 



environmental conditions. Countergradient selection describes situations where the plastic 

response to the environment is non-adaptive or in the opposite direction favored by selection, 

resulting in genetic compensation or cryptic adaptation [44–46]. Conover et al. [45] review such 

cases and find numerous insect examples across temperature gradients associated with latitude or 

elevation. For example, high latitude insect populations are under selection for faster growth 

rates in response to colder temperature, but the plastic response to cold temperatures is slower 

growth leading to adaptive evolution for faster growth rates in high relative to low latitude 

populations (reviewed in [45]). Extreme environments outside the range of historic conditions 

may also generate non-adaptive plasticity because selection has not had the opportunity to shape 

the plastic response (e.g. [3]). Insects may be particularly sensitive to such extreme climate 

events, particularly at high latitudes where populations have evolved physiological and life-

history traits to survive cold winters (see [5]). For example, warmer autumn temperatures may 

not sufficiently prepare insects physiologically to survive cold winter temperatures [47,48], 

while warmer winter temperatures may cause non-adaptive early emergence from diapause 

leading to higher mortality [48,49].  

 

III. Stressful environmental conditions and phenotypic variation 
A classic tenet of ecological genetics – largely based upon laboratory studies on 

Drosophila – is that stressful environmental conditions tend to increase phenotypic variation 

[50,51]. As adaptation depends on the existence of heritable variation (R = h
2
S, where R is the 

response to selection, S is the selection differential and h
2
 is heritability), this effect might have 

deep evolutionary consequences, and in particular it may influence the adaptability to ongoing 

global changes. In the previous examples of adaptive and non-adaptive plasticity we focused 

largely on changes in S. However, stressful conditions can also potentially induce increased 

heritability (h
2
=VA/VP,

 
where VA is additive genetic variance and VP the total phenotypic 

variance), if the increased phenotypic variance is genetically based. A higher heritability and 

response to selection could boost the adaptive potential to the new stressful conditions. 

Alternatively, if the increased variance is not genetically based, an increase in VP would in turn 

decrease heritability, reducing the evolutionary potential. The generality of the stress-induced 

increase in variation has nevertheless been seriously questioned in the past two decades [52,53]. 

Can we identify a general effect of stress upon genetic variation and what can insects studies tell 

us about it? 

The interest for stress-induced variation may       c     ck    W         ’   xp         

with Drosophila [54]. He showed that stressors such as heat shocks or ether vapor could elicit a 

burst of phenotypic variation upon which artificial selection could be successfully applied. The 

evolutionary response demonstrated that the elicited variation was indeed genetic – but 

conditional to the environmental stress. Such storage and release of cryptic genetic variation and 

their molecular bases have since received much attention (e.g. [55–58]). In particular, the work 

on Hsp90 in Drosophila [56] has shown that a wide range of cryptic genetic variants could be 

stored and conditionally released. The induced variation is however generally detrimental 

(Figure 1B; [56,59,60]) and whether it could contribute to adaptive evolution has been 

controversial (e.g. [61]).  

The hypothesis that stress induces an increase in genetic variation is not universally 

supported. Hoffmann and Merilä [53] were the first to challenge the generality of this hypothesis. 

Later, Charmantier and Garant [52] reported in a meta-analysis that heritability rather tends to 

increase under favorable conditions. This discrepancy with the early Drosophila laboratory 



studies was discussed in terms of environmental novelty. In natural populations, stressful 

conditions would be the norm rather than the exception, while the stressors exerted in lab 

conditions would often represent completely new conditions. Many studies since then have 

explored the effects of extreme and novel environmental conditions on genetic variation for 

various traits, producing contrasting results. Among insects, a few Drosophila studies have 

reported an increase in genetic variation with stressful temperature [62–64] or larval crowding 

[65]. High temperature was found to reveal cryptic genetic variation in a female sperm storage 

organ in a sepsid fly [66]. Drought stress increased additive genetic variation for wing size and 

melanization in a butterfly species  [67]. Edvardsson et al [68] detected a strong increase in 

additive genetic variation for ovarian apoptosis in starved cockroach females. In contrast, other 

studies failed to detect such effect: for example, in Drosophila, genetic variation for heat 

resistance was not affected by drought stress [69] and neither was genetic variation for viability 

by temperature [70]. A recent meta-analysis based on 39 studies (including 11 on insects) 

suggests no consistent effect of stressful conditions for morphology, while life history traits tend 

to present higher genetic variation under stress [71]. Altogether, these results suggest that 

although genetic variation is clearly dependent on the environment, the effect of stress is likely 

trait, taxon and environment specific. 

