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Dynamics of a parallel plate electrostatic actuator in viscous dielectric
media

Sindhu Preetham Burugupally®!* W. Roshantha Perera®!

% Department of Mechanical Engineering, Wichita State University, Wichita, KS 67260 USA

Abstract

Understanding the dynamics of a parallel plate electrostatic actuator in viscous dielectric media will help
optimize the actuator performance for manipulating microparticles suspended in aqueous media. In this
paper, we analyze the response of the actuator in a clamped-clamped configuration immersed in viscous
dielectric media. We modeled the actuator as a continuous system by deriving a reduced-order model, and
solving it by employing the Galerkin method and linear undamped mode shapes for a clamped-clamped beam.
Our model incorporates the inertial loading effect and squeeze film damping by the media, nonlinear mid-plane
stretching forces in the beam electrode of the actuator, and nonlinear contact force during the physical contact
of the beam electrode with the stationary electrode. The model is utilized to study the actuator dynamics over
a broad range, three orders of magnitude of viscosity and two orders of magnitude of relative permittivity
of the media. We report that the actuator at lower actuation voltages and/or higher actuation frequencies
can be approximated to be a linear system. We also report that at very high actuation frequencies, the beam
electrode does not pull-in into the stationary electrode, and the actuator experiences a significant phase lag
and displacement drift over time.

Keywords: Electrostatic actuator, viscous media, reduced order modeling, mechanics.

1. Introduction signals[b]. Parallel plate actuators are a class of elec-
trostatic actuators known for high displacement and

Electrostatic microactuators are commonly em- force resolutions[6]. It is difficult to predict the dy-

ployed for generating forces on the order of few mi-
croNewtons and displacements on the order of few
microns for a wide range of manipulating and prob-
ing applications. Applications include aligning the
optical fibers in optoelectronic packaging[I], han-
dling of micron-sized objects[2], probing of biological
cells[3], actuating the miniature fins on millimeter-
scale rockets[4], and switching the radio frequency
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namics of these actuators as they have a nonlinear
dynamic response due to the nonlinear squeeze film
damping, nonlinear internal stretching, and nonlin-
ear electrostatic actuation forces[7] (Fig. [[). Under-
standing the dynamics of a parallel plate actuator will
help optimize actuator performance for a specific ap-
plication such as manipulating biological cells. To un-
derstand the static and dynamic response of these ac-
tuators, researchers modeled them either as lumped
systems[8] or continuous systems[9] [10]. Most efforts
were directed towards the design of actuators operat-
ing in air or vacuum where the fluid viscous damping
is negligible or absent[1T], 12 [13].
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Figure 1: Schematic sketch of the parallel plate electrostatic
actuator. (a) Unenergized state. (b) Energized state. (c) A
side view of the actuator in the energized stage with parame-
ters shown.

With the recent interest in manipulating and prob-
ing of biological cells on lab-on-a-chip platform, dif-
ferent class of actuators —comb drives[3], curved
electrodes|[14], and hybrid drives[l5] —are being de-
signed to operate in viscous dielectric (aqueous) me-
dia. The performance of these actuators charac-
terized in terms of actuator displacement and fre-
quency response depends on the relative permittiv-
ity and dynamic viscosity of the viscous dielectric
media[l6, [I7]. The high relative permittivity of aque-
ous media (ef,,=80) amplifies the generated force
and displacement, while the high dynamic viscosity
(py=8.9x10~* Pa-s) restricts the displacement and
narrows the bandwidth frequency of the actuator[16]
—hence it is important to understand the effect
of media properties on the actuator performance.
Some of the recent research efforts include: inves-
tigating the effect of fluid viscosity, initial electrode

gap, and beam geometry[I8]; determining an analyt-
ical expression for pull-in time of actuator[I9]; de-
riving physics-based models to predict the actuator
static performance[20]; optimizing actuator design
parmeters to achieve large displacements in aqueous
media[l5]; and identifying means to extend the dis-
placement range of the actuator in liquid solutions|g].

Table 1: Actuator parameters and physical properties.

