
HAL Id: hal-02269760
https://hal.science/hal-02269760

Submitted on 23 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stood and Cheddar: AADL as a Pivot Language for
Analysing Performances of Real Time Architectures

Pierre Dissaux, Frank Singhoff

To cite this version:
Pierre Dissaux, Frank Singhoff. Stood and Cheddar: AADL as a Pivot Language for Analysing
Performances of Real Time Architectures. 4th European Congress ERTS 2008, Jan 2008, Toulouse,
France, France. �hal-02269760�

https://hal.science/hal-02269760
https://hal.archives-ouvertes.fr

Stood and Cheddar:
AADL as a Pivot Language for Analysing Performances

of Real Time Architectures
Pierre Dissaux1, Frank Singhoff2

1: Ellidiss Technologies, 24 quai de la douane, 29200 Brest, France
2: University of Brest/LISyC, 20 avenue Le Gorgeu, 29238 Brest Cedex 3, France

Abstract: Coupling of modelling and analysis tools
requires that both ends strictly comply with the same
semantic definition of the exchanged model. This is
particularly important for real-time systems and
software architectures. Such a guaranty can be
brought by the common use of the Architecture
Analysis and Design Language (AADL) all along the
tool-chain. This paper discusses modelling and
analysis options of various real-time architectural
patterns expressed in AADL though an experiment
with Stood and Cheddar tools.

Keywords: AADL, Real-Time, Performance
analysis, Stood, Cheddar, Design Patterns

1. Introduction

The SAE Architecture Analysis and Design
Language (AADL) is a textual and graphical
language support for model-based engineering of
embedded real time systems that has been
approved and published as SAE Standard AS-5506
[1]. AADL is used to design and analyse software
and hardware architecture of embedded real-time
systems. Many tools provide support for the
modelling and the analysis of AADL models. Ocarina
implements Ada and C code generators for
distributed systems [4]. TOPCASED, OSATE and
Stood provide AADL modelling features [11,7,8]. The
Fremont toolset and Cheddar implement AADL
performance analysis methods [9,10,23]. An updated
list of supporting tools can be found on the official
AADL web site: http://www.aadl.info.

This article deals with the interoperability between
AADL tools: we show how AADL can be used as a
pivot language between a modelling tool (Stood) and
a performance analysis tool (Cheddar).
Stood is a software design tool that provides an
extended support of the AADL modelling language in
addition to its compliancy with the HOOD
methodology. With Stood, it is possible to manage a
complete software project by building libraries of
reusable components, reversing legacy code and
specifying the real time application as well as its
execution platform. Most of the modelling activities
can be performed graphically and the corresponding
AADL code is automatically generated by the tool.

The Cheddar framework is a set of Ada packages
which aims at performing performance analysis of
real time architectures. It includes analytical
scheduling methods and most of classical real time
scheduling algorithms. The Cheddar framework also
offers a domain specific language (and its
interpreter, compiler, …) for the design and the
analysis of schedulers which are not already
implemented into the framework.

In this article, in order to illustrate the interoperability
between Stood and Cheddar, we propose a set of
AADL design patterns to model usual real time
synchronization paradigms [12].
This paper is organized as follows: In section 2, we
present performance analysis methods that are
expected to be applied on AADL design patterns.
These AADL design patterns are then described in
section 3. Finally, we conclude and describe ongoing
works in section 4.

2. Real-Time performance analysis with AADL

2.1 Real time scheduling analysis and Queueing
system analysis
From an AADL model, we can perform performance
analysis based on real time scheduling theory and
queueing system theory.
Real time scheduling theory helps the system
designer to analyse the timing behaviour of a set of
tasks with scheduling algorithms or with algebraic
methods usually called feasibility tests.
For example, with the well known Liu and Layland
real time task model [2], each task periodically
performs a treatment. This “periodic” task is defined
by three parameters: its deadline (Di), its period (Pi)
and its capacity (Ci). Pi is a fixed delay between two
release times of the task i. Each time the task i is
released, it has to do a job whose execution time is
bounded by Ci units of time. This job has to be
ended before Di units of time after the task wake up
time.
Some algebraic methods can provide a proof that an
architecture will meet its periodic task performance
requirements. Scheduling algorithms allow the
designer to compute scheduling simulations of the
architecture to analyse. Usually, simulations can not

