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Abstract

Protons undergo many small angle deflections when traversing a medium, such as a
patient. This effect, known as multiple Coulomb scattering (MCS), leads to degraded image
resolution in proton radiography and computed tomography (CT) and to lateral spreading
of the dose distribution in proton therapy. To optimally account for MCS in proton imaging,
the most likely path (MLP) of a proton is estimated based on its position and propagation
angle measured in front of and behind the object. In this work, we propose a functional
which quantifies the likelihood of a proton trajectory and study how it can be used to model
proton trajectories in a homogeneous medium. We focus on two aspects: first, we present an
analytical method to quickly generate proton trajectories in a homogeneous medium based on
the likelihood functional and validate it through Monte Carlo simulations. It could be used
for fast generation of proton CT images without a full Monte Carlo simulation, or potentially
to complement the components in a treatment planning Monte Carlo which simulate MCS.
Second, by maximising the likelihood functional, we derive an expression for the MLP which
is equivalent to the conventional ones reported in the literature yet computationally more
convenient. Moreover, we show that the MLP is strictly a polynomial function if the protons’
energy loss in the medium is approximated as a polynomial and that the orders of both are
linked. We validate our MLP through Monte Carlo simulations and compare proton CT
images reconstructed with our expression and with the conventional one. We find that
an MLP polynomial of orders larger than five do not lead to increased spatial resolution
compared to lower order expressions.
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1. INTRODUCTION

1 INTRODUCTION

Protons in the therapeutic energy range (< 300MeV) undergo a large number of small angle
deflections when traversing a medium due to multiple Coulomb scattering (MCS) (Gottschalk
et al., 1993). In proton therapy, this leads to a successive lateral spreading of a pencil beam as
it penetrates the patient tissue and its impact on the dose distribution needs to be accurately
modelled by treatment planning systems. In proton radiography and computed tomography
(CT), MCS is responsible for the relatively low spatial resolution compared to X-ray imaging.
In these imaging techniques, protons traverse a patient at sufficiently high energy to be cap-
tured on the downstream side by a suitable detector device (Johnson, 2018; Parodi, 2014). The
most sophisticated systems measure each individual proton’s position and propagation angle in
front of and behind the patient with tracking detectors (Schulte et al., 2004; Scaringella et al.,
2014; Civinini et al., 2013; Penfold et al., 2011; Taylor et al., 2016). Using this information as
constraint, the most likely path (MLP) which the proton has followed across the medium can
be estimated (Williams, 2004; Schulte et al., 2008; Li et al., 2006; Collins-Fekete et al., 2015;
Collins-Fekete et al., 2016). The tomographic reconstruction is then performed using the MLP
(Rit et al., 2013; Poludniowski et al., 2014; Penfold et al., 2015) and the uncertainty of the MLP
estimation compared to the real trajectory is what limits the spatial resolution of the images.
The conventional MLP estimation methods estimate the most likely transverse position through
which a proton has passed in a certain depth and construct the MLP as a concatenation of these
transverse positions by repeating the estimation in a series of depths across the medium. They
exploit the fact that all MCS events are independent of each other and that the angular disper-
sion due to MCS is approximately Gaussian. The cited methods have been thoroughly validated
with Monte Carlo simulations and one variant or another of them are commonly used in proton
CT reconstruction. However, they do not provide an explicit way to quantify the likelihood of
a given trajectory. This idea is elaborated from a mathematical point of view by Erdelyi (2009)
who discusses the concept of random fields in this context. He describes a theoretical framework
to derive an MLP estimate from an action functional, however provides few explicit calculations
with a direct practical application.

In this work, we introduce a likelihood functional which quantifies the likelihood of a proton
trajectory based on its weighted curvature integrated along depth and investigate how it can be
used to model proton trajectories in a homogeneous medium. In particular, the likelihood func-
tional allows us to achieve two things: first, to analytically generate random proton trajectories
as they would be produced by a Monte Carlo simulation in a homogeneous medium, and second,
to derive an expression for the MLP by maximising the likelihood functional, as suggested by
Erdelyi (2009), which is equivalent to the conventional expressions. The functional disregards
nuclear interactions and only takes into account MCS within the Gaussian approximation. Gen-
erating proton trajectories analytically would be of interest for quickly producing proton CT
projections without running a full Monte Carlo simulation, e.g. for testing a reconstruction al-
gorithm, or to partially replace the proton transport in a Monte Carlo code, e.g. in the context
of treatment planning. We show that the MLP automatically becomes a polynomial as long as
the protons’ energy loss is approximated by a polynomial (which is common practice in proton
CT reconstruction) and thereby create a link to the works of Li et al. (2006) and Collins-Fekete
et al. (2015). We validate our MLP expression with Monte Carlo generated data and test it
in the proton CT reconstruction of a standard image quality phantom. The advantage of our
expression compared to the conventional ones is that it requires fewer floating point operations
to evaluate while providing the flexibility to select the desired degree of estimation accuracy by
choosing the polynomial order.