Value

Physical parameter (units)

Length of the beam electrode, I (pm) 2000
Thickness of the beam electrode, h (pum) 5

Width of the beam electrode, b (pm) 45
Gap between the electrodes, d (um) 5
Density of the electrode material, p 2329
(kg/m?)

Young’s Modulus, E (GPa) 130

Axial tensile force/unit length, N (N/m) 0

Relative permittivity of air, €y 4 1
Relative permittivity of methanol, €¢ , 32
Relative permittivity of water, €y, 80
Dynamic viscosity of air, u, (uPa-s) 18.1
Dynamic viscosity of methanol, u,, (uPa-s) 700
Dynamic viscosity of water, p,, (uPa-s) 890
Nondimensional damping term c for air, ¢, 10
Nondimensional damping term ¢ for 120
methanol, ¢,

Nondimensional damping term c for water, 200
Cw

Density of air, pf,, (kg/m?) 1.2
Density of methanol, py, (kg/m?) 790
Density of water, pf,,, (kg/m?) 1000

In this paper, we analyze the dynamics of a paral-
lel plate actuator in a clamped-clamped configuration
immersed in viscous dielectric media (Fig. . Here,
we model the actuator as a continuous system by de-
riving a reduced-order model similar to the work pre-
sented in Ref.[2I]. The model is solved by employ-



ing the Galerkin method|22] and linear undamped
mode shapes for a clamped-clamped beam[23]. The
work presented here extends the reduced-order model
framework used by Younis et al.[9] by modeling ac-
tuator contact physics to describe the actuator dy-
namics beyond the pull-in instability. Our model in-
corporates the inertial loading effect and squeeze film
damping by the media, nonlinear mid-plane stretch-
ing forces in the beam electrode of the actuator, and
nonlinear contact force[24] during the physical con-
tact of the beam electrode with the stationary elec-
trode (Fig. [I)). The model is first validated using the
data available in the existing literature[9] and then
the model is utilized to study the actuator dynam-
ics over a broad range, three orders of magnitude of
viscosity (relates to damping or @-factor) and two
orders of magnitude of relative permittivity of the
media. We describe the actuator characteristics in
terms of pull-in time, and actuator displacement for
both DC and AC actuation voltages. The following
sections describe the design, model, and results that
describe the response of the actuator in different vis-
cous dielectric media.

2. Design

The actuator is designed to achieve 1-5 pm dis-
placement range and operate in viscous dielectric me-
dia for low actuation voltages (<20 V). The actua-
tor comprises of two main components: a beam elec-
trode to deliver displacement strokes and a station-
ary electrode to drive the beam electrode in the for-
ward direction (Fig. [[[a)). The beam electrode is a
clamped-clamped structure that is compliant, while
the stationary electrode is an immovable rigid mem-
ber. The actuator motion can result in axial stretch-
ing of the beam electrode. The electrodes are coated
with an insulator film for electrical insulation. The
nominal actuator parameters and physical properties
of media are listed in Table [I] Upon energizing the
actuator by supplying voltage V', the beam electrode
moves in-plane closer to the stationary electrode (Fig.
b,c)). The actuation voltage V is given by the
function V(t) = Vsin2rft, where V is the voltage
amplitude, f is the frequency of the actuation volt-
age, and t is the time. Note that for operating the

actuator in ionic viscous media (water), a pure si-
nusoidal voltage function can result in electrolysis,
anodization, and electrode polarization [25]. Hence,
the actuator will be supplied with an amplitude mod-
ulated actuation signal given by the function V(t) =
1V (1 + cos2m ft) II(t) where V is the voltage am-
plitude, cos2w ft is the modulation waveform, ¢ is
the time, TI(t) = 2377, ST (—=1)7 " cos2m fojt is
a high-frequency, zero-mean pulse signal to prevent
charge shielding effects [25], and f and f.=500 kHz
are the modulation and carrier frequencies, respec-
tively. However, for uniformity, in this work we are
restricting the actuation voltage to be a pure sinu-
soidal function.

