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This dynamic facet is characterized by sporadic events, time events in a range of 1 millisecond (ms) to 1 second (s), and angular events in a range of 0.5ms to 100ms depending on engine configuration and speed. The EMS functions have to be called from these events, and in addition to their recurrence, they may have phasing, sequencing, and also deadline constraints.

Typical problems in the dynamic behavior are infinite loops, wrong initializations of pointers, stack overflows, recursivity, wrong calculation sequences, data inconsistencies, and deadline misses. Whereas some of these errors are intrinsic to SW-components (SW-C), others are related to their integration within the project. In other words, the same SW-C may show a correct behavior in one project, but an incorrect behavior in another project, because of integration failure, or different integration contexts.

After an overall description of the EMS context, we will describe in this paper the most common integration failures with impact on dynamic behavior, and means to avoid them. We will also show the importance of the architecture and integration activities in the specific area of engine management, in particular due to the above mentioned constraint of strong coupling.
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Abstract

Variability, hard real time, increasing functional complexity (due to emissions and driveability standards), limited hardware (HW) resources : these are some of the -sometimes antagonisticconstraints a modern Engine Management Software (EMS) has to deal with. In addition, to face the price reductions in the automotive electronics industry, an intensive reuse strategy is deployed, based on a platform architecture and a component based development, despite the high functional coupling between those components, characteristic to the engine management area. To respond to these constraints, a static (or functional) architecture defines the split of the software (SW) into compilation units: modules or aggregations of modules. This static architecture mostly focuses on reuse and decoupling of functions. It is in general well managed, documented, and supported by tools.

In parallel to this static facet, to respond to the real time requirements, the dynamic architecture defines the split of the SW into execution units: functions, tasks, interruptions. This part of the architecture is often underestimated, poorly documented, and insufficiently supported by tools.

Context of Engine Management Software

A high end Electronic Control Unit (ECU) may have up to 200 connectors, 250.000 lines of code, and around 1000 functions to control all sensors and actuators needed to manage the combustion process of the engine.

Fig. 2: Gasoline direct injection system

The architecture of the software is mostly impacted by the following constraints:

Coupling between EMS functions:

An EMS is a system with a high functional cohesion.

There are only few functions mapped to an EMS, which could be exported to another ECU of the vehicle. These functions interact together either directly or through the engine and the components they control, and thus can hardly be managed independently.

Fig. 3: All sensors and actuators managed by EMS are involved in the same physical process For instance, misfire, injection and ignition functions depend on each other and participate all to the same combustion process. They are interacting together, and thus communicate by exchanging data. In the following figure, we give an overview of the coupling of the main EMS functions on a typical high end project.

Fig. 4: Coupling between main EMS functions

On this graphic, each dot represents interfaces (links) between the functions. In particular, we see that there is nearly no 1:1 link between functions, and that most of the functions are linked to many other ones. To be more concrete, typical variables of the system like engine speed, coolant temperature, ignition key, ... are needed in more than 100 modules, spread in around 50 functions. This strong coupling between functions creates one of the most important constraints on the architecture, and is specific to Engine Management Systems.

Variability:

Due to the reuse objectives, the configurability of the EMS SW is a key issue, in order to avoid parallel branches, expensive to maintain. EMS applications are similar, but have also a big level of variability, due to different engine architectures, sensor and actuator positions or electrical characteristics. This variability is much higher at the supplier side than the OEM side, due to a multi-customer and multiengine orientation.
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Real time:

As the physical process in a combustion engine is fast and repetitive, an EMS is a fast system: Acquisitions, diagnosis, treatments, and corrections on control strategies are done very often. To reach new emission regulations, new functionalities require multiple acquisitions of the same parameter and multiple actuations of the same output within one same combustion cycle. Engine synchronous calculations may have a recurrence of 2.5 ms on 8 cylinder systems, and fast time bases like 5 ms are widely used. As a result, around 80% of the calculations are executed within a 10ms (or faster) time frame. In addition to this speed, the complexity of an EMS is due to the mixture between sporadic events (like for instance an ignition key transition), time periodic events, and angle periodic events. For instance, many calculations are synchronous to the crankshaft position. Their recurrence is variable, and can range from 100ms at low engine speed to 5ms at high engine speed, for a 4 cylinders engine. In total, around 70 different events are needed with sometimes precise phasing or deadlines needs.