2



2. MATERIAL AND METHODS

2 MATERIAL AND METHODS

2.1 Framework of the formalism

The purpose of this work is to analytically model proton trajectories in homogeneous media.
When traversing such a medium, protons undergo a large number of small angle deviations due
to MCS. The likelihood of each such deflection depends on the radiation lengthX0 of the material
and on the proton energy E. We measure the depth coordinate u along the axis obtained by
extending the proton’s entrance vector across the object and denote with t the transverse position
of a proton, i.e. projected onto a plane perpendicular to the u-axis. We define as trajectory the
position t(u) as a function of u. The propagation angle θ of a proton projected onto this plane
is given relative to the u-axis, so that θ = 0 means parallel to the u-axis. The three-dimensional
trajectory is given by two transverse positions tx and ty in the two planes perpendicular to the
u-axis.

We do not attempt to describe heterogeneities transverse to the beam path. Furthermore,
the developed formalism accounts for multiple Coulomb scattering (MCS), but not for discrete
nuclear scattering events. The main context within which we performed this investigation is
proton computed tomography where nuclear events are usually filtered out and in any case not
accounted for by most tomographic reconstruction algorithms.

2.2 Likelihood functional of proton trajectories

Within the Gaussian approximation of MCS, the likelihood of a change in propagation angle
∆θ = θ2 − θ1 over a depth interval ∆u is given by

L(∆θ) = exp

(
−(∆θ/∆u)2

2T
∆u

)
= exp

(
− (∆θ)2

2T∆u

)
, (1)

where T is the scattering power which depends on the proton’s energy and the radiation length
of the medium (Lynch et al., 1991; Gottschalk et al., 1993). The likelihood L[t] of a trajectory t
can be thought of as the joint probability of a series of many deflections ∆θi which have caused
the proton to follow t(u),

L[t] =
∏
i

L(∆θi) =
∏
i

exp

(
−(∆θi/∆u)2

2Ti
∆u

)
= exp

(
−1

2

∑
i

(∆θi/∆u)2

Ti
∆u

)
. (2)

Because the propagation angle θ relative to the beam axis is small, it can be taken as the
derivative to the trajectory with respect to depth, θ = ∂t/∂u. Making the steps i in equation 2
above infinitesimally small and considering infinitely many of them, the sum becomes an integral
and the likelihood is given as

L[t] = exp

(
−1

2

∫ uout

0

(∂2t(u)/∂u2)2

T (u)
du

)
= exp

(
−1

2

∫ uout

0

(t′′(u))2

T (u)
du

)
, (3)

where we have replaced the finite difference ∆θi/∆u = ((∂t/∂u)i − (∂t/∂u)i−1)/∆u by the
second derivative and used t′′ as short hand notation. Without loss of generality, we chose to
place the beginning of the trajectory at u = 0; uout denotes the depth at which the proton exits
the volume. According to equation 3, the likelihood of a trajectory is given by its integrated
curvature weighted by the depth-dependent scattering power T (u) to account for the proton’s
energy and the material’s radiation length.

We parametrise the scattering power as T (u) = E2
0/β

2(u)p2(u)X0(u), with E0 = 13.6MeV/c
a constant, β = v/c the proton’s velocity relative to the speed of light, p the proton’s momen-
tum, and X0 the radiation length. This is an approximate form of the expression proposed by
Highland (1975). More accurately, it would contain an additional logarithmic term which is
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Figure 1: Depth dependent inverse scattering power 1/T (u) = β2(u)p2(u)X0(u)/E2
0 for 200MeV

protons in a homogeneous water phantom. Coloured curves are polynomial fits.

not straight forward to incorporate in the integral expression of the likelihood functional (equa-
tion 3). Some discussion on this can be found in Erdelyi (2009). For the scope of this work,
we restrict ourselves to the approximate expression and leave it to future contributions to ex-
plore other parametrisations of T (u). Furthermore, we only consider homogeneous media in this
work, although parametrising T (u) appropriately would allow modelling longitudinal material
heterogeneities, i.e. along the u-axis (Collins-Fekete et al., 2017).

