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Lagrange multipliers in infinite dimensional

spaces, examples of application

A. Bersani, F. dell’Isola, P. Seppecher

1 Synonyms

Infinite-dimensional constrained mechanical systems

2 Definitions

The Lagrange multipliers method is used in Mathematical Analysis, in Mechan-
ics, in Economics and in several other fields, to deal with the search of the
global maximum or minimum of a function, in presence of a constraint. The
usual technique, applied to the case of finite-dimensional systems, transforms the
constrained optimization problem into an unconstrained one, by means of the
introduction of one or more multipliers and of a suitable Lagrangian function,to
be optimized. In Mechanics, several optimization problems can be applied to
infinite-dimensional systems. Lagrange multipliers method can be applied also
to these cases.

3 Introduction

In this entry we show that the theorem of Lagrange multipliers in infinite di-
mensional systems [1] can be a very powerful tool for dealing with constrained
problems also in infinite dimensional spaces. This tool is powerful but must be
used carefully. As penalization is often invoked as an intuitive and numerically
efficient approach to constrained problems, we also show that the penalization
approach may present the same drawbacks as a rough application of Lagrange
multipliers method does. To that aim we describe two examples issued from
continuum mechanics [2].

The first one goes back to Lagrange himself [3]: an incompressible fluid,
or an incompressible linear elastic material is a material whose displacement
field is constrained to be divergence-free. We show how easily the Lagrange
multipliers method gives the system of balance equations and introduces the
pressure as a supplementary unknown of the problem. The approach through
penalization gives the same balance equations and the displacement field be-
comes divergence-free at the limit only. It is not very difficult to understand
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why the pressure which is not independent from the displacement until the
limit, becomes an independent quantity at the limit. Hence both approaches
are efficient for understanding what an incompressible material is and how it
behaves.

The second example requires us to be more cautious. It consists in consider-
ing that second gradient materials are nothing else than micromorphic materials
subjected to the constraint that the micro-deformation coincides with the gradi-
ent of the displacement field. We show that a careful application of the Lagrange
multipliers method leads to the correct system of equilibrium equations and we
warn against its possible erroneous applications. We show that the penalization
method, when over-interpreted, may lead to the same errors: one cannot infer
from the admissible boundary conditions for a micromorphic material what can
be the boundary conditions for the constrained model, that is for the second
gradient model. The discrepancy between results obtained by studying directly
the critical points of a second gradient energy and those obtained by a rough
limit of micromorphic models has led to some confusion which still survives.

4 Incompressible materials

Consider an elastic material contained in a bounded Lipschitz domain Ω. Its
elastic energy density depends on the first gradient of the displacement field u.
The global energy has the form1

L(u) :=

∫
Ω

`(u(x),∇u(x)) dH3

The material is said to be linearly incompressible2 if u satisfies almost every-
where in Ω the condition

div(u) = 0. (1)

Assuming a quadratic growth at infinity for L with respect to its second
argument, the natural functional framework is the Sobolev space H1(Ω,R3). In
the sequel L2 and H1 stand for the Sobolev spaces L2(Ω,R3) and H1(Ω,R3).

The goal is to write the partial differential equation that any smooth critical
point u of the global energy must solve. We thus assume that both u and ` are
of class C2.

4.1 Application of Lagrange Multiplier Theorem

It is well known that the divergence operator is surjective from H1 onto L2.
Indeed, for any f ∈ L2, it is enough to remind that the Dirichlet problem
∆v = f on Ω with v = 0 on the boundary admits a solution v̄ and thus that

1Here H3 stands for the Lebesgue measure on R3.
2Rubber is an example of an incompressible elastic material. Incompressibility is also of

high importance in hydrodynamics: in that case u must be interpreted as the velocity field
and L(u) as the associated dissipation.
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f = div(∇v̄). Duality in the Hilbert space L2 is trivial: Lagrange multiplier
theorem states the existence of a L2 function −p such that any critical point u
of L under the constraint (1) satisfies∫

Ω

(∂1` · h+ ∂2` · ∇h− p · div(h)) dH3 = 0. (2)

or ∫
Ω

(∂1` · h+ (∂2`− p Id) · ∇h) dH3 = 0

for any smooth test function h. Here the partial derivatives of ` are taken at
(u(x),∇u(x)).

