
HAL Id: hal-02269708
https://hal.science/hal-02269708

Submitted on 23 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Forecasting of Object-Oriented Faults
S Gaudan, G Motet

To cite this version:
S Gaudan, G Motet. Forecasting of Object-Oriented Faults. Embedded Real Time Software and
Systems (ERTS2008), Jan 2008, Toulouse, France. �hal-02269708�

https://hal.science/hal-02269708
https://hal.archives-ouvertes.fr

Forecasting of Object-Oriented Faults

S. Gaudan1,2, G. Motet2

1: Thales Avionics, 105 avenue du Général Eisenhower, 31036 Toulouse cedex 1, France

2: Université de Toulouse; INSA; LATTIS (LAboratoire Toulousain de Technologie et d’Ingénierie des Systèmes); 135 avenue

de Rangueil, F-31077 Toulouse, France

Abstract

Object-Oriented Technologies, such as Java, provide
efficient features to develop software applications. In
particular, they allow the development costs to be
reduced. However, issues highlighted by the “Object-
Oriented Technology in Aviation” group have to be
handled to guarantee a high level of safety, in order to
use such technologies in avionics software. In particular,
the risk of Object-Oriented Technologies design faults
has to be reduced to an acceptable level. These risk
reduction actions must be preceded by forecasting the
actual risk level of the developed application. The
paper aims at presenting a method used to forecast
the risk of the presence of these Object-Oriented
Technologies faults in a given program. The approach
proposed is based on Bayesian networks. Its principles
are introduced. It is illustrated on an example of faults:
the Accidental Overriding (AO). We highlight that our
approach takes into account the complex relationships
existing between the various object-oriented features:
inheritance, distribution of the attributes and methods,
etc. To conclude, we show how the obtained data can
be analysed to specify design guidelines allowing an
acceptable risk level to be reached.

Keywords

Object-oriented languages, dependable software,
risk management, fault assessment, guidelines.

1 Introduction

Avionics systems suppliers are considering Object-
oriented technologies as they provide numerous advan-
tages. The most interesting one is certainly the devel-
opment cost reduction. However, as for any new tech-
nologies, its use in critical systems requires its control to
be justified. The OOTiA group (Object-Oriented Tech-
nology in Aviation) highlighted that the object-oriented
technologies cause two kinds of issues [8]: they introduce
new types of faults at design time and new types of fail-
ures in operation. These last issues are coming from the
implementation of the virtual machine often associated
with these technologies. For instance, they are illus-
trated by the unpredictable activation of the garbage

collector. We did not handle this kind of problem. We
focus on the introduction of design faults which are spe-
cific to these technologies. The OOTiA handbook enu-
merates numerous types of characteristic design faults.
For each of them, it proposes guidelines to prevent these
faults. However, the origins of these guidelines are not
justified and their actual impacts are not assessed. For
instance, the OOTiA handbook signals that the inher-
itance mechanism is a hazardous feature whose use is
acceptable if the inheritance depth is less than 6. How-
ever, numerous other factors must be taken into account
including, for example, the number of methods declared
in classes [5]. Moreover, each factor cannot be handled
separately. For instance, more than 6 inheritances do
not lead to faults if the inherited classes contain few
methods or attributes. Our goal is to allow a justified
fault risk control to be obtained to guarantee that an
expected fault risk level is reached when new proposed
guidelines are applied. To achieve this goal, we used
a risk management process. This process is based on
a well-known standard [1]. At first, the origins of the
faults were studied. This step provides the various fac-
tors impacting the risk of a given fault type [4]. Then
their impact on the risk evaluation must be assessed. At
first, we proposed to estimate the value of each factor.
This result is obtained considering an object-oriented
program or model as a nested structure. The faults
come from the difficulty in knowing the available pieces
of information in a given class due to the inheritance
phenomena [6]. The understanding factors of the fault
risk are estimated by a method based on the Shannon
theory [3]. However, multiple factors jointly impact the
presence of faults whose effects have to be combined to
obtain the global estimation of the risk. The control
of these various influences also allows prevention guide-
lines to be proposed which impact various factors and
not only one.