Page 1/7

http://www.aadl.info/

lead to a proof. However, in some cases (with
deterministic schedulers and with periodic tasks for
example), scheduling simulation may lead to a
schedulability proof if the designer is able to
compute a scheduling during the base period [3].
Different kinds of feasibility tests exist: tests based
on processor utilization factor and tests based on
worst case task response time which are designed to
check task deadlines [13]; tests based on buffer
utilization factor which are designed to check buffer
overflow [10].
For example, the worst case response time
feasibility test consist in comparing the worst case
response time of each task with its deadline. Joseph,
Pandia, Audsley et al. [13] have proposed a way to
compute the worst case response time of a task with
pre-emptive fixed priority scheduling by:

[1]

Where Ri is the worst case response time of the task
i. This feasibility test can be easily extended to take
into account task waiting time on shared resources,
jitter on task release time, task precedency
relationship …

Queueing system theory may be used to perform
analysis of real time architecture when waiting times
exist. Queueing system theory allows to study
performance of a system composed of servers,
clients and storage places [14]: people waiting in a
room for a doctor, network switch routing data, ...
If clients becomes active while a server is busy, their
requests are stored in a queue. By defining the
average rate of clients request arrivals and the
average rate of requests that the server can handle,
a queueing system model allows to predict the
average system occupation factor L, the average
customer waiting time W, and the probability Pn of
having n clients in the queue.

2.2 Investigated performance criteria

An AADL model is a set of hardware and software
components. An AADL operational system is a set of
process components encompassing thread and data
components that are bound to an execution platform
composed of processor, memory and bus
components. Component relationships are modelled
by ports and data access connections. Three
different kinds of ports exist: data ports, event ports
and event data ports. Data ports represent
connection points for transfer of data values. Event
ports represent connection points for transfer of
control through raised events that can trigger thread
dispatch or mode transition. Event data ports
represent connection points for transfer of events
with data, i.e., messages that may be queued. Data

access represent asynchronous read or write
operations on a shared data component.

From an AADL model, several performance criteria
can be computed with the algebraic methods
proposed by the real time scheduling theory and by
the queueing systems theory. Some examples of
these performance criteria are:

A. The worst case task response times;
B. The bounds on the thread waiting time due

to data access;
C. The deadlocks and priority inversions due to

data access;
D. The numbers of messages in queued

message communication links. This criterion
allows memory footprint analysis;

E. The numbers of context switches, pre-
emption;

F. The processor utilization factor;
G. …

In the sequel, we only focus on the 4th first criteria.

3. Examples of AADL design patterns: from
modelling to analysis

In the next sections we present four design patterns
that can be used to express usual inter-thread
communications.

For each pattern, an applicative test case is
described under the form of an AADL model which
has been formatted in purpose to highlight some of
the possible performance analysis presented in the
previous section. These criteria can not be
investigated independently: in the case of the
Blackboard design pattern for instance, one must
compute first B before computing A.

Modelling pattern Analysis criteria
Synchronous data-flows A
Mutex protected data A, B and C
Blackboard A, B and C
Queued buffer A, B, C and D

Other combinations could of course be considered,
however the ones that are detailed above
correspond to typical patterns that need to be
properly managed by any real-time software
development environment.

3.1 Synchronous data-flows pattern
Description: This first design pattern is the simplest
one. The data sharing is achieved by a clock
synchronization of the threads as Meta-H [1]
proposed it. In this synchronization schema, thread
dispatch is not affected by the inter-thread
communications that are expressed by pure data-
flows. With this communication pattern, each thread
reads its input data ports at dispatch time and writes

Page 2/7

j
ihpj j

i
ii C

P
RCR .

)(
∑

∈

+=

its output data ports at complete time. This design
pattern does not require the use of a shared data
component. In this simple case, the execution
platform consists in one processor running a
scheduler that is compliant with fixed priority
scheduling such as Rate Monotonic [2].

Example: Corresponding modelling case study
consists in three periodic threads linked together by
two data port connections. The AADL graphical
representation of this case study and fragments of its
textual specification are given below:

Figure 1: synchronous data-flows pattern

Real-time attributes of each thread can be described
individually by a set of pre-defined properties:

THREAD IMPLEMENTATION T1.others
PROPERTIES
 Dispatch_Protocol => Periodic;
 Period => 29ms;
 Deadline => 29ms;
 Compute_Execution_Time => 7ms..7ms;
END T1.others;

The complete operational system must specify static
instantiation of the threads within each process, as
well as a description of the execution platform.