Hence, in the sense of distributions on Ω,

∂1`H3
|Ω − div((∂2`− p Id)H3

|Ω) = 0.

Now let us use the divergence theorem3 :

div(ϕH3
|Ω) = div(ϕ)H3

|Ω − (n · ϕ)H2
|∂Ω (3)

where n stands for the outward normal to ∂Ω andH2
|∂Ω stands for the restriction

to the boundary ∂Ω of the two-dimensional Hausdorff measure. We get

(∂1`− div((∂2`− p Id))H3
|Ω + n · (∂2`− p Id)H2

|∂Ω = 0.

In mechanics the quantities −∂1` and ∂2`− p Id are respectively denoted f and
σ and interpreted as the bulk external force and the stress tensor. Using this
notation, previous equation reads

−(f + div(σ))H3
|Ω + n · σH2

|∂Ω = 0.

As the measures H3
|Ω, H2

|∂Ω are orthogonal (or mutually singular) [5], this equa-
tion splits in

f + div(σ) = 0 H3 a.e. in Ω,

n · σ = 0 H2 a.e. on ∂Ω.

We recover the standard equilibrium equations where the stress tensor σ =
∂2` − p Id involves explicitly the Lagrange multiplier −p. Its opposite p is
interpreted as an unknown pressure which has to be determined together with
the equilibrium displacement u by using the equilibrium equations together with
the constraint div(u) = 0.

3Indeed, for any C1 function ϕ and any smooth test function ψ,〈
div(ϕH3

|Ω), ψ
〉

= −
〈
ϕH3

|Ω,∇ψ
〉

= −
∫

Ω
ϕ · ∇ψ dH3 =

∫
Ω

div(ϕ) · ψ dH3 −
∫
∂Ω

(n · ϕ)ψ dH2.

3



4.2 Approach through penalization

An intuitive way for dealing with incompressibility is to penalize the fact that
div(u) does not vanish. Looking for minimizers of the total energy, one decides
to look for a sequence of approximate minimizers by considering, instead of the
original potential subjected to the constraint, the original Lagrangian to which
one adds a penalization term: for instance

Lε(u) =

∫
Ω

(`(u(x),∇u(x)) + ε−1(div(u))2) dH3. (4)

This corresponds to a slightly compressible elastic material. Denoting −pε :=
2ε−1 div(u), any critical u satisfies, for any smooth test function h,∫

Ω

(∂1` · h+ ∂2` · ∇h− pε div(h)) dH3.

This equation is identical to (2). It then leads to the same system of equilibrium
equations. The difference is that now the stress tensor is directly related to u
through the so-called constitutive equation σ = ∂2l + 2ε−1 div(u) Id. When
passing to the limit ε → 0, div(u) tends to zero, the system of equilibrium
equations is preserved but the constitutive equation is partially lost as ε−1 div(u)
is an undetermined form.

5 Second gradient as constrained generalized model

Consider an elastic material contained in a bounded simply connected domain
Ω with piecewise C1 boundary. In the sequel L2 and Hs stand for the Sobolev
spaces L2(Ω,R3) and Hs(Ω,R3).

The elastic material is said to be a second gradient material (or equivalently
a strain-gradient one) if its elastic energy density depends on the gradient and
the second gradient of the displacement field u. The global energy has the form∫

Ω

l(u(x),∇u(x),∇∇u(x)) dH3

Such a model and particularly the associated boundary conditions present some
difficulties of interpretation (see for instance [9, 10, 11]). That is why many
researchers prefer to see this model as a special case of a generalized continuum
[8].

An elastic material is said to be a micromorphic generalized continuum if its
elastic energy density depends on an extra matrix valued kinematic quantity v
and on the first gradients of u and v. The global elastic energy has the form

L(u, v) :=

∫
Ω

`(u(x), v(x),∇u(x),∇v(x)) dH3

It is clear that, when such a model is constrained in such a way that v has to
coincide with the first gradient of u, that is if

C(u, v) := v −∇u = 0,
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then one recovers the previous second gradient model.
This indirect approach does coincide with the direct approach under the

express condition that the Lagrange Multiplier Theorem is precisely respected.
A rough application of Lagrange Multiplier Method may lead and have led to
misunderstanding boundary conditions.