 

Discussion 

 

The exact relationship between plasticity and evolution can be difficult to predict, but our 

perspective here is that by focusing on how plasticity alters the strength of selection and the 

amount of genetic variation expressed, predictions can be made about the rate of evolution. We 

summarize this perspective in a pair of conceptual figures (Figures 1 & 2). We can conceptualize 

the relationship between plasticity and adaptive evolution using a modified view of Fisher [72] 

    O  ’  [73] geometric model of adaptation (Figure 1).  

Rather than considering the distributional effects of mutations on the adaptive walk 

towards a local optimum, we can instead consider the effects of plasticity on a fitness landscape 

(following [3]). Collectively, the perspective presented here argues that predicting if insects will 

evolve in response to climate or any other environmental change requires qualitatively or 

quantitatively estimating how the plastic responses alter the strength of selection. We recognize 

this is challenging, but not impossible. For example, numerous studies to date have asked 

whether patterns of plasticity in thermal tolerance are adaptive and sufficient to buffer 

populations under future climate scenarios [5].  

The scenarios depicted in Fig. 1 assume plasticity as a univariate response, however, 

adaptation to changing environments is more likely to be a multivariate process involving 

numerous genetically correlated traits. The G-matrix or genetic variance-covariance matrix is a 

statistical tool for quantifying trait correlations [7,74] and can be visualized as an ellipse [75,76], 

whose axes represent the main directions of available genetic variation. Such trait correlations 

can either constrain the evolutionary response to selection if the selection gradient is orthogonal 

to the major axis of variation or facilitate the evolutionary response if selection is along the 

major axis [75,76]. However, there is also considerable evidence that trait correlations are plastic 

[77–79], and thus could influence the evolutionary response to selection. We depict some of 

these outcomes in Figure 2, using a stable fitness landscape as in Figure 1.  

In summary, phenotypic plasticity in a diversity of traits will be the first response of 

organisms to environmental change, and these plastic responses will in turn have implications for 



how populations evolve by altering the strength of selection and amount of expressed genetic 

variation. Yet, few studies have explored the linkages between plasticity and evolution in natural 

populations of insects. We argue that more studies should explicitly test such linkages to better 

improve long-term projections of how insect populations will perform under future climate 

scenarios. 
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Figure Legends  

 

Figure 1 – When adaptive plasticity results in a perfect match with the optimum (Fig. 1a1), there 

is no opportunity for directional selection and thus no evolutionary change is predicted. When 

adaptive plasticity reduces the mismatch between the phenotype produced and the optimum (Fig. 

1a2), there is an opportunity for directional selection can act, but we would predict a weaker 

evolutionary response and the rate of adaptive evolution to be slower. In contrast, because non-

adaptive plasticity increases the mismatch between the expressed phenotype and the optimum 

(Figure 1a3), the strength of directional selection is increased and should result in either rapid 

adaptive evolution or extinction. In cases where the environment induces a release of genetic 

variation (Figure 1b) we expect a range of non-adaptive and adaptive responses and selection to 

favor those genotypes that produce the most adaptive responses.  

Figure 2 - Considering a population where the major axis of genetic variation is orthogonal to 

the direction of the local optimum (Figure 2a), we would predict the evolutionary response to be 

slow and follow a trajectory that is biased by the major axis. In contrast, plasticity in trait 

correlations can lead to diversity of outcomes that might influence evolutionary responses. For 

example, plasticity could re-orient the major axis towards the phenotypic optimum, facilitating 

adaptive evolution (Figure 2b-1). Alternatively, plasticity could shift both the orientation and the 

location of the matrix, such that trait combinations are closer to the local optimum (Figure 2b-

2,3), but differ in their orientation (Figure 2b-2,3). Lastly, plasticity may simply increase the 

variance (Figure 2b-4).  

  



 

 

 