SYSTEM IMPLEMENTATION sched.others
SUBCOMPONENTS
 rma: PROCESS rma.others;
 cpu: PROCESSOR cpu.others;
PROPERTIES
 Actual_Processor_Binding =>

REFERENCE cpu APPLIES TO rma;
END sched.others;
PROCESSOR IMPLEMENTATION cpu.others
PROPERTIES
 Scheduling_Protocol =>

RATE_MONOTONIC_PROTOCOL;
END cpu.others;
PROCESS IMPLEMENTATION rma.others
SUBCOMPONENTS
 T1 : THREAD T1.others;
 T2 : THREAD T2.others;
 T3 : THREAD T3.others;
CONNECTIONS
 DATA PORT T1.data_out ->
T2.data_in;

 DATA PORT T2.data_out ->
T3.data_in;
END rma.others;

Analysis: This design pattern leads to a very static
scheduling which is difficult to change but which is
also very easy to analyse. Indeed, in this design
pattern, threads are independent, which allows the
use of numerous simple feasibility tests such as the
processor utilization factor test or the worst case
response time. These simple feasibility tests are
available for most usual real time schedulers such a
EDF, LLF and fixed priority schedulers. Verifying this
design pattern only consists in checking that thread
deadlines will be met. Since no shared data
component is used in this design pattern to
implement data exchange, no thread blocking time
on shared resource has to be computed.

Figure 2: analysis performed by Cheddar

We can note however, that this kind of analysis still
depends on the validity of execution time estimates.
Figure 2 depicts an analysis of this test case by
Cheddar. The top part of the window shows the
thread scheduling. The worst case response time
computed from this scheduling and with feasibility
tests are shown in the bottom part of the window.

3.2 Mutex protected communication pattern.

Main drawback of the previous pattern is its lack of
flexibility at run time: each thread will always
execute, read and write data at pre-defined times,
even if useless. In order to introduce more flexibility
at that level, asynchronous inter-thread
communications must be considered. An example of
such a run-time environment is given by the
Ravenscar profile.

Page 3/7

Description: Ravenscar is a part of Ada 2005 [5,6].
Ravenscar is a set of Ada program restrictions
usually enforced at compilation time, which allows a
more flexible design of the architecture and which
guaranties that this architecture remains compliant
with real time scheduling theory/queueing systems
theory analysis assumptions.

Ravenscar is an Ada subset from which one can
write applications composed of a set of threads. In
Ravenscar, threads access shared data components
asynchronously according to priority inheritance
protocols. Ravenscar assumes that threads are
scheduled with a fixed priority scheduler and that
data are accessed with the ICPP protocol [6].
However, it may be possible to apply Ravenscar to
some dynamic schedulers such as EDF if a data
access protocol exists for such schedulers (eg.
PLCP protocol for EDF scheduler [5]). Ravenscar is
then a subset of concurrency features which can be
defined in many real time executive such as POSIX
1003.1b [21], ARINC 653 [20] and Java-RT [19].

Exemple: To illustrate asynchronous inter-thread
communications, the chosen case study shows an
implementation of the classical P and V procedures
of a Mutex. A complete description of this protocol in
AADL requires the use of the Behavior Annex [16] to
provide a detailed specification of the internal
realisation of the P and V subprograms.

SUBPROGRAM IMPLEMENTATION P.others
ANNEX Behavior_Specification {**
 states
 s0: initial state;
 s1: return state;
 transitions:
 busy: s0 -[on me.The_Value=0]->
s1{};
 free: s0-[on me.The_Value=1]-> s1
 { me.The_Value := 0; };
**};
END P.others;
SUBPROGRAM IMPLEMENTATION V.others
ANNEX Behavior_Specification {**
 states
 s: initial return state;
 transitions:
 s -[]-> s { me.The_Value := 1; };
**};
END V.others;

A more complete modelling case consists in two
threads sharing the same two mutex protected data
components. The AADL graphical representation of
this example is shown below:

Figure 3: mutex protected communication pattern

The use of the AADL Behavior Annex is required
again to express the internal functional structure of
the applicative threads. Such a level of details is
needed to describe the atomic actions and the
critical sections.