2.3 Analytical generation of proton trajectories as polynomials

MCS is the most prominent physics process in a Monte Carlo simulation of protons in the
therapeutic range (< 300MeV) along with electromagnetic energy loss. To generate a proton
trajectory, a Monte Carlo code has to perform many steps, each time sampling the angular
deviation the proton suffers. We therefore investigated how the likelihood function (equation 3)
could instead be used to analytically generate random proton trajectories as a whole. Because
the likelihood function only models MCS, such an analytical generation does not account for
discrete nuclear scattering events. We consider mono energetic protons propagating through a
box of water. For simplicity, we will first assume that all protons have the same initial position
and angle, although this is not a requirement.

We approximate proton trajectories by polynomial functions,

t(u) =

N∑
n=0

anu
n = tin + θinu+

N∑
n=2

anu
n, (4)

so that a trajectory t is represented by an N + 1 coefficient vector ~a = (a0, a1, . . . aN )T . On the
right hand side, we have used the fact that t(u = uin) = tin = a0 and t′(u = uin) = θin = a1.
Within the framework of polynomial functions, sampling trajectories is equivalent to sampling
coefficient vectors ~a. The second derivative t′′ in the likelihood function (equation 3) can be
calculated explicitly and is

t′′(u) =

N∑
n=2

n(n− 1)anu
n−2. (5)

We further expand the function 1/T (u) into a polynomial,

1

T (u)
≈

L∑
l=0

clu
l. (6)
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It can be seen from figure 1 that already L = 1 gives a good approximation. Using this polynomial
expression, one obtains for the weighted trajectory curvature

(t′′(u))2

T (u)
=

N,N,L∑
n=2,n′=2,l=0

cln(n− 1)n′(n′ − 1)anan′ul+n+n
′−4. (7)

Inserting this into the likelihood function (equation 3) and integrating the polynomial analytically
yields

Lpoly[t] = exp

−1

2

N,N∑
n=2,n′=2

anan′Φnn′

 (8)

with

Φnn′ =

L∑
l=0

cln(n− 1)n′(n′ − 1)

l + n+ n′ − 3
ul+n+n

′−4
out . (9)

In other words, the likelihood distribution of trajectories is approximated by an (N-1)-
dimensional Gaussian distribution of the coefficient vectors ~a. In practice, to generate a random
sample of coefficients ~a, the following procedure is convenient: first diagonalise Φ (which is al-
ways possible because the matrix is symmetric and positive definite) to obtain Ψ = QTΦQ,
where the columns of Q are the unit length eigenvectors of Φ and QTQ = 1. Defining W =
diag(1/

√
λ1, 1/

√
λ2, ...1/

√
λN ), where {λi, i = 1, . . . N} are the eigenvalues of Φ, one hasWQTΦQW =

1. One can therefore sample vectors ~r from an (N-1)-dimensional normal distribution (unity vari-
ance) and obtain the coefficient vectors ~a by transformation as ~a = QW~r.

We note that the covariance matrix of the coefficients an is the inverse of the matrix Φ,
i.e. 〈anan′〉 = Φ−1nn′ . This is linked to the variation of the transverse position t(u) in some
depth u among an ensemble of analytically generated trajectories. Assuming for simplicity a
pin-like beam impinging perpendicularly (θin = 0) onto a box of water at tin = 0, one has
t(u) =

∑N
n=2 anu

n. The average transverse position over many trajectory is zero, 〈t(u)〉 = 0, so
that the variation of t(u) is

〈t2(u)〉 = 〈

(
N∑
n=2

anu
n

)(
N∑
n=2

anu
n

)
〉 =

N,N∑
n=2,n′=2

〈anan′〉un+n′
=

N,N∑
n=2,n′=2

Φ−1nn′u
n+n′

. (10)

It is important to recall that the previously derived expressions correspond to only one of
the two scattering planes transverse to the beam axis. A three-dimensional proton trajectory is
characterised by a pair of coefficient vectors ~ax and ~ay, one for each scattering plane and each
randomly sampled from the distribution described above.