Fig. 7: Time and Angle based events

Reuse:

As mentioned, reuse is a key driver of the architecture, in order to reach productivity objectives inherent to the automotive electronics industry. This reuse impacts mostly the static architecture, i.e. the split into functional bricks. The decoupling of functionalities is done using a top-down approach and an aggregate concept already described in ERTS2004 [1]. This is done through a better and formalized management of interfaces, and through an application of abstraction principle, in order to define sub-packages (aggregates) with a high internal coherency. 

Time Events

Hardware resources:

In order to minimize the ECU price, the RAM, ROM and CPU load consumptions have to be limited. The balance has to be done between the economy of HW resources and the typical objectives of maintainability, testability, and in particular reusability. In the simple example shown below, a calculation done every top dead center (tdc) depends on interpolations on input variables with different dynamics. Some of them change every tdc, but some other only every 100ms or every 1s. To ease the integration (testability and maintainability) of such a function, a monolithic calculation every tdc would be the best choice. But this would cost approximately twice the CPU load as a calculation optimized according to the input variables dynamics. 

Business model:

With the introduction of OSEK in 2001, a fundamental change of the business process has been initiated: before that date, the complete SW embedded in the ECU was developed by the supplier (based on own, or on OEM specifications). Today, a complete project is -and will be more and more -built from individual SW-C coming from the OEMs, suppliers, tool vendors, and even competitors. The formats of the SW-C to be integrated are disparate (C, obj, libraries, MDL, XML), and have increasing impact on the architecture. For instance, a non-negligible part of the CPU, RAM, ROM is dedicated to interface adaptation.

Different views on an EMS architecture

According to the above constraints, the EMS architecture is split into different facets (or areas), corresponding to different types of problems. Architectural choices and mechanisms are defined in each of these areas, and may apply either to a complete platform (or product line, or project family), to a single project, or finally to a single function. The Static architecture , or functional architecture, aims to split the system into functional abstractions, with an objective of decoupling functionalities. These functional abstractions will be either modules (i.e. compilation units, SW-Cs), or groups of SW-Cs. These SW-Cs will be the base for reuse, or for distributed development [START_REF] Claraz | Reuse Strategy at Siemens VDO Automotive : The EMS 2 Powertrain Platform Architecture[END_REF] .

Typical topics of static architecture are: -In which SW-C to locate the torque correction due to air conditioning? -Is it possible to exchange calibration data between SW-Cs? Which kind of exchange is allowed? Why? The Layer architecture defines the split into hardware abstractions, with an objective of independence from microcontroller, hardware, or [START_REF] Claraz | Reuse Strategy at Siemens VDO Automotive : The EMS 2 Powertrain Platform Architecture[END_REF] With increasing size and complexity of applications, a good partitioning is becoming essential to reduce coupling, allow work split between teams, and ease further integration. The "Configurational" architecture focuses on the management of the variability, with an objective of reducing its impact on development effort and hardware resources. Once integrated in a project, a SW-C designed to be "configurable" will then become "configured". This configuration can be done either at "build time" (same source code, different executables), at "runtime" (same source code, same executable, different parameters), or both.

Examples of topics related to this facet are:

-How to decouple the ignition functionality from the number of cylinders? -How to encapsulate the diversity? How to handle its impact on the interfaces?

The Dynamic architecture, finally, aims to split the system into execution units (i.e. tasks), with an objective of schedulability and efficiency. This facet is described in the following chapter.

Dynamic architecture of an EMS

As described before, an EMS is stimulated by around 70 sporadic, periodic, or angular events, mostly represented by Operating System tasks. The phasing between these events is sometimes important, and for one same recurrence, there might be different events with different phasing. For instance, in order to be precise in the combustion cycle, different events are necessary between 2 tdc of the same cylinder. So, the first dynamic architecture choice, when designing, and integrating a control strategy, is the selection of the adequate event(s), out of a list of around 60. The below figure shows the functions split on some events and puts in focus that the EMS functions are not monolithic in term of dynamics, but use various events (for functional or HW resources optimization reasons).

Fig. 13: Functions vs. events mapping Consequently, in addition to the static data flow described in Fig. 4, a dynamic data flow can be displayed, corresponding to the exchange between events, or tasks: A variable is modified by one (or more) event, and read by one (or more) other event. The above matrix shows the data flow between some producing and consuming tasks.

A comparison between the static data flow (between SW-Cs) and the dynamic data flow (between tasks)

shows that the static one is much better controlled than the dynamic one: The static flow is easy to formalize and to encapsulate. In general, there is only one single producer for various consumers, and the access to external data can be protected using special mechanisms. Finally, a failure of the static flow can hardly generate a failure at run time, but rather at build time. Which means that it is much easier to detect. None of these characteristics apply to the dynamic flow: formalization and encapsulation are difficult; there is often more than only one producer-task; and no simple mechanism permits reducing the access to a data from a single task. And finally, a failure here will hardly be detected at build time, and will be difficult to identify at run time.