In the sequel we assume that the considered energies have quadratic growth
at infinity so the Sobolev spaces L2(Ω,R3), Hs(Ω,R3) or Hs(Ω,R3×3) are the
natural framework. We simply denote L2 and Hs these spaces as the tensorial
nature of the involved functions is clear from the context.

We are thus looking for smooth critical points of the functional L(u, v) de-
fined on H1 × H1 under the constraint C(u, v) = 0. It is obvious that this
problem can be simplified by setting4 l(u, η, ξ) := `(u, η, η, ξ) and by looking for
the critical points of

L(u, v) :=

∫
Ω

l(u(x),∇u(x),∇v(x)) dH3

under the same constraint.

5.1 Application of Lagrange Multiplier Theorem

As our functionals are defined on the Hilbert space H1×H1, assumed to be dif-
ferentiable, and as the constraint C(u, v) = 0 is linear, it is enough for applying
Lagrange Multiplier Theorem [1] to check that the range F of C is a Banach
space and to identify its dual.

Actually F coincides with the Hilbert space Hcurl which has been extensively
studied [4, 6]. This space is defined as the set of all functions in L2(Ω) whose
curl (in the sense of distributions on Ω) belongs to L2(Ω). As curl(∇u) = 0,
curl(C(u, v)) = curl(v) ∈ L2(Ω) and so the inclusion F ⊂ Hcurl is obvious.
For proving the converse inclusion, let us consider w ∈ Hcurl and let us use
Helmholtz decomposition of curl(w) ∈ L2 (see theorem 4.2 of [6]) and write
curl(w) = ∇φ + curl(v) with φ ∈ H1

0 (Ω) and v ∈ H1(Ω). Obviously φ ∈
H1

0 (Ω) satisfies ∆φ = 0 and thus, owing to the maximum principle, it vanishes.
So curl(w − v) = 0 in the sense of distributions which is equivalent to the
orthogonality of w − v with the curl of every smooth test function that is with
every divergence-free smooth function. Hence (see [4] page 217) (w−v) ∈ L2(Ω)
is a gradient: w−v = ∇u with u ∈ H1(Ω). We have w = v+∇u = C(−u, v) ∈ F .

The simplest way for identifying the dual F ∗ consists in taking advantage
of the Hilbert structure of Hcurl and applying Riez Theorem: to any element
Λ of F ∗ is associated a function fΛ in Hcurl such that, for any w ∈ Hcurl,
〈Λ, w〉 =

∫
Ω

(fΛ · w + curl(fΛ) · curl(w)) dH3. As smooth functions on Ω are
dense (Theorem 2 p. 204 of [4]) and continuously embedded in Hcurl, Λ is
completely determined by its values for such smooth functions w. For such

4Note that ∂1l = ∂1`, ∂2l = ∂2` + ∂3` and ∂3l = ∂4` where ∂if stands for the partial
derivative of a function f with respect to its i-th variable. The densities l and ` are assumed
to be of class C1.
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functions, one can integrate by parts in the sense of distributions on Ω and get
〈Λ, w〉 = 〈fΛ+curl(curl(fΛ)), w〉. Any element of F ∗ appears to be a distribution
of order one on Ω.

So the theorem of Lagrange multipliers implies the existence, at any critical
point (u, v), of a distribution5 Λ on Ω such that, for any pair of smooth test
functions (h, k),∫

Ω

(∂1l · h(x) + ∂2l · ∇h(x) + ∂3l · ∇k(x)) dH3 +
〈

Λ, (k −∇h)
〉

= 0 (5)

where the partial derivatives of l are taken at (u(x),∇u(x),∇v(x)). Using
H3
|Ω := 1ΩH3, the restriction to Ω of the three-dimensional Hausdorff measure,

this condition can be rewritten in terms of distributions on Ω〈
∂1lH3

|Ω, h
〉

+
〈
∂2lH3

|Ω,∇h
〉

+
〈
∂3lH3

|Ω,∇k
〉

+
〈

Λ, (k −∇h)
〉

= 0

or 〈
(∂1lH3

|Ω − div(∂2lH3
|Ω)− div(Λ)), h

〉
+

〈
( div(∂3lH3

|Ω) + Λ), k
〉

= 0.

Hence, still in the sense of distributions on Ω,

∂1lH3
|Ω − div(∂2lH3

|Ω)− div(Λ) = 0, and div(∂3lH3
|Ω) + Λ = 0.