By construction, the first two coefficients represent the protons’ entry position and angle:
t(u = 0) = tin = a0 and t′(u) = θin = a1. It is worth noting that the likelihood does not depend
on them (summation starts at n = 2 in equation 8) because in a homogeneous medium, the
position where a proton enters the volume and its direction does not impact the likelihood of
MCS. On the other hand, the coefficients a0 and a1 can be drawn from some distribution to
generate the desired beam shape. For example, setting ax,1 = ay,1 = 0 and drawing ax,0 and
ay,0 from Gaussian distributions G(ax,0) = exp(−(ax,0 − tcentre,x)2/2σ2x)/

√
2πσx and G(ay,0) =

exp(−(ay,0 − tcentre,y)2/2σ2y)/
√

2πσy, with standard deviation σx = σy, produces a symmetric
parallel Gaussian pencil beam of width σ2beam = σ2x + σ2y centred at (tcentre,x, tcentre,y).
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2.4 Derivation of the most likely path

In the context of proton CT, an important concept is the most likely path, i.e. the trajectory
which a proton registered by the proton CT scanner has most likely followed through the imaged
object. The most sophisticated imaging systems measure positions and propagation angles of
individual protons in front of and behind the object (Johnson, 2018). We denote these as
(tin, θin) and (tout, θout), respectively. In the conventional mathematical framework (Williams,
2004; Schulte et al., 2008), the MLP is constructed by estimating the most likely position tMLP

independently at several depths u, given the measured entry and exit data. The trajectory which
connects the so-obtained series of points tMLP(u) is the MLP. In the presented work, the MLP is
obtained by maximising the likelihood functional L (equation 3), or by minimising L = − logL,
using the Euler-Lagrange formalism commonly used in physics, e.g. to derive equations of motion.
Observing that L only depends on t′′, but not on t or t′, we find for the infinitesimal variation
of the Lagrangian (after two partial integrations)

δL =

∫ uout

0

d2

du2

(
∂F

∂t′′

)
δtdu+

[
δt′
∂F

∂t′′

]uout
0

−
[
δt

d

du

∂F

∂t′′

]uout
0

∀δt ∈ C2, (11)

where δt and δt′ is an arbitrary (continuous and differentiable) test function and its derivative
with respect to u, respectively. We have further defined F = (t′′)2/2T for the sake of simpler
notation. Since the proton’s position and angle at u = 0 and u = uout are known, δt and δt′

vanish there, and the last two terms in equation 11 above are zero. The minimisation requirement
that δL be equal to zero for any test function δt implies

d2

du2
∂F

∂t′′

∣∣∣∣
t′′=t′′MLP

= 0 ⇔ d

du

∂F

∂t′′

∣∣∣∣
t′′=t′′MLP

=
d

du

t′′MLP

T
= c1 ⇔

t′′MLP

T
= c1u+ c0, (12)

where c0 and c1 are integration constants. An expression for the MLP can be derived from the
right hand side expression in equation 12 above by integration,

θMLP(u) = t′MLP(u) = θin + c0

∫ u

0
dv T (v) + c1

∫ u

0
dv T (v)v (13)

tMLP(u) = tin + θinu+ c0

∫ u

0
dv

∫ v

0
dwT (w) + c1

∫ u

0
dv

∫ v

0
dwT (w)w, (14)

where v and w are integration variables. The constants c0 and c1 can be determined by imposing
the boundary conditions θMLP(u = uout) = θout and tMLP(u = uout) = tout. One finds

c0 =
1

AD −BC
(−B (tout − tin − θinuout) +D (θout − θin))

c1 =
1

AD −BC
(A (tout − tin − θinuout)− C (θout − θin)) ,

(15)

with

A =

∫ uout

0
dv T (v); C =

∫ uout

0
dv

∫ v

0
dwT (w);

B =

∫ uout

0
dv T (v)v; D =

∫ uout

0
dv

∫ v

0
dwT (w)w (16)

It is interesting to note that starting from our MLP formulæ (equations 13 and 14), the
conventional expressions reported by Williams (2004) and Schulte et al. (2008) can be derived.
We refer to appendix A for more details.
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Figure 2: Depth dependent scattering power T (u) = E2
0/β

2(u)p2(u)X0(u) for 200MeV (upper)
and 180MeV (lower) protons. The dashed vertical line on the right side indicates the proton
range at the respective energy.

2.5 Approximation: Describing proton energy loss by a polynomial function

In list mode proton CT reconstruction, an MLP needs to be estimated for every single recorded
proton (Poludniowski et al., 2015; Johnson, 2018). In its conventional representation (equa-
tion 23), several multiplications and additions of several 2 × 2 matrices need to be performed
at every depth u on the reconstruction grid. The Σ and R matrices themselves can be precom-
puted and stored. The computational aspect was what motivated other authors to develop and
implement an empirical cubic polynomial MLP (Li et al., 2006; Collins-Fekete et al., 2015). The
advantage is that relatively fewer multiplication operations need to be performed in that case.