THREAD IMPLEMENTATION Thread_A.others
PROPERTIES
 Dispatch_Protocol => Periodic;
 Period => 10 ms;
ANNEX Behavior_Specification {**
 states
 s0: initial state;
 s1, s2, s3, s4: state;
 s5: complete state;
 transitions
 acquire_M1: s0-[]->s1
{P!(Mutex_1);};
 acquire_M2: s1-[]->s2
{P!(Mutex_2);};
 critical_section: s2-[]->s3 {…};
 release_M1: s3-[]->s4
{V!(Mutex_1);};
 release_M2: s4-[]->s5
{V!(Mutex_2);};
**};
END Thread_A.others;
THREAD IMPLEMENTATION Thread_B.others
…
ANNEX Behavior_Specification {**
…
 transitions
 acquire_M2: s0-[]->s1
{P!(Mutex_2);};
 acquire_M1: s1-[]->s2
{P!(Mutex_1);};
…
**};
END Thread_B.others;

Analysis: With this design pattern, additional analysis
such as deadlock detection, can be performed. As
threads are not independent anymore, response
time analysis becomes more complicated to

Page 4/7

investigate. Verifying thread deadline with this
design pattern requires to first compute the thread
waiting time before computing the worst case thread
response time. This waiting time is computed
according to the duration of the critical sections and
the shared resource access protocol (eg. Priority
Ceiling Protocol [22]).

3.3 Blackboard communication pattern

Description: Ravenscar allows a thread to
allocate/release several shared resources (eg. AADL
data). Real time scheduling theory usually models
such a shared resource as a semaphore, to
represent, for example, a critical section. In classical
operating system, it exists many synchronization
design patterns such as critical section, barrier,
Readers-Writer, private semaphore, and various
Producer-Consummer synchronization design
patterns [12]. Programming languages also propose
specific synchronization design patterns such as
Java synchronized methods [15] or Ada protected
types [5]. The Blackboard communication is one of
them. The Blackboard design pattern implements a
Readers-Writer synchronization protocol. At a given
time, only one writer can get the access to the
Blackboard in order to update the stored data, as
opposed to the readers which are allowed to read
the data simultaneously. The usual implementation
of this protocol implies that readers and writers do
not perform the same semaphore access.

Example: The following case study shows the AADL
implementation of a multi-threads application with
asynchronous communications through a
Blackboard using the Readers-Writer protocol.

Figure 4: Blackboard communication pattern

The communication object is an instance of an AADL
data component that can be described by its
provided services, implemented by subprogram
features, and its internal structure consisting in a set
of state variables.

DATA T_BlackBoard
 FEATURES
 Request_Read: SUBPROGRAM Read0.o;

 Read: SUBPROGRAM Read1.o;
 Release_Read: SUBPROGRAM Read2.o;
 Request_Write: SUBPROGRAM Write0.o;
 Write: SUBPROGRAM Write1.o;
 Release_Write: SUBPROGRAM Write2.o;
END T_BlackBoard;
DATA IMPLEMENTATION T_BlackBoard.o
 SUBCOMPONENTS
 Contents: DATA T_Item;
 Readers: DATA Behavior::Integer;
 Is_Idle: DATA Behavior::Boolean;
 Is_Reading: DATA Behavior::Boolean;
 Is_Writing: DATA Behavior::Boolean;
END T_BlackBoard.o;

The precise implementation of the Readers-Writer
protocol requires a detailed specification of the
functional structure of each subprogram, using again
the AADL Behavior Annex.

SUBPROGRAM IMPLEMENTATION Read0.o
 ANNEX Behavior_Specification {**
 states
 s: initial return state;
 transitions
 s -[on me.Is_Idle
 and me.Readers=0]-> s {
 me.Readers := me.Readers + 1;
 me.Is_Reading := true;
 me.Is_Idle := false;
 };
 **};
END Read0.o;

Analysis: With this kind of design pattern, we can
expect to compute the same performance criteria
that we have shown for the Mutex design pattern.
However, with complex synchronization design
patterns, before computing worst case thread
response time, we have first to analyse shared
resource blocking time. For example, with the
Blackboard design pattern, a thread may get the
access to a different number of semaphores
depending on its type (eg. reader or writer thread). It
means that we have to first evaluate the semaphore
access of each thread in order to compute shared
data waiting time, for a given critical section and for
a given priority inheritance protocol.