3. Model

The actuator shown in Fig. [1}is modeled as a con-
tinuous system by deriving a reduced-order model
and solved by employing the Galerkin method and
linear undamped mode shapes for a clamped-clamped
beam. The model incorporates the inertial loading ef-
fect and squeeze film damping by the media, nonlin-
ear mid-plane stretching forces in the beam electrode
of the actuator, and nonlinear contact force during
the physical contact of the beam electrode with the
stationary electrode (Fig. . The actuator motion is
described by Eq. with boundary conditions given

by Egs. [Tb] and

O*w 0 0?w  Ow
EA ['/0w\? 02w egepbV?
=|— — ) d N
[2[ /0(332) v }8x2+2(d—w)2
dg
— 3 T —_—
keg® (1+ fic 5y ) H,

(1a)

w(0,t) = w(l,t) =0,

(1b)
ow ow
Z—(0,t) = =—(I,t) = 1
20,0 = 520 =0, (1¢)
where w is the deflection of the beam electrode, x
is the coordinate along the beam electrode, b is the

width of the beam electrode, h is the thickness of



the beam electrode, [ is the length of the beam elec-
trode, d is the gap between the beam electrode and
the stationary electrode, A is the cross-sectional area
of the beam electrode, F is the Young’s modulus of
the beam electrode material, I = bh3/12 is the area
moment of inertia of the beam electrode, t is the time,
p is the density of the beam electrode material, p; is
the density of the media, €q is the permittivity of vac-
uum, €y is relative permittivity of the media, ¢ is the
damping coefficient by the media per unit length of
the beam electrode, N is the axial tensile force in the
beam electrode per unit length of the beam electrode,
V is the actuation voltage at time ¢, g = (d —w) is
the gap between the beam electrode and stationary
electrode at time t, H is the Heaviside step function
in terms of g, and [i.=0.5 s/m models the damping
and k.=10' N/m* models nonlinear spring stiffness
during the contact of the beam electrode with the sta-
tionary electrode, respectively. Note that damping
term ¢ for each media is calculated using the squeeze
film damping model presented in Ref. [26], and the
numerical values of fi. and k. are based on the work
by Vyasarayani et al.[24]. Also, note that the effect
of insulator film on the actuator dynamics is not con-
sidered in this work.

For analysis, the model (Egs. 11c) is nondimen-
sionalized by applying the following scales to the vari-
ables:

w x t g
W=— X=- T=— G=%2 2
d l tp d )
where t, = prhIl4 is the reference time period. Af-

ter applying these scales, the model (Egs. 1))
becomes

oW, W oW
axt T "Marr T a1
62W 042V2
= [alI‘(W,W) +N] 8X2 + (1 — W)2
oW
J— —_— 3 —_— —_—
as(1— W) (1 Hesr )H
(3a)
W(0,T) = W(1,T) = 0, (3b)

Z—Z(O,T) = Z—Z(l,T) =0, (3¢)
where
m = (1+O.7iipfb), C:Eé;;’ 1=6hi22»
Do =T = [ 2%y, w30
Qs = 6;;;{11:7 ag = kcng47 e = ﬂt;d. (4)

To characterize the actuator dynamics, the model
(Egs. is solved numerically using MATLAB.
For this, Eq. is rearranged by multiplying it
with (1 — W)2. Then, the variable W (or W (X, T))
is expressed as a summation of product of tem-
poral U;(T) and spatial ¢;(X) variables, that is,
W(X,T) = S 2M 1 U,(T)$:(X). Here, i is the mode
number, ¢;(X) is the i*" mode shape of an un-
damped clamped-clamped beam with negligible ax-
ial loads (N=0)[23], and M is the total number of
mode shapes and 2M — 1 is the highest mode shape
used to represent the beam electrode displacement,
respectively. Note that only symmetric mode shapes
(1 € {1,3,..2M — 1}) are used in this analysis. The
model is simplified by invoking the normal mode
shape property fol ¢ip; dX = 0;5[22], where §;; is
the Kronecker delta function. The simplified model
equation becomes