Eliminating the Lagrange multiplier Λ is straightforward. We get

∂1lH3
|Ω − div(∂2lH3

|Ω) + div(div(∂3lH3
|Ω)) = 0.

Now we make use twice of the divergence theorem (3). We obtain successively

(∂1l − div(∂2l))H3
|Ω + n · ∂2lH2

|∂Ω + div(div(∂3l)H3
|Ω)− div(n · ∂3lH2

|∂Ω) = 0,

(∂1l−div(∂2l)+div(div(∂3l)))H3
|Ω+n·(∂2l−div(∂3l))H2

|∂Ω−div(n·∂3lH2
|∂Ω) = 0.

We apply now a more general version of Stokes theorem, valid on a sub-manifold
with boundary6:

div(ϕH2
|∂Ω) = div//(ϕ//)H2

|∂Ω − τ · ϕH
1
|∂∂Ω − (n · ϕ) Dn|∂Ω

5A frequent error consists in introducing the Lagrange multiplier Λ as a function. We will
soon see that a part of Λ is a measure concentrated on the boundary of the domain. Note
that the constraint v = ∇u has some implications on the boundary: owing to this constraint
∇u has, like v, a trace on the boundary of Ω which is not natural in H1(Ω).

6Indeed, for any C1 function ϕ and any smooth test function ψ,〈
div(ϕH2

|∂Ω), ψ
〉

= −
〈
ϕH2

|∂Ω,∇ψ
〉

= −
∫
∂Ω

ϕ · ∇ψ dH2

= −
∫
∂Ω

(n · ϕ)(n · ∇ψ) dH2 −
∫
∂Ω

ϕ// · ∇//ψ dH2

= −
∫
∂Ω

(n · ϕ)(n · ∇ψ) dH2

+

∫
∂Ω

div//(ϕ//)ψ dH2 −
∫
∂∂Ω

(τ · ϕ//)ψ dH1.
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where τ stands for the vector tangent to the sub-manifold and normal to its
boundary, ϕ// for the projection of ϕ onto the tangent space, div// for the tan-
gential divergence operator and Dn|∂Ω for the normal derivative distribution.
We obtain, by using this theorem on all faces (i.e. C1 parts) of the boundary 7,

(∂1l − div(∂2l) + div(div(∂3l)))H3
|Ω − (n · (n · ∂3l)) Dn|∂Ω

+ n · (∂2l − div(∂3l)− div//((n · ∂3l)//))H2
|∂Ω − [[τ · (n · ∂3l)]]H1

|∂∂Ω = 0.

As the distributions H3
|Ω, H2

|∂Ω, H1
|∂∂Ω, Dn|∂Ω are orthogonal [7], we deduce the

four criticality conditions,

(∂1l − div(∂2l) + div(div(∂3l))) = 0 H3 a.e. in Ω, (6)

n · (∂2l − div(∂3l)− div//((n · ∂3l)//)) = 0 H2 a.e. on ∂Ω, (7)

[[τ · (n · ∂3l)]] = 0 H1 a.e. on ∂∂Ω, (8)

n · (n · ∂3l) = 0 H2 a.e. on ∂Ω. (9)

Of course these conditions can be made non homogeneous by adding some
boundary terms in the Lagrangian. If we remind that constraint C(u, v) = 0 en-
ables us to eliminate the variable v, these conditions correspond to the classical
conditions (respectively: body force, surface boundary force, edge force, sur-
face boundary double force) obtained by studying directly the second gradient
Lagrangian [12, 13].

Note that the expression of the Lagrange multiplier is explicit. We have
Λ = −div(∂3lH3

|Ω) which becomes, by using (3),

Λ = −div(∂3l)H3
|Ω + (n · ∂3l)H2

|∂Ω.

It is now clear that Λ involves both a volume part and a boundary part. As-
suming that Λ is a function generally leads to wrong results.

Note also that a seemingly natural idea could be to write the constraint
under the form ∫

Ω

‖v −∇u‖2 dH3 = 0

and to infer from the fact that this constraint takes values in R the existence of
a scalar Lagrange multiplier. A straightforward computation would again lead
to equation (5) but with Λ = 2λ(v−∇u). This is in complete contradiction with
the previous remark. The reader must be aware that such a way of treating the
constraint is erroneous as the function (u, v) →

∫
Ω
‖v −∇u‖2 dH3 = 0 is not a

submersion (see entry [1]).