In section 2, we introduce a type of fault, the Ac-
cidental Overriding (AO), and its identification model
presenting its sources. Section 3, summarizes the assess-
ment method of the factors. In section 4, we introduce
the global assessment model based on the Bayesian net-
works. Section 5, shows how this model can be analysed
to define guidelines fitted to the program characteristics,
that is, acting on the various factors.

1

2 Fault type identification

2.1 Accidental Overriding example

Accidental Overriding occurs when a designer intro-
duces a method whose name and parameters describe
a signature corresponding to an inherited method,
whereas he/she would like to define a new method. It
is concretised by a conflict of signatures between two
methods accessible in a given class. This conflict leads
to the accidental redefinition of the second method by
the first one.

A

B

C

m()
n()

p()

o()

A

B

C

m()
n()

m()
p()

o()

Figure 1: Accidental Overriding

The left part of the figure 1 provides an example of a
program. It presents an hazard of accidental overriding.
Indeed, in this inheritance hierarchy, if a programmer
wishes for defining a method m() in class C, he/she is
exposed to the risk of an accidental overriding. The
method A:m() constitues a piece of information hazard
prone. The hazardous situation comes from the defini-
tion of a new method in a class of an inheritance hier-
archy as presented on the right part of Figure 1.

This modification is hazardous due to the presence of
the other existing methods. However, it does not always
lead to a fault but just to a risk of fault as

• the added method could be introduced to define a
new method; in this case the fault is actual;

• the added method could be introduced to override
the existing method; in this case there is no fault;

2.2 Identification models

In [4], we proposed a conceptual identification model in-
troducing the risk features and their relationships: haz-
ard, environment, hazardous situation, event and con-
sequence. This model allows a fault to be setted as a
risk problem. This conceptual identification model was
illustrated modelling the “Accidental Overriding” issue.

We also proposed an analytic identification model
based on the fault-tree method. From the inheritance
mechanism defined in the Java language specification,
we deduce the causes of the “Accidental overriding”.
The figure 2 presents this model. It highlights the vari-
ous Object-Oriented features at the origin of the risk of
fault.

3 Estimation concern

The analytic identification model is used to estimate the
risk of the presence of this fault in a program.

This estimation needs two steps.

• At first, the various factors of the risk, that is the
leaves of the tree, have to be estimated by means
of specific metrics.

• Then, using the relationships expressed by the an-
alytic identification model, the global risk has to be
deduced.

Concerning the first step, numerous software metrics
were proposed to estimated the various factors. How-
ever, we identified a lack concerning the consideration
of the designer understanding. Indeed, the inheritance
mechanism leads to the implicit availability of numerous
methods and attributes inherited. To handle this issue
we defined specific metrics based on the entropy theory
[3].

Then, the various values of the factors have to be
integrated to obtain the global value of the risk. It is an
essential and difficult step symbolized by figure 3.

We established a risk estimation method based on the
Bayesian Networks. The principles of the Bayesian Net-
works are introduced in the following section. They are
illustrated on the considered example. The following
section shows how this method can be used to specify
guidelines allowing a safety level to be reached.

Figure 3: From factors estimation to risk estimation

4 Bayesian Networks

Bayesian Networks are frequently used in risk estima-
tion. In this section we present how the Bayesian Net-
works can be used to estimate the risk of faults and
illustrate it on the “Accidental Overriding” (AO) issue.

A Bayesian Network is defined by [7]:

1. a set of identified factors,

2. a set of possible values of each identified factor,

3. a causality structure correlating the factors (net-
work), and

4. a valuation of the influences existing between the
factors, that is, the influence of the possible val-
ues of each attribute, on the correlated attributes
(directly connected in the network).