2M—1 1
m(U, -2 3 Uin/ 616 dnd X
i,j=1 0
2M—1 1
+ 3 UinUk/ @qua;kapndx) + Uy + w2U,
i, k=1 0
2M—1 1
= )y UZ-U]-U,CFZ,J-/ b pndX
ij k=1 0
2M—1 1
tar > UUUUURT / Bk 1, nd X
ivj,k,lm=1 0
2M—1 1
~20 Y UiU;URUIL:; /0 Srd) $nd X

ijk =1
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+ asV? / dpdX
0

1 2M—1 3 2M—1
— et [ 00(1-3U) (1Y Ui )ax
i=1 =1
2M—1 1
+2 ) WfUin/ Pipjpnd X
Q=1 0
2M—1 1
- > W?UinUk/ Gi¢jPrPndX
i5,k=1 0
2M—1 1
+N Y Ui/ b; bndX
i=1 0
2M—1 1
FN Y U [ i600000X
i,5,k=1 0
2M—1 1
—2N Y U / $i¢; $nd X
i,j=1 0
2M—1 1
+2¢ > UZ-U]-/ bipjdndX
Q=1 0
2M—1 1
—e Y U /0 6163 b1 d X
i,7,k=1

(5)

where n € {1,3,5,...2M — 1}, and overdot * *’
and prime ¢’ ’ correspond to temporal and spatial
derivatives, respectively. Eq. represents a sys-
tem of M nonlinear ordinary differential equations;
the system of equations is solved numerically to ob-
tain the numerical values of the temporal variable:
Ul, [jg7 U5, ceey and U2M71.

For static analysis, the time derivative terms in
Eq. are dropped, yielding a system of M poly-
nomial equations. The polynomial equation set is
solved for U’s comprising of U, Us,...Usp -1 for a
given DC actuation voltage V using the built-in
MATLAB function fsolve. For each DC actuation
voltage, a U; has two possible solutions —one re-
sults in a stable configuration and other in a unsta-
ble configuration of the beam electrode. The corre-
sponding actuator displacement amplitudes W (1/2)

can be computed using the aforementioned equation
WX = 1/2.T) = X2 U)X = 1/2). For
dynamic analysis, Eq. [p|is solved for U’s compris-
ing of Uy, Us,...Uspr—1 for a given actuation voltage
V' using the built-in MATLAB function odel5s for a
given set of initial conditions: nondimensional ac-
tuator displacement W(X,0) = 0 and nondimen-
sional actuator velocity W (X,0) = 0. The actua-
tor displacement W (X, T) at nondimensional time T,
can be computed using the aforementioned equation
W(X,T) = Y207 U(T)éi(X).
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Figure 2: Static equilibrium curves for the actuator in air,
methanol, and water media. Curves plotted for all the me-
dia against (a) normalized DC actuation voltage V/V,; with
nondimensional actuator displacement amplitude W (1/2) (b)
DC actuation voltage V with dimensional actuator displace-
ment amplitude w(l/2).
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4. Results and Discussion

The actuator shown in Fig. [[|with water as viscous
media and parameters given in Table [1]is treated as
the reference case. The actuator model (Eq. is
numerically solved to analyze the static and dynamic
behavior of the actuator characterized in terms of
pull-in time and displacement. Based on our pre-
liminary work, we found that the first five symmetric
modes (2M —1 € {1,3,5,7,9}) of the beam electrode
is acceptable to study the mechanics of the actuator
(see Appendix). Hence for the subsequent analysis,
we chose the total number of mode shapes M = 5.

4.1. Static behavior

The response of the actuator to a DC actuation
voltage V in three viscous media is characterized
through static pull-in analysis (Fig. [2). For all
the three media, the static equilibrium curves plot-
ted with normalized DC actuation voltages (V /Vj;)
overlap with one another, highlighting the absence
of viscous effects (Fig. [2p). Here, the DC actua-
tion voltages (V) for a given media are normalized
with corresponding pull-in voltages (V,;). For actu-
ation voltages below the static pull-in, that is along
the lower branch, the actuator operates in a stable
manner with a maximum displacement sensitivity of
0.46, 1.51, and 6.44 pym/V in air, methanol, and wa-
ter media, respectively. However, beyond the pull-in
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voltage, the actuator quickly snaps into the station-
ary electrode due to the dominance of the nonlinear
electrostatic force. For all the three media, the nondi-
mensional actuator position W (1/2) at the onset of
the pull-in instability is 0.46.