7Each edge in ∂∂Ω is bordered by two faces. Thus the application of Stokes theorem on
these two faces leads to two contributions on the edge involving the normals n1 and n2 of
these faces and the vectors τ1 and τ2 tangent to the faces and normal to the edge. Notation
[[τ · (n · ∂3l)]] stands for τ1 · (n1 · ∂3l) + τ2 · (n2 · ∂3l).
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5.2 Approach through penalization

An intuitive way for dealing with constrained problems is to penalize the fact
that the constraint is not verified. Looking for minimizers of the total energy,
one decides to look for a sequence of approximate minimizers by considering,
instead of the original potential subjected to the constraint, the original La-
grangian to which one adds a penalization term: for instance

Lε(u, v) = L(u, v) + ε−1

∫
Ω

‖C(u, v)‖2 dH3. (10)

Denoting µε := 2ε−1C(u, v), any critical pair (u, v) satisfies∫
Ω

(∂1l · h+ ∂2l · k + ∂3l · ∇h+ ∂4l · ∇k + µε · (k −∇h)) dH3 = 0 (11)

which is exactly the same equation as equation (5) where the measure Λε :=
µεH3

|Ω replaces the distribution Λ. The criticality conditions still read

∂1`H3
|Ω − div(∂3`H3

|Ω) + div(µεH3
|Ω) = 0,

∂2`H3
|Ω − div(∂4`H3

|Ω) + µεH3
|Ω = 0,

or equivalently

∂1`H3
|Ω − div((∂2`+ ∂3`)H3

|Ω) + div(div(∂4`H3
|Ω)) = 0, (12)

∂2`H3
|Ω − div(∂4`H3

|Ω) + µεH3
|Ω = 0, (13)

Using (3), equation (13) can be rewritten

(∂2`+ div(∂4`) + µε)H3
|Ω − (n · ∂4`)H2

|∂Ω = 0 (14)

which leads to

∂2`+ div(∂4`) + µε = 0 H3 a.e. in Ω, (15)

n · ∂4` = 0 H2 a.e. on ∂Ω. (16)

Even if equation (12) has been already found and treated in the previous section,
let us do it again taking into account (16). Using (3), taking into account (16)
and using again (3), we get

0 = ∂1`H3
|Ω − div((∂2`+ ∂3`)H3

|Ω) + div(div(∂4`)H3
|Ω − n · ∂4`H2

|∂Ω) =

= ∂1`H3
|Ω − div((∂2`+ ∂3`− div(∂4`))H3

|Ω) =

= (∂1`− div(∂2`+ ∂3`− div(∂4`)))H3
|Ω − n · (∂2`+ ∂3`− div(∂4`))H2

|∂Ω.

which leads to

∂1`− div(∂2`+ ∂3`− div(∂4`)) = 0 H3 a.e. in Ω, (17)

n · (∂2`+ ∂3`− div(∂4`)) = 0 H2 a.e. on ∂Ω. (18)
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Recalling the relationship linking l and `, bulk equilibrium equation (17) is
identical to (6) while boundary force balance (18) is identical to (7). However
equation (16) is much stronger than (9) and there is no more edge equation
corresponding to (8). This discrepancy makes dangerous to interpret second
gradient boundary conditions starting from a micromorphic model. The point
is that one does not know how to pass to the limit as ε tends to zero. The
considered penalization is a singular perturbation: we know from our previous
study that equation (16), valid for any ε > 0, is no more valid in the limit.
This comes from the fact that the function Λε converges to a measure partially
concentrated on the boundary. Hence the way we decomposed distribution (14)
is not valid in the limit.
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approach “à la D‘Alembert”, Zeitschrift fur angewandte Mathematik und
Physik, 2012, vol. 63, no 6, p. 1119-1141.

[10] dell’Isola, Francesco, Madeo, Angela, Seppecher, Pierre, Cauchy tetrahe-
dron argument applied to higher contact interactions. Archive for Rational
Mechanics and Analysis, 2016, vol. 219, no 3, p. 1305-1341.

9



[11] Della Corte, Alessandro, dell’Isola, Francesco, Seppecher, Pierre. The pos-
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