2

∃ meth ∈ A, ∃ redef ∈ C / redef redefines meth

∧

∃ meth ∈ A ∃ redef ∈ C C = subclass (A) Signature (redef) =
Signature (meth))

∨

NbParam (meth) =
NbParam (redef)

∧ ∧

∧

Package (A) =
Package (C) ∨

isPublic (meth)

isProtected (meth) isDefaultAccess (meth)

∃ methBis

redef
redefines
methBis

methBis
≠ redef

methBis
≠ meth

methBis
redefines

meth

∧

SameArgTypes (meth,redef) Name (redef) =
Name (meth)

∀i, Char (Name (meth),i)
= Char (Name (redef),i)

Size (Name (redef)) =
Size (Name (meth))

∧

∃ meth ∈ A, ∃ redef ∈ C / redef redefines meth accidentally

the programmer wants redef to be a new method

∧

8.4.8.1

8.4.2

8.4.2

8.4.8.1 : Java specification references

8.4.8.1

∀i, Type (Param ((redef,i))
= Type (Param (meth,i)))

∨

C = direct-subclass (A)∧

∃ B

C = subclass (B) B = subclass (A)

8.1.3 (2nd ed)

def

def recursive
definitions

C extends A

8.1.3 (2nd ed)

Figure 2: Analytic model to identify the risk of an Accidental Overriding

A “Goal” factor can be specified, representing a par-
ticular event whose occurrence has to be estimated from
the network factors.

The following subsections present how the Bayesian
networks can be built. This introduction is illustrated
on the AO issue.

4.1 Factors of a Bayesian Network

To define the model, the factors influencing the studied
risk have to be identified. This set of factors is not oblig-
atory completed. However the most it is exhaustive, the
most the estimation will be precise.

Certain factors affect several distinguished risks of
faults. This will allow coupling between risks of vari-
ous faults to be detected and the correlations between
the factors of a Bayesian Network to be established.

We deduce the factors of a Bayesian Network from the
identification of the risks of faults. For the estimation of
the risk of AO faults, the identified factors are illustrated
on figure 4. The proposed illustrations were produced
using the tool BayesiaLab [2]. The node representing
the ”goal” or ”target” is identified by concentric circles.

4.2 Domains of values

The following step consists in defining the domain of
value of each factor. It contains a discrete set of values
which often identify ranges when the possible values are
continue or plentiful. The definition of these ranges is
based on expertise or experience feedback (statistics on
the programs, impact of the coding standards, etc.).

The domains of values must be defined for each factor.
For instance, two values estimate the goal AO: Occur or

Figure 4: Risk factors of the Accidental Overriding

Absent for the accidental overriding.
For the studied example of AO, we defined the follow-

ing domains:

• The domain of the factor AO is Occur or Absent
(fault occurence or absence of a fault).

• The domain of the factor Identifier-Size is defined
by 4 values (the numerous possible values were dis-
critized by intervals): [1-4], [5-10], [11-25], [26+].

• The domain of the factor Number of methods
(MethodNb) is defined by 4 values (discretization
intervals): [0-15], [16-30], [31-55], [56+].

• The domain of the factor Number of inheritances
(InheritanceNb) is défined by 4 values (discretiza-
tion intervals): [0], [1-2], [3-5], [6+].

• etc.

The considered values can be precise or modified tak-
ing into account the applied coding rules. For instance,
if a coding rule defines a maximum number of methods
in a class, the considered estimation ranges can be

3

Figure 5: Distributions of the values of the AO factors

adapted. The provided example is just a proposal. In
a general way, the definition of the ranges to discretize
the values must be justified (experience feedbacks,
expertise, best practices such as coding rules, etc.).

4.3 Domain and distribution of the val-
ues of the factors

The stochastic distribution of the possible values of the
factors must be defined. As previously, these distribu-
tions have to be justified by experience feedbacks, best
practices (such as coding rules), statistics, etc.