In the following, we show how this can be done rigorously given that the term β2p2 in T (u)
is often approximated as a polynomial in terms of depth u (Williams, 2004; Schulte et al., 2008).
The polynomial coefficients are easily obtained by a fit to T (u) extracted from a Monte Carlo
simulation of protons impinging onto a box of water. Following this strategy, we write T (u)
approximately as

T (u) ≈
M∑
m=0

bmu
m. (17)

An example of this approximation for different orders M is shown in figure 2 for 180MeV and
200MeV protons in water. The fit was performed in a depth range from 0 cm to 20 cm. It is
worth observing that the goodness of the fit depends on the depth range of interest relative to
the proton range because T (u) diverges too much at the end for the polynomial to represent
it properly. For example, for an object of 20 cm water equivalent thickness, the discrepancy
between polynomial and true scattering power is more important for 180MeV protons (lower
panel) than for 200MeV protons (upper panel), especially beyond 15 cm.

Inserting equation 17 into equation 14, the integrals can be solved analytically and the MLP
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becomes a pure polynomial expression of order M + 3:

tMLP = tin + θinu+ c0

M∑
m=0

bm
(m+ 1)(m+ 2)

um+2 + c1

M∑
m=0

bm
(m+ 2)(m+ 3)

um+3. (18)

The constant pre-factors c0 and c1 are calculated according to equation 15 using the following
polynomial expressions obtained by inserting equation 17 into equation 16:

A =
M∑
m=0

bm
m+ 1

um+1
out ; C =

M∑
m=0

bm
(m+ 1)(m+ 2)

um+2
out ;

B =
M∑
m=0

bm
m+ 2

um+2
out ; D =

M∑
m=0

bm
(m+ 2)(m+ 3)

um+3
out . (19)

Determining the MLP thus consists in calculating the coefficients of a polynomial of order
M + 3 and evaluating it in all depths across the object.

2.6 Special case: assuming constant proton energy

In a homogeneous medium, the scattering power T generally increases with depth because the
protons continuously slow down. Neglecting the energy loss, one could replace T (u) by a constant.
In terms of the polynomial expression for T (u) introduced in section 2.5, only one coefficient b0
is non-zero then and

tMLP = tin + θinu+ c0
b0
2
u2 + c1

b0
6
u3 (20)

is of strictly cubic order. Such an expression has also been derived by Erdelyi (2009) and used by
Li et al. (2006). Clearly, this simplified MLP estimate still matches the measured proton position
and propagation angle in front of the object because tMLP(u = 0) = tin and θMLP(u = 0) =
t′MLP(u = 0) = θin. By construction of the pre-factors c0 and c1 (see section 2.4), the same holds
true on the exit side, i.e. tMLP(u = uout) = tout and θMLP(u = uout) = t′MLP(u = uout) = θout.

2.7 Computational efficiency of MLP estimation

How computationally intensive the polynomial expression in equation 18 is to evaluate depends
on the number of arithmetic operations needed to calculate the most likely transverse position
tMLP in every depth u required by a reconstruction algorithm. In this light, it is convenient to
combine common powers in the two sums in equation 18 into a single sum. After an index shift
(n = m+ 3), one obtains

tMLP = tin + θinu+ c0
b0
2
u2 +

M−1∑
m=0

c0bm+1 + c1bm
(m+ 2)(m+ 3)

um+3 + c1
bM

(M + 2)(M + 3)
uM+3

=

N=M+3∑
n=0

dnu
n = d0 + u (d1 + u (d2 + . . . u (dN−1 + dNu) . . . )) , (21)

with

d0 = tin; d1 = θin; d2 =
c0b0

2

dn,(3≤n≤M+2) =
c0bn−2 + c1bn−3

n(n− 1)
; dN=M+3 = c1

bM
(M + 2)(M + 3)

. (22)
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The polynomial coefficients bm can be precomputed once before the reconstruction and the
prefactors c0 and c1 (equation 15) need to be calculated only once per proton. Consequently,
also the coefficients dn need to be calculated only once per proton. Evaluating the expanded
polynomial on the right hand side of equation 21 above amounts to M + 3 multiplications and
M + 3 additions, i.e. 2M + 6 floating point operations per proton and depth u. For example,
only 6 or 8 floating point operations are required per depth u if the MLP is approximated
by a polynomial of order M = 0 or M = 1, respectively. On the other hand, evaluating the
conventional MLP expression of Schulte et al. (2008) (equation 23) for M = 5 results in at least
47 floating point operations (McAllister, 2009), even if sparsity of the matrices R0 and R1 is
exploited.