4.2. Dynamic behavior

The dynamic response of the actuator in three vis-
cous media is characterized in terms of nondimen-
sional pull-in times 7},; and nondimensional actuator
amplitude W(1/2). Here, the inertial, viscous, and
contact force effects are considered as they are known
to affect the dynamic response of the actuator[27].

The effect of media properties on the actuator pull-
in time is determined by supplying the actuator with
a step voltage input V, where the step voltage ampli-
tude V is chosen to hold the relation V' > V,,; (Figs.
and . Note that the amplitudes of the step voltage
input V for the media are chosen such that the gen-
erated electrostatic forces are equal for W = 0. The
high relative permittivity of water (ef,,=80) ampli-
fies the generated force, resulting in pull-in to occur
at lower actuation voltage (V=2 V) compared to air
(V=18 V); while, the high dynamic viscosity of wa-
ter (us,,=8.9x107% Pa-s) increases the pull-in time
(Fig. ) During the initial phase of the pull-in, an
actuator will have higher speed in water compared
to air; however, during the later phase, the actuator
will have a lower speed. This can be explained as

follows: the initial higher speed is due to the higher
electrostatic force —due to higher relative permittiv-
ity ey—and the later lower speed is due to the higher
viscous friction —due to higher dynamic viscosity pf
(Fig. [3 b-d). Moreover, as the actuator accelerates
from W = 0 position, it gains speed, and this in-
crease in speed exacerbates the viscous damping ef-
fect, resulting in lower speeds during the later phase
of the pull-in. A plot of beam electrode deflection
profiles at different instances in time show that after
the beam electrode pulls into the stationary electrode
(T = Tp;), the beam electrode zips into the station-
ary electrode (T' = 3T);/2), increasing the length of
contact.

The actuator response near the vicinity of the pull-
in instability is sensitive to the actuation voltage V.
For instance, the actuator in water media with a pull-
in voltage amplitude V'=1.59 V exhibits a wide range
of pull-in times —a 25% increase in actuation voltage
amplitude V (from 1.60 to 2.00 V) can lower the pull-
in time to a third (Fig. Mh). Fig. highlights
the effect of viscous damping by the media on the
actuator. For a fixed €; and fixed actuation voltage
amplitude V', an increase in viscous damping modeled
by nondimensional damping term c¢ delays the pull-
in time T by up to 16 times. Similarly, for a fixed
actuation voltage amplitude V and damping term c,
an increase in relative permittivity of the media e
can cause the pull-in instability to occur and reduce
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the pull-in time T" by up to 3 times (Fig. )

The actuator displacement traces W (1/2) for dif-
ferent sinusoidal voltage waveforms V' in water me-
dia captures the nonlinearities in the actuator (Figs.
and @ The actuator dynamics can be approx-
imated to linear for lower actuation voltage ampli-
tudes V < 1.5 V and/or high actuation frequencies
f > 200 Hz. Applying a sinusoidal voltage waveform
with frequency f = 100 Hz and higher voltage am-
plitudes (V' > 1.5 V) excites the higher harmonics
fn (Y n € Zsg) in the actuator, as computed by ap-
plying the discrete Fourier transform (DFT) to the
simulated displacement trace W (1/2) (Fig. [5)). Note
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Figure 6: Actuator dynamic response to a sinusoidal voltage
input V in water media. (a) Displacement trace of the actuator
W (1/2) for different actuation voltage frequencies f and volt-
age amplitude V =1.6 V. Note that the time period T, refers
to the voltage waveform, where T, = 1/(¢pf). (b) A DFT of
the actuator displacement trace W (1/2) simulated for different
actuation voltage frequencies f and voltage amplitude V =1.6
V. The nondimensional DFT amplitude a,, is scaled with the
actuator amplitude W (1/2) at the first harmonic frequency f1.