For instance, in a firm which requires that the iden-
tifiers should have more than 4 characters (coding rule)
and taking into account the fact that most of the iden-
tifier lenghts are in the range [11-25] characters, we pro-
pose the following stochastic distribution for the factor
”Identifier-Size” :

• Proba(Identifier-Size = [0-4]) = 0.01,

• Proba(Identifier-Size = [5-10]) = 0.2,

• Proba(Identifier-Size = [11-25]) = 0.7,

• Proba(Identifier-Size = [25+]) = 0.09.

In the same way, we propose stochastic distributions
for each factor as illustrated on figure 5. These distri-
butions are defined by expertize. They can be improved
taking statistics on program into account as described
in section 5.2.

Let us remark that the BayesiaLab tool used to pro-
duce the following figures define the stochastic distribu-
tions using percentages.

4.4 Causalities structure between fac-
tors

All the factors of the AO risk influence, directly
or undirectly, the Accidental Overriding occurrence
probability. This influence is described using arrows in
the Bayesian Networks. They represent the causality
between factors as illustrated by figure 6.

Figure 6: Relationships between factors and AO

Then, for each influence represented by an arrow, the
known conditional probabilities have to be specified:
proba (Ai|Bj), i.e. proba (A=Ai) knowing B=Bj , for

A B

each values Ai and Bj in their value domain.
The definition of these relationships is generally based

on experience feedback, statistics, etc. The conditional
probabilities can take one or several values of factors as
hypothesis.

• 1 hypothesis:
proba(AO = Occur | Identifier-Size = [26+]): prob-
ability that a method cause an accidental overrid-
ing knowing that its identifier size is bigger than 25
characters,

• 2 hypothesis:
proba(AO = Occur | Identifier-Size = [26+] ∧ In-
heritanceNb = 0),

• 3 hypothesis:
proba(AO = Occur | Identifier-Size = [26+] ∧ In-
heritanceNb = [1-2] ∧ MethodNb = [17-30]).

In the following, we only take 2 risk factors of
AO present in the Bayesian Network into account to
simplify the figures: Identifier-Size and Keyword. At
first, let us consider that the influence of the factor
Keyword on the AO risk is known. This knowledge is
illustrated by the array provided on figure 7.

This figure shows that if a keyword exists, its knowl-
edge determines in a deterministic way, the occurence
or the absence of an Accidental Overriding (determin-
stic stochastic distribution: probabilities representing

4

Figure 7: AO | Keyword

the certitude). When a keyword exists or when an anno-
tation is used to express the designer intention to define
a new method, each method redefinition is automati-
cally accidental as the designer intention expressed by
the keyword is to create a new method. On the con-
trary, when no keyword is present, not any knowledge
allows us to specify the estimation of the AO values.

For instance, let us consider that our knowledge
concerns the size of the identifier of a method and the
potential keyword. Figure 8 proposes a definition of the
influences between the factors of the AO risk.

Figure 8: AO | Key-word ∧ Ident-Size

This example shows that the conditional properties
have to be defined for each possible combination of the
considered factors (here, 3 × 4 = 12 distinguished). The
deterministic knowledge defined on figure 7 is preserved
when a known keyword exists. Any additional piece of
information gained does not modify the risk estimation
which is null (0%) if the keyword is “Override”, and
which is maximum (100%) if the keyword is “NewMeth”.
On the other hand, without further keyword, knowledge
on the size of the identifier of the method precises the
estimation of the AO risk associated with this method.

Indeed, when a method possesses an identifier having
less than 5 characters (high risk of name conflict) and
a keyword “Override”, the AO risk is null as illustrated
on figure 9. The green bars representing probabilities

characterize factors whose values are fixed.
In spite of an identifier whose size is very small,

the AO risk is null for a method preceeded by the
keyword “Override” as it expressed the intent of the
redefinition. This determines with certainty the absence
of unvolontary redefinition.