3.4 Queued buffer communication pattern
Description: In the Blackboard design pattern, at any
time, only the last written message is made available
to the threads. Some real time executives (eg.
ARINC 653) provide communication features which
allow to store all written messages in a memory unit.
AADL also propose such a feature with event data
ports or shared data components. An event data port

Page 5/7

may contain several messages. We assume that
buffer messages are handled with a FIFO protocol.

Example: The case of the Producer-Consumer can
be used to illustrate the queued buffer
communication pattern. Like the Blackboard, the
buffer component can be described in AADL by its
provided services and its internal variables.

DATA IMPLEMENTATION T_Buffer.others
SUBCOMPONENTS
 Stack: DATA T_Item;
 Current: DATA Behavior::Integer;
 Max: DATA Behavior::Integer;
END T_Buffer.others;
SUBPROGRAM Push
FEATURES
 me: IN OUT PARAMETER
T_Buffer.others;
 Item: IN PARAMETER T_Item;
END Push;
SUBPROGRAM IMPLEMENTATION Push.others
ANNEX Behavior_Specification {**
 states
 s: initial return state;
 transitions
 s-[on me.Current < me.Max]->s {

me.Stack(me.Current) := Item;
me.Current := me.Current+1;};

**};
END Push.others;
SUBPROGRAM Pop
FEATURES
 me: IN OUT PARAMETER
T_Buffer.others;
 Item: OUT PARAMETER T_Item;
END Pop;
SUBPROGRAM IMPLEMENTATION Pop.others
ANNEX Behavior_Specification {**
 states
 s: initial return state;
 transitions
 s-[on me.Current > 1]->s {

Item := me.Stack(me.Current);
me.Current := me.Current-1;};

**};
END Pop.others;

The simplest Producer-Consumer test case can be
represented in AADL by a sporadic producer thread
and a periodic consumer thread connected to the
same buffer.

Figure 5: Queued buffer communication pattern

THREAD IMPLEMENTATION Prod.others
PROPERTIES
 Dispatch_Protocol => Sporadic;
 Period => 10 ms;
ANNEX Behavior_Specification {**
 state variables
 v: T_Item;
 states
 s: initial complete state;
 transitions
 s-[]->s {Push!(Buffer,v);};
**};
END Prod.others;
THREAD IMPLEMENTATION Cons.others
PROPERTIES
 Dispatch_Protocol => Periodic;
 Period => 20 ms;
ANNEX Behavior_Specification {**
 state variables
 v: T_Item;
 states
 s: initial complete state;
 transitions
 s-[]->s {Pop!(Buffer,v);};
**};
END Cons.others;

Analysis: This design pattern needs the same
schedulability analysis as the previous one. An other
typical analysis for such design pattern is also to
estimate the memory footprint of the buffer in order
to ensure no loss of data when the rate of the
producer thread is temporarily greater than the one
of the consumer thread. In [17,18], Legrand et al.
have proposed a set of feasibility tests based on
queueing system. These feasibility tests were
adapted to AADL in [10]. It was shown how perform
memory footprint analysis with AADL models
containing event data ports. For example, if both
producers and consumers are periodic thread, a
worst case number of messages in a buffer can be
computed with this feasibility test:

L=2.n if threads are harmonic [2]

or
L=2.n+1 otherwise

Where L is the maximum number of messages and n
is the number of producers. In the case of sporadic
threads, the same worst case analysis can be

Page 6/7

performed, but [18] also have proposed feasibility
tests for average analysis.

4. Conclusions and perspectives

This article deals with the interoperability between a
modelling tool called Stood and an analysis tool
called Cheddar. Coupling of modelling and analysis
tools requires that both ends strictly comply with the
same semantic definition of the exchanged model.
For such a purpose, we have chosen AADL as a
pivot language between Stood and Cheddar. AADL
is a textual and graphical language support for
model-based engineering of embedded real time
systems. AADL is a flexible language which allows
the modelling of both synchronous and
asynchronous systems. Then, in order to illustrate
interoperability between Stood and Cheddar, we
have proposed a set of AADL design patterns. For
each design pattern, we have listed a set of
performance criteria that can be checked. Each
design pattern is also illustrated by an example.

This article presents a first step to achieve
interoperability between Stood and Cheddar. The
next steps must refine the set of AADL design
pattern presented above. Other synchronization
patterns must also be investigated (eg. Private
semaphore, Ada protected type, …).