Due to this huge "dynamic flow" (like the static one, a particularity of EMS systems), data consistency issues will be more difficult to handle, in particular in case of preemptive scheduling. This is a second aspect of the dynamic architecture.

Another consequence of the coupling between functions is the importance of the calculation sequence between them: When a new function is added, it has to be inserted at the right place in the program flow corresponding to one event. Different criteria are defined by the dynamic architecture, to ensure a correct and reproducible sequencing (the same combination of functions should be integrated in the same way on different applications). Another important parameter of a function is its deadline, or maximum allowed response time. The response time is the delay between the activation of a function and its completion. For instance, the time elapsed between the decision to update the injection time (detection of the tdc), and the point in time it actually is updated. The intrinsic duration of the function is included in its response time, but also the delay introduced by the other functions and events of higher priority. All these information depend on the integration platform, and a correct behavior has to be ensured on the slowest one. 

Exceeding deadlines:

Depending on the functionality, a missed deadline can be destructive (e.g. injection update), or have such a light consequence that it is better to simply skip the calculation (e.g. coolant temperature acquisition). An EMS system uses a mixture of hard and soft deadlines, typically in the range of 1ms to 1 sec. In general, defining the deadline of a functionality is not a simple issue, and requires a good system knowledge. Violating deadlines is a typical problem of integration, as the response time of one function is mostly impacted by the other functions sharing the same CPU: The response time of a function integrated since a while can be impacted by the introduction of a new one. In order to fulfill the deadlines, priorities are assigned to tasks, based on a standard scheduling policy and task priority scheme. Standard priority orders ensure consistent response times between projects.

Fig. 19: Standardization of priority scheme

To verify deadlines, advanced techniques can be used, like schedulability prediction, simulation of the dynamic behavior, or simply measurements. These techniques need a very good understanding of the dynamic behavior and are used by architects. To define the correct sequence between functions of the same event, one of the criteria which can be used is the data flow criterion. A function producing a variable should be located before all the functions that consume this data, in the program flow. Otherwise, the consuming functions will work with an old (or, even worst, non initialized) value. It is also preferable, in general, that all the consumers get a consistent value for the variable, which means that all consumers should be either before, but preferably after the producer module. Furthermore, in some cases, enlacing between functions is required: a function has to be inserted between 2 parts of another one Thus, defining the right sequence of functions connected to the same event can be a complex job: the below figure shows the amount of direct (produced, then consumed) and reverse (consumed, then produced) data flow in a typical task. Note here that one green or red arrow may encapsulate more than one variable. The amount of arrows (links) here is an additional testimony of the high coupling between EMS functions. Finally, the correct sequence of functions within a task is verified by a static analysis tool, based on data production and consumption order. Due to the big number of links between functions, finding the right precedence order may be a complicated job. Because of algebraic loops, the solution to the precedence problem is not always obvious, and needs some system choices. For the sequence flow across tasks (when defined), the same kind of analysis can be conducted.

Inconsistency of data:

The modification, by a high priority task, of a variable during its use in a low priority task, corrupts the behavior of the low priority functionality 4 , as its 2 parts work with different values for the same variable. This standard problem of real time software is particularly important in EMS context due to the big coupling (and data flow) between functions and between tasks.

4 This also applies across different functions which need to work with the same input values. For instance, misfiring, ignition, injection functions are strongly coupled together. The data consistency problem can also be analyzed statically by a tool, by checking the data flow between tasks ("dynamic flow"). Identifying this flow between the tasks is the first step for a better control.

Fig. 25: Shared data between tasks of different priorities and recurrences

Dynamically, it is nearly impossible to verify the consistence of data, as the occurrence of the critical case is very unlikely and difficult to reproduce. This is particularly the case in an EMS context, where regular time based tasks and engine angle based tasks can interact at any time.

Organization

In addition to the above measures, an adequate organization allows to control the dynamic architecture:

SW architects analyze new concepts, define standard methods and mechanisms, and support the projects in their deployment. SW integrators focus on their own project and ensure a correct integration of the reused functionalities. Both are well trained to the architecture mechanisms and constraints, and are highly skilled engineers. Developers of functions are specialists on their own functional scope and know perfectly how to develop a generic solution, portable on different system and HW configurations. They control the internal architecture of their function, in order to ease its maintainability and configurability.

Architecture and integration activities are budgeted, empowered, and considered in the early project planning, as major activities, particularly in a context of intensive reuse.