2.8 Verification with Monte Carlo simulations

We performed Monte Carlo simulations to verify the developed analytical methods presented in
this paper using the Geant4/Gate toolkit (Agostinelli et al., 2003; Sarrut et al., 2014). A pin-like
beam of mono energetic protons was simulated impinging onto a homogeneous box of water of
50 × 50 cm2 lateral dimension and 20 cm depth. The maximum step size was set to 1mm and
each proton’s three dimensional position was stored at every step. The emstandard physics list
was used to consider electromagnetic interactions only and disregard nuclear scattering as this
is not included in the analytical models.

We first quantified how accurate it is in general to approximate a proton trajectory resulting
from MCS by a polynomial function of depth. To this end, we fitted polynomials of different or-
ders to each simulated proton trajectory and determined the RMSE between the so approximated
transverse position and the true one.

Furthermore, we quantified how closely the analytically generated trajectories would resemble
those simulated with Monte Carlo by two means: first, we compared the distribution of transverse
proton positions at some given depth and the beam spread as a function of depth. Second, we
fitted polynomials to all simulated trajectories (see above) and compared the distribution of the
fit coefficients with the analytically generated coefficient distributions (see section 2.3).

To compare the accuracy of our alternative MLP formulation with the conventional one
(Schulte et al., 2008) for different polynomial degrees (see section 2.5), an MLP was calculated
for each proton history based on the entry and exit position and angle. The root mean square
error (RMSE) between the MLP estimate and the true transverse position as a function of depth
was calculated over an ensemble of 104 protons.

2.9 Tomographic reconstruction using the alternative MLP formulæ

We reconstructed proton CT images of the CTP528 high resolution module of the Catphan
phantom (The Phantom Laboratory, Salem, NY) to test our alternative MLP formulæ presented
in this work. Input data were simulated with Geant4/Gate using a mono energetic 200MeV
point source at 100 cm distance from iso-centre. Each proton’s position and propagation angle
were recorded in two tracker planes upstream and downstream from the phantom, respectively.
The downstream tracker also recorded the proton’s residual energy as would a calorimeter in
a real proton CT scanner. The QGSP-BIC physics list was used and 3-sigma cuts applied to
the exit energy and angular distribution to filter out protons which have undergone nuclear
scattering (Schulte et al., 2005) to reflect how experimental data are typically processed. The
source was rotated around the iso centre in 0.5 degree steps leading to 720 projections. A total
of 2.88×108 primary protons were simulated corresponding to 225 protons ·mm−2 · projection−1.
Tomographic images with 0.1 × 0.1mm2 pixel size were reconstructed using a distance-driven
binning Feldkamp-Davis-Kress algorithm (Rit et al., 2013), where the MLP intervenes during
the binning step.
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Figure 3: Left: Proton trajectories simulated with Monte Carlo (dots) and order 6 polynomial
fits to each of them (solid lines). Right: RMSE averaged over depth and over the ensemble of
105 proton trajectories.

3 RESULTS

3.1 Analytical sampling of proton trajectories

Figure 3 left shows an example of 20 proton trajectories simulated at 200MeV in water as
described in section 2.8. The dots represent the transverse positions registered by the Monte
Carlo simulation. The solid lines are polynomial fits, in this case of order N = 6. The lowest
two coefficients are fixed to a0 = tin = 0 and a1 = θin = 0 in accordance with the proton
source geometry. The right panel shows the average RMSE between the simulated trajectories
and the polynomial fits (see section 2.8). Empirically, we found that the RMSE values vary
approximately according to a Poisson distribution among the ensemble of 105 trajectories so
that the uncertainties to be associated with the data points have the same magnitude as the
RMSE values themselves.