In the next figures, the nodes colored in yellow (left
part) represent the factors on which we observe the dis-
tributions of values (included in the right part). The
blue nodes are not observed. The observation of the fac-
tor ”goal” is distinguished by a red background frame
(factor on the right bottom part of figure 9). Finally, the
green nodes represent factors whose value was settled.
They represent the knowledge available on an element
of the code or hypothesis which are made.

In our example, the knowledge of the identifier size
has no impact on the estimation of the risk of Acciden-
tal Overriding when the factor “Keyword” is “Override”
or “NewMeth”. Figure 10 shows that the estimation of
AO is not modified by the absence of knowledge on the
factor “Keyword” (distribution by default of the pos-
sible values), relatively to the knowledge illustrated on
figure 9 in which the identifier size is fixed between 0
and 4.

On the contrary, we observe that when there is no
knowledge on the factor “Keyword” of a method, the
estimation of the AO risk is precised by the knowledge
of the small size of the identifier. Figure 11 illustrates
this remark. Indeed, when no information exists on the
keyword, the only knowledge on the identifier size (0-4)
does not allow a conclusive estimation to be obtained
(67.5% Occur, 32.5% Absence).

We infer that the various values observable for each
factors are more or less significant for risk estimation.

All the knowledge about the values of factors and
about their influences must be used to express the arrays
defining the associated conditional probabilities.

When the knowledge is formalised in the whole in
the model, the Bayesian network design is completed.
Then this network can be handled by various proposed
analysis.

The quality of the established network depends on the
quality of the information available to define the net-
work. In particular, this concerns the nodes connection
knowledge. Indeed, the more the network is complete
and the more the factors are correlated, the more the
analysis deduced will be meaningfull.

5 Bayesian networks applied to
OOTiA faults

5.1 Bayesian networks applied to
Object-Oriented Technologies

The networks for estimating each risk associated with
the methods or the attributes were separately defined. It

5

Figure 9: RI | Keyword = Override ∧ Ident-Size = 0-4

Figure 10: RI | Keyword = Override

Figure 11: RI | Taille-Ident = 0-4

6

Presence 20%

Absence 80%

Overriding_risks

Presence 5%

Absence 95%

RI

Presence 8%

Absence 92%

SDA

NameSize

Keyword

Contract_copied

Nb_Contract
_Variables

Nb_Inheritance

Arity

MESS-SDA

Nb_Inherited
_Methods

Presence 29%

Absence 71%

SDI

Presence 2%

Absence 98%

SVA

MESS-SDI
MESS-SVA

MESS-RI

Nb_Att_Modified

Nb_Att_Constraint
Nb_Param_
Constraint

Nb_Interact_
With_Att

Meth_Contract
_Compelxity

Nb_Private_Att_in
_Superclasses

Visibility

Parameter
_Types

Presence 7%

Absence 93%

Constructor_Risks

Is_Calling_Polymorphic
_Method

Presence 8%

Absence 92%

ACB

Nb_Polymorphic_
Meth_called

Presence 7%

Absence 93%

IC

MESS-ICMESS-ACB

Nb_Subclasses_Cstr
_Not_Overridden

Nb_Att_Subclasses

Nb_Local_Att

Only_Final_
meth_Called

Att_Contract_
Compelx

Nb_Constructors

Presence 11%

Absence 89%

All-Methods-Risks

Presence 11%

Absence 89%

ITU

MESS-IISD

Nb_Meth_Interacting_Att

Presence 5%

Absence 95%

Extension_Risks

Presence10%

Absence 90%

IISD

Nb_Att_With_
Meth_Contract

MESS-IISD

Is_Constructor
Is_Overriding Is_Extension_Meth

Presence 18%

Absence 82%

Method-Risks

Presence 6%

Absence 94%

Attribute_Risks

Presence 12%

Absence 88%

SDIH

MESS-SDIH

Nb_Att

Att_Identifier_Size

Att_Hidden

Presence

Absence

OO-Risk

Is_A_MethodIs_An_Attribute Element_Type

Method_Type

Figure 12: Bayesian network to estimate OOT fault risks

is therefore possible to define a global Bayesian network
to estimate the risks of the faults due to an element of
the object-oriented code (method, attribut).