5. Acknowledgement

Cheddar AADL analysis features rely on Ocarina.
We would like to thank the ENST Ocarina's Team
(B. Zalila, J. Hugues, L. Pautet and F. Kordon) [4].

6. References

|1] SAE, Architecture Analysis and Design
Language (AADL) AS 5506 ; Technical report, The
Engineering Society For Advancing Mobility Land
Sea Air and Space, Aerospace Information Report,
Version 1.0, November 2004.
[2] C. L. Liu et J. W. Layland : Scheduling
algorithms for multiprogramming in a hard real-time
environnment ; Journal of the Association for
Computing Machinery, vol. 20, n° 1, pp. 46- 61,
January, 1973.
[3] J.Y.T. Leung and J. Whitehead. On the
Complexity of Fixed-Priority Scheduling of Periodic,
Real-Time Tasks. Performance Evaluation 2, 237-
250 (1982).
[4] J. Hugues, B. Zalila, and L. Pautet. Rapid
Prototyping of Distributed Real-Time Embedded
Systems Using the AADL and Ocarina. In 18th
IEEE/IFIP International Workshop on Rapid System
Prototyping (RSP'07), Porto Allegre, Brésil, June
2007.
[5] ISO, Ada reference manual ISO/IEC
8652:1995(E) with Technical Corrigendum 1 and
Amendment 1 (Draft 16).

[6] A. Burns and A. Wellings. Concurrent and
Real Time programming in Ada. 2007. Cambridge
University Press.
[7] P. Dissaux, Using AADL for mission critical
software development. 2nd European Congress
ERTS (Embedded Real Time Software), 21-23
january 2004.
[8] SEI. OSATE : an extensible Source AADL
tool environment. SEI AADL team technical report.
December 2004.
[9] O. Sokolsky, I. Lee, D. Clake. Schedulability
analysis of AADL models. Parallel and Distributed
Processing Symposium, IPDPS, 25-29 April 2006.
[10] F. Singhoff, J. Legrand, L. Nana, and L.
Marcé.Scheduling and Memory requirement analysis
with AADL. ACM Ada Letters journal, 25(4):1-10,
ACM Press. Also published in the proceedings of the
ACM SIGAda International Conference, Atlanta, 14-
17 November, 2005.
[11] TOPCASED web site.
http://www.topcased.org
[12] A. Tanenbaum. Modern Operating Systems.
Prentice-Hall. 2001.
[13] L. George, N. Rivierre and M. Spuri.
Preemptive and Non-Preemptive Real Time Uni-
Processor Scheduling. INRIA Research Report
number 2966. September 1996.
[14] L. Kleinrock. Computer Applications, Volume
2, Queueing Systems. New York, John Wiley and
sons. Wiley-Interscience. 1976.
[15] S. Zakhour, S. Hommel, J. Royal, I.
Rabinovitch, T. Risser, M. Hoeber. The Java
Tutorial: A Short Course on the Basics, 4th Edition
(The Java Series). Addison Wesley. 2001.
[16] AADL committee. AADL Behavior Annex,
draft 2.0, September 2007.
[17] J. Legrand. Contribution à l'ordonnancement
des systèmes temps réel comprenant des tampons
Phd thesis, Université de Bretagne Occidentale.
December 2004.
[18] J. Legrand, F. Singhoff, L. Nana, L. Marcé.
Performance Analysis of Buffers Shared by
Independent Periodic Tasks. LISyC Technical report
number legrand-02-2004, January 2004.
[19] Time Sys Corp. Specification: JSR001 Real-
time Specification for Java,Version: 1.0.2, June 2006
[20] Arinc Committee, Arinc 653 (Avionics
Application Software Standard Interface): January
1997.
[21] B. O. Gallmeister. POSIX 4 : Programming
for the Real World. O’Reilly and Associates, January
1995.
[22] Sha, R. Rajkumar and J.P. Lehoczky.
Priority Inheritance Protocols : An Approach to Real
Time Synchronization. IEEE Transactions on
computers, 39(9):1175-1185. 1990.
[23] F. Singhoff, A. Plantec. AADL Modeling and
Analysis of Hierarchical Schedulers. ACM SIGAda
International Conference, Washington DC (USA)

Page 7/7