The left panels in figure 4 show sets of 50 example trajectories analytically generated using
the procedure detailed in section 2.3 with polynomial orders N = 3 and N = 6, respectively.
All had the same initial position tin = 0 and angle θin = 0. The colour coding represents each
trajectory’s likelihood. The right panel in figure 4 is essentially a cross-section through the left
plot at depth u = 10 cm where each green dot corresponds to one trajectory and its likelihood
is represented along the y-axis. The red histogram was obtained by binning the transverse
positions of the trajectories. Note that for better visibility, only 104 trajectories are shown as
dots while position information from 105 trajectories were used to generate the histograms. The
blue histogram was obtained based on Monte Carlo simulated proton trajectories such as the
ones shown in figure 3 left. The widths of the dashed black Gaussian distributions are calculated
analytically according to equation 25.

Figure 5 shows polynomial coefficients obtained from fits to Monte Carlo simulated proton
trajectories (see section 2.8) and from analytical sampling (see section 2.3). A polynomial tra-
jectory was fitted to each simulated trajectory as shown in figure 3 yielding a coefficient vector
~a. Each dot in the scatter plots corresponds to a pair of components of one vector ~a, i.e., of
one simulated trajectory. The histograms in the upper row show marginalised distributions of
one coefficient only. It is interesting to observe that these latter are appreciably broader for
the Monte Carlo data than for the analytically generated polynomials, i.e. 〈a2n〉 is larger, while
the spatial distributions shown in figure 4 match well. The reason is that the coefficients from
Monte Carlo are also more anti-correlated (〈anan′〉 < 0) than the analytical ones which lowers
the spatial variation 〈t2(u)〉 (see equation 10).
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3. RESULTS

Figure 4: Left: Analytically generated proton trajectories (section 2.3) using a polynomial order
N = 3 (upper row) and N = 6 (lower row). The entry energy was assumed to be 200MeV.
Right: distribution of transverse positions at 10 cm depth obtained from analytical trajectories
and those simulated with Monte Carlo under identical conditions. Each green dot corresponds
to one trajectory in the left panel.
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Figure 5: Pair-wise distribution of polynomial coefficients and marginalised distributions (upper
row). Blue dots were obtained by fitting polynomials of order N = 6 to Monte Carlo simulated
trajectories (see figure 3). Red dots were generated analytically (see section 2.3) using the same
polynomial degree.
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Figure 6: RMSE between simulated proton trajectories and different MLP estimates as a
function of depth in 20 cm water phantom for 180MeV (left) and 200MeV (right) protons. For
the yellow, grey, and red curves, we used our polynomial expression (equation 21) and for the
blue dash-dotted one, we used the expression from Schulte et al. (2008) integrating the scattering
power T (u) numerically without any polynomial approximation.

3.2 MLP estimation in proton CT reconstruction

Figure 6 shows the RMSE between proton trajectories simulated with Monte Carlo and several
MLP estimates: on one hand using a polynomial approximation to the scattering power T (u)
(equation 17) and consequently the polynomial expression for the MLP (equation 18) for different
ordersM ; and on the other hand using the general MLP expression (equation 14) and integrating
the T (u) function numerically. The boundary conditions tin, tout, θin, and θout, were obtained
from the Monte Carlo data. A total of 105 trajectories were simulated and for each of them
the MLP was estimated. For M = 5 (not shown), the RMSE is indistinguishable from the one
obtained when integrating T (u) numerically. Likewise, the RMSE obtained with the conventional
MLP (not shown) is identical to the results for M = 5. For 200MeV protons (right panel),
already M = 1 yields a RMSE as good as for higher orders. For 180MeV (left panel) on the
other hand, the RMSE remains slightly higher even forM = 1 orM = 2 because the polynomial
approximation of T (u) is less accurate in this case (see figure 2).

3.3 Reconstructed proton CT images

Figure 7 shows reconstruction results of the Catphan phantom obtained with different MLP
estimates at 200MeV and 180MeV. On one hand, we used the expression given in equation 21
and approximated the scattering power T (u) function with polynomials of varying degrees (see
figure 2). On the other hand, we estimated the MLP through the expression from Schulte et
al. (2008) approximating T (u) by a fifth order polynomial. The root mean squared difference
between the proton CT images using our polynomial MLP estimate and Schulte’s is about 3.2%
for N = 5 and 4.5 % for N = 0, compared to the noise level of the images of about 3.3% (upper
row). A faint ring-shaped structure is visible in the difference image between N = 5 and N = 0
(upper right) where the inserts are located, which is to be attributed to the slightly more blurry
line patterns in the latter case. This is coherent with the detail images in the centre row which
are a bit more blurred for N = 0 than when using higher order approximations of T (u). At
200MeV (lower row), the line patterns appear almost identical in all cases.