We introduce a factor “Element Type” whose value
“Method” or “Attribute” determines the estimation ef-
forts in accordance with the element type.

Figure 12 proposes a Bayesian network to estimate the
risks associated with the elements of an object-oriented
code for the types of faults cited in the OOTiA docu-
ment.

Of course, due to its definition mode, it is quite easy
to add to the network the estimation of any other useful
type of fault.

For instance, we notice on figure 12 that the risks
SDIH1 and IC2, which concern elements of different
types (SDIH concerns the attributs and IC the construc-
tors), have a common factor (the number of classes in
which an accessible constructor is not redefined). This
means that a correlation exists between the estimations
of these two types of faults.

The factors corresponding to the various metrics using
information theory [3] (green nodes) present a high cost
as their calculation requires a complex static analysis of
the code. On the contrary, the yellow nodes represent
the type of the analyzed element. This information is
easily obtained as the method visibility or the number of
local attributes. However, the factors requiring a run in
the inheritance chain lead to a non trivial static analysis
of the code. Therefore, their cost is more important.

1State Definition Inconsistency due to a state variable Hiding
2Incomplete Construction

5.2 Definition of guidelines

When the Bayesian network associated with the fault
risk estimation is defined, various exploitations are avail-
able, providing several interesting results. It is possible
to use the Bayesian network to process

• generic estimations (independent on the programs),
and to process

• particular estimations (on the element of a specific
program).

The various kinds of exploitations of the networks are
enumerated here after and will be detailed later on.

• Specific estimation of a risk on a given element of
a given code (attribut, method);

• Generic estimations:

– definition of coding rules to reach a specified
risk level,

– definition of coding rules to reach a specified
risk level, considering a set of fixed factors;

• Inference: definition of static analysis of code opti-
mized on the more meaningfull factor to obtain a
precise estimation of a fault risk;

• Learning techniques and graphical analysis.

5.2.1 Specific estimation of a risk of a given el-
ement (attribute, method)

At first, we present the most simple type of analysis:
the use of the Bayesian network to estimate the risk
of a specific fault type for a given element of a code.

7

Figure 13: Factors of risk of AO fixed for a specific estimation

To do it, information about the element whose risk has
to be estimated must be gathered. Then these pieces of
information must be introduced in the Bayesian network
fixing the values of the associated factors.

Thus, we deduce the risk occurence likelihood of the
studied fault on the considered element. Sometimes, the
values associated with some of the factors are not avail-
able and so are not considered in the estimation calculus
(treatment of the uncertainty). Each unfixed factor also
influences the global estimation. Each possible value of
a factor has an impact taken into account proportion-
ately to its likelihood a priori. For that purpose, the
factor values distributions defined in the Bayesian Net-
work are used.

Figure 13 provides an example of the risk estimation
on an Accidental Overriding. It assumes that a method
is labelled by the keyword “NewMeth”, has an identi-
fier size between 5 et 10 characters, possesses a public
visibility and has no parameters (factor ParameterType
is estimated as Simple), redefines a method inherited
from 3, 4 or 5 inheritance levels, and is in a class which
provides from 31 to 55 defined methods.

The estimation of AO obtained in such a configura-
tion is a deterministic estimation of the occurence of an
accidental overriding (100% Occur of AO) due to the
presence of the keyword “NewMeth” (100% NewMeth).