Architecture assessments are conducted by architecture specialists independent from the projects. They are done at an early phase of the project, to be able to take corrective or preventive actions.

Standardization

As seen in the above chapters, the frame a SW-C is plugged into has a major impact on its behavior, in particular in the EMS context of hard real time and high coupling between functions. For instance, a SW-C designed for a non-preemptive environment cannot simply be used in a preemptive one. Even in a given proprietary architecture, the behavior of a reused proprietary SW-C is not automatically the same, due to the different system and HW configurations.

With the trend to integrate more and more external SW-Cs, the need for adaptation layers increases, and consequently the need for HW resources. As long as the number of external SW-Cs is limited, such an integration can be managed. But with an increasing number, a standardization is necessary.

Ahead from the pure mechanisms (like interfacing mechanisms), a standardization of the architecture itself is necessary to build complete projects out of SW-Cs. Which events, which recurrences, which links between them (precedence, phasing, exclusion, ...) ? Which scheduling concept, which priorities, which deadlines for the functions, and how to ensure them? Which sequencing between components, and how to control it? Which data to be protected against concurrent accesses, and which mechanism to protect them, compatible with the HW resources constraints? These are some of the challenges to be solved by AUTOSAR or any standard willing to authorize porting of SW-Cs across different platforms.

Conclusion

Compared to other automotive areas like car body, an Engine Management System has specific constraints which make the integration of functions more difficult. High coupling between functions, hard and complex real time, and limited HW resources are the ones with major impact on the dynamic behavior. Combined with the strong reuse objectives inherent to the automotive business, these constraints increase the challenge of integration activities. Hidden part of the iceberg, the dynamic integration of a SW-C is certainly much more difficult to put under control than its static one. But there are nevertheless various techniques and means to reach this goal. Standardization will help in this direction, but has to be supported by efficient mechanisms and tools, and has to consider all the facets of the problem.
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 22 Fig. 22: Data flow between synchronous functions To reduce the coupling between functionalities and to better control the sequencing, standard sequence orders or ordering criteria are defined, and sequencing modules are used. Standard initialization mechanisms and standard task scheduling ensure that data are available at the right time.
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 24 Fig.24: Data inconsistent within 100ms functionality So, to reduce the risk of misuse of shared data, specific design patterns, atomic libraries, restrictions like controlled use of preemption, and encapsulation principles are applied. The data consistency problem can also be analyzed statically by a tool, by checking the data flow between tasks ("dynamic flow"). Identifying this flow between the tasks is the first step for a better control.
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It should be specified, here, what means "integrated in the same way", when the 2 integration frames are different. Indeed, integration instructions are dependant on the integrated object itself, but also on the integration environment, which is not portable. This is particularly true on the dynamic aspects.

At first sight, this seems to be a wrong architecture, but in reality, this may be a consequence of the static partitioning, which is mainly driven by reuse aspects..

Integration faults and how to avoid them

Like described in a previous document [2], dynamic architecture failures can be classified in 3 categories: intrinsic to the reused component, intrinsic to the frame it is plugged into, or finally failure due to an integration error or incompatibility.

In the first category are the typical problems of infinite loops, wrong pointer initializations, recursivity, interrupt disabling. They are independent of the integration environment, and a verification needs to be done only once on a SW-C, independently of its reuse level. A correct SW-C will be correct even if reused many times on different platforms. On the other side, a faulty SW-C will be faulty on any integration platform. These typical problems are detected by peer reviews, architecture mechanisms, unit testing, or static analysis tools generally available on the market.

The second category of problems refers to the behavior of the project the SW-C is plugged into. CPU overload, or stack overflow are generally detected by embedded mechanisms, by static analysis tools, or by a combination of those. Regular measurements are done along the complete project life, in order to react before the limits are exceeded.

In this paper, we will focus on the third category of problems, which concerns the behavior of a SW component once it is integrated in the complete project. As the integration environment changes (e.g. due to the influence of other SW components), the behavior may change: The same SW-C shows different behavior on 2 different projects, being or not integrated in the same way 2 . These problems are generally less tracked; their specification, formalization, and verification can be a cumbersome job. Their effect is not immediate, difficult to reproduce, and in extreme cases, can be destructive. These problems are:

Wrong recurrences:

A calculation is not executed with the right recurrence, or has an unexpected jitter. In general, this problem is due to an integration error, or to high CPU load conditions. By static analysis, consistency between expected recurrence and integration task or container can be checked. By regular measurements on bench, engine, or vehicle, and by simulation, the correct