that the n*® order harmonic frequency f, = nf and
the nondimensional DFT amplitude

P-1 _j2mnp
RIS Wy, e
" max W (1/2),¢

(6)

As can be seen in Eq. [6] a, is scaled with the actuator
amplitude, max W (1/2) for voltage frequency f Hz.
Here, j = v/—1 and P is the number of sample points
used in displacement measurement W(1/2). To pre-
vent aliasing, a minimum of 1125 sample points were
chosen for the computation. The presence of higher
harmonics resulted in a skewed sinusoidal response
instead of a pure sinusoidal response —an indication



of a nonlinear system. On the contrary, for the lower
voltage amplitudes (V < 1.5 V), the higher harmon-
ics fn, (V n € N) vanish with the appearance of a
very low amplitude (< 0.2a;) for second harmonic
response fo —the actuator can be approximated to
be a linear system. For high V and high f, the actua-
tor may pull into the stationary electrode which may
result in not releasing the beam electrode; an exam-
ple scenario is for V=1.6 V and f=100 Hz (Fig. [6).
For very high f operation (f > 500 Hz), the beam
electrode does not pull-in to the stationary electrode,
and a significant phase lag (6 = 39°) and displace-
ment drift (A=0.092 W) over time is observed.

5. Conclusion

In this paper, we analyzed the actuator response
in a clamped-clamped configuration immersed in vis-
cous dielectric media. We modeled the actuator
as a continuous system by deriving a reduced-order
model, and solving it by employing the Galerkin
method and linear undamped mode shapes for a
clamped-clamped beam. The model is utilized to
study the actuator dynamics over a broad range,
three orders of magnitude of viscosity and two orders
of magnitude of relative permittivity of the media.
We make three important observations: (1) the actu-
ator at lower actuation voltage amplitudes V < 1.5 V
and/or higher actuation frequencies f > 200 Hz can
be approximated to be a linear system; (2) the high
relative permittivity of a media amplifies the gener-
ated force, resulting in pull-in to occur at lower actu-
ation voltage amplitudes, and the high dynamic vis-
cosity of the media increases the pull-in time; and (3)
at very high actuation frequencies (f > 500 Hz), the
beam electrode does not pull-in into the stationary
electrode, and the actuator experiences a significant
phase lag (¢ = 39°) and displacement drift (A=0.092
W) over time.

6. Appendix

The model (Eq. is validated for the static and
dynamic performance of the actuator by benchmark-
ing against the data presented in Ref. [9]. The actu-
ator shown in Fig. [I| with parameters given in Ref.

[9], that is, I = 610 pm, b = 40 pm, h = 2.1 pm,
d = 2.3 pm, c=260, ey=1, and N=-3.7 pN is treated
as the reference case. Three different cases where
the total number of mode shapes M € {3,4,5} are
studied and compared with data obtained from Ref.
[O) (Fig. [7). Our study shows that employing the
first five symmetric modes (¢1, @3, @5, ¢7, Pg) in the
model (Eq. will be sufficient to predict actuator
displacement and pull-in time (Fig. [7b). A similar
study has been conducted by Ref. [24] and showed
that using the first five symmetric modes will result
in only 10% error in contact length predictions of the
beam electrode with the stationary electrode.
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Figure 7: Our model validation. (a) Static equilibrium curves
for the actuator computed for M=3 (solid), M=4 (dashed),
M=5 (dotted) modes and compared with results from Ref. [9]
(Younis 2003, circles). Note the Young’s modulus E of the
beam used in this static analysis is 149 GPa. (b) Dynamic
response of the actuator for a step input voltage amplitude
V' computed for M=3 (solid), M=4 (dashed), M=5 (dotted)
modes and compared with results from Ref. [9] (Younis 2003,
circles). Note the Young’s modulus E of the beam used in this
dynamic analysis is 166 GPa.
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