5.2.2 Definition of coding rules from a given
risk level

One of the main goal of our work is to propose a set of
coding rules for object-oriented technologies that pro-
vide guarantees that a given risk level is not overtaken.
This means that the actual risk is lower than the ac-
ceptable risk threshold. For example, assume that the
maximum acceptable probability of the occurence of an
AO fault is 10−4 for each method. Each risk whose
estimation value is higher than 10−4 is considered as
unacceptable.

Then, to reach an acceptable level, it is necessary to
define coding rules on the language features impacting
the pieces of information used to estimate the risk.

To achieve this objective, a maximum value for the
factor “Occur” of the goal AO is fixed. Figure 14 shows
how this value is specified in the red frame which define
the likelihood associated with the various values of AO
(Occur and Absence).

Thanks to the property of reversibility of the Bayesian
networks, a combination of likelihoods of the factors val-
ues can be deduced allowing the fixed risk threshold to
be achieved.

Figure 15 presents on our example, the impact of the
fixed value for the factor ”goal” on the factors. For
instance, it shows that the likelihood of presence of
the keyword “NewMeth” and that the likelihood associ-
ated with a small size of identifiers strongly decreased.
Therefore, a coding rule excluding identifiers whose size
is less than 10 characters for a redefining method should
maintain the risk estimation at an acceptable level. To
check its efficiency, we fix the forbidden values to a null
likelihood. Then we observe the change of the likeli-
hoods of AO values depending on the various possible
configurations of the other factors.

In figure 14, the probability of the presence of a key-
word “NewMeth” is 30%. This value is modified when
the threshold of presence of AO is fixed at 0.01%. In-
deed, we observe on figure 15 that the probability of
the keyword “NewMeth” became close to null (0,01%).
This kind of the Bayesian network analysis suggests to
exclude this type of values.

For such an exploitation of the Bayesian networks, an
acceptable threshold has to be defined. Then, processing
the network, the constraints on the various factors of the
program are deduced.

The risk acceptability threshold is specified depend-
ing on the considered criticality level (DAL A, B, etc.).
According to the types of applications, the risk accept-
ability threshold evolves.

The dependency between DAL and design constraints
8

Figure 14: Definition of an acceptable risk level

Figure 15: Assignement of the distributions of the values of the factors

is already considered for the process. For instance, for
testing, a structural coverage of type MC/DC (Modified
Condition / Decision Coverage) is required for level-A
applications. For level-B applications, only the C/DC
(Condition / Decision Coverage) is required. Thank to
our proposals, the criticality level also impacts the way
of the technology is used.

The Bayesian networks allow to deduce coding rules
specific for each risk acceptability threshold, that is,
criticality level, fixing a value to the factor ”goal”.

However, the definition of a given risk acceptability
threshold for each criticality level must be proposed or
validated by the certification authorities as they previ-
ously specified the required verification techniques for
each criticality level.

5.2.3 Definition of coding rules relatively to a
risk threshold and a set of fixed factors

At first, we justify the interest of the Bayesian net-
works considering an example of coding rule proposed
by OOTiA [8]. This coding rule excludes the use of
inheritance chain whose lenght is greater than 5 lev-
els. This requirement does not depend on the criticality
level. For this coding rule, the factor “InheritanceNb”
is constrained independently to the other risk factors.
Moreover the constraint is restrictive.

In such a case, we want to propose more adaptable

constraints concerning the inheritance depth. In return,
it is necessary to propose additional constraints on other
factors to preserve the risk acceptability. So the designer
has more freedom degrees to take into account the design
constraints as well as the safety requirements.

The Bayesian networks applied to fault risks help in
defining such coding rules. Fixing a risk acceptability
threshold (depending on the considered criticality level)
and other risk factors (for instance, more than 5 levels
of inheritance), the Bayesian networks deduce the con-
sequences on the other factors of the risk of fault. Thus,
one or several constraints can be relaxed which are com-
pensated by stonger restrictions on other factors. So,
the same safety level is obtained with adjustable rules
than with generic and restrictive coding rules.

Consider our simple example used to estimate the risk
of Accidental Overriding taking 2 factors into account.
At first, we fix the acceptability threshold of the pres-
ence of this type of fault at 0.01%. This means that an
occurence probability of such a fault lower than 10−4 is
acceptable for applications whose DAL is C (for exam-
ple). Then we observe the consequences on the other
factors (one factor in this simplified example). Two dis-
tinguished infuences are illustrated on figure 16.

The first proposes to measure the impact of the pres-
ence of a method whose identifier is very short in order
to reach the acceptable level. It shows that the favoured
value of the factor keyword is “Override”. On the con-

9

trary, in the second example provided on figure 16, the
important size of the identifier largely compensates the
absence of keyword.

Figure 16: Taille-Identifier influences

The considered example takes only 2 factors into ac-
count. So the deduced conclusions could be obtained
intuitively. However, they are justified by values ob-
tained by calculus. Moreover, in real situation, that is,
when all the factors are taken into account such as at
figure 12, the intuition is inefficient.

Realistic Bayesian networks possess a large number of
factors. A value of one attribute can be fixed to relax
conventional constraints. Then, the Bayesian networks
running provides combinations of other factors allowing
the acceptable level of risk to be achieved. The values of
several factors can be fixed. Then the coding rules are
such as “If the inheritance chain depth is greater than
5, the presence of keywords is obligatory if methods are
redefined, and the identifier size must be greater than
10”.

Consider again the Accidental Overriding. It is im-
portant to propose other coding rules than the obliga-
tion to use keywords since numerous object-oriented lan-
guages do not offer these features.

6 Conclusion

To conclude, let us first underline that our approach
proposed to define design constraints is generic. Thus it
should be used to define good practices to manage other
types of software risks (memory risks, time execution
risks, etc.), or to manage system risk, at the sytsem
level.

Then, we want to mention one more time that the
major contribution by applying our risk management
methodology is to provide means to mesure the guar-
antees on the safety that are provided, when using the
defined guidelines.

Finally, as the design constraints represent a signifi-
cant part of the developpers environment, and thus in-
fluence significantly the development costs, they should
be defined by a strategic analysis, taking into account
their efficientness on safety, but also their cost.

References

[1] ISO/IEC Guide 73. Risk Management, Vocabulary,
Guidelines for use in standards. International Orga-
nization for Standardization, 2002.

[2] BAYESIA. Bayesialab. BAYESIA S.A., Laval,
France, www.bayesia.com.

[3] S. Gaudan, G. Motet, and G. Auriol. A new struc-
tural complexity metrics applied to object-oriented
design reliability assessment. In proceedings of the
18th IEEE International Symposium on Software
Reliability Engineering (ISSRE 2007), Industrial
Track, Tröllhattan, Sweden, November 2007. IEEE.

[4] S. Gaudan, G. Motet, E. Jenn, and S. Leriche. Iden-
tification model of the object-oriented technology’s
risks for an avionics certification. In proceedings
of the 3rd European Congress Embedded Real-Time
Software (ERTS06), ISBN 2-91-2328-27-6, Toulouse,
France, 2006. SEE.

[5] W. Li. Another metric suite for object-oriented
programming. Journal of Systems and Software,
44(2):155–162, 1998. ISSN 0164-1212, Elsevier Sci-
ence Inc., New york, NY, USA.

[6] G. Motet and S. Gaudan. Assessment of the risks
for using object-oriented technologies in critical soft-
ware. In proceedings of the 6th Workshop on Critical
Software Tokyo, Japan, 2006. JAXA publisher.

[7] P. Näım, P-H. Wuillemin, P. Leray, O. Pourret, and
A. Becker. Réseaux bayésiens. Eyrolles, 2nd edition,
2004. ISBN 2-212-11137-1.

[8] OOTiA. Handbook for Object-Oriented
Technology in Aviation, Octobre 2004.
http://shemesh.larc.nasa.gov/foot/.

10