Reconstruction was performed on a MacBook Pro (2017) on a single Intel i7 processor.
MLP estimation took 2.7 s per projection on average (about 68000 protons per projection) using
Schulte’s expression. This amounts to 32min for the 720 projections. Evaluating our polynomial
expression with order 1 took 0.1 s per projection on average, or 72 s for all 720 projections. This
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is essentially negligible compared to the time needed for binning data into projection images,
reconstructing, and reading/writing data. The gain in computation speed is more than what
would be expected by a pure comparison of floating point operations probably because the com-
piler is able to optimize the code more efficiently given the simpler structure of the mathematical
operations (see section 2.7). We underline that similar optimisation may be possible for Schulte’s
expression and the reported computation speeds should serve as indications only.

4 DISCUSSION

The likelihood functional introduced in this work provides a way to generate proton trajectories
in medium as polynomial functions as explained in section 2.3. The medium is required to
be homogeneous in the direction transverse to the beam, but may show heterogeneities along
the beam, as we will discuss further down. Each polynomial proton trajectory is represented
by an N + 1 dimensional coefficient vector, where N is the polynomial order. The first two
coefficients represent the entry positions and angle of the proton. The method is computationally
very efficient because it only requires sampling the coefficient vectors according to a normal
distribution followed by a multiplication with an eigenvector matrix for each coefficient vector.
A limitation of the method is that nuclear interactions are neglected. In this sense, analytically
generated projections correspond to Geant4 Monte Carlo, e.g., with the emstandard physics list,
i.e., electromagnetic interactions only.

One potential application of the trajectory sampling method could be the analytical gen-
eration of proton CT data without running a full Monte Carlo simulation. Projection images
(containing water equivalent thickness) could be obtained by integrating relative stopping power
maps along trajectories by ray tracing methods. The technical effort necessary to implement such
an analytical proton CT simulation as in Gianoli et al. (2019) was beyond the scope of this work.
Another application of the analytical trajectory generation could be in Monte Carlo treatment
planning systems. The most abundant process when transporting a proton through a patient
geometry is MCS. Instead of performing this explicitly by successively deflecting the proton path
by small angles, the overall MCS contribution to the trajectory could be sampled analytically.
Discrete nuclear events would need to be simulated additionally and protons towards their end of
range would potentially need to be transported explicitly. Developing such methods was beyond
the scope of this work, but would deserve further investigation in our opinion.

Figure 4 confirms that the spatial distribution of analytically sampled trajectories resembles
closely the one generated by Monte Carlo. Interestingly, if the polynomial degree N is low, such
as in the upper right panel where N = 3, the generated trajectories are intrinsically constrained
to be relatively smooth and tend to have a high likelihood especially if concentrated around the
central axis of the beam. On the other hand, with N = 6 (lower right panel), the polynomials
have more freedom to generate small scale curvature so that their likelihood is lower on average
and less correlated with the position relative to the beam centre. Furthermore, figure 5 shows
that the distribution of coefficients obtained by fitting polynomials to Monte Carlo trajectories
resembles closely the analytical (N−1)-dimensional Gaussian distributions. The higher order co-
efficients (a5, a6) obtained from Monte Carlo spread to slightly larger values than the analytically
generated ones. We note in this context that the angular distribution due to MCS is actually not
purely Gaussian, but contains a Rutherford-like component leading to higher tails (Scott, 1963)
which are expected to generate more small scale curvature (larger high order coefficients). It is
also known that the MCS models implemented in Geant4 (and other Monte Carlo codes) bear
some uncertainty compared to theoretical MCS models (Makarova et al., 2017). In any case, the
parametrisation of the scattering power T (u) could be refined to optimise the match between
analytical and Monte Carlo trajectories. For this work, we aligned the definition of T (u) with
the ones used in other contributions on MLP estimation.

We derived an expression for the MLP by maximising a likelihood functional using the Euler-
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Figure 7: Upper row: Simulated proton CT image (left) of the Catphan phantom at 180MeV
energy reconstructed using equation 21 and a fifth order polynomial to fit the scattering power
T (u); difference to the proton CT image obtained with the MLP expression from Schulte et al.
(2008) (centre) and using an order M = 0 polynomial to approximate T (u) (right). Center
(180MeV) and lower (200MeV) row: Details of the phantom indicated by red and yellow boxes
in the upper left panel; intensity profiles across the two line patterns averaged along the line
direction.
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Lagrange formalism. The resulting general expression (equation 14) is strictly identical to the
conventional ones in Williams (2004) and Schulte et al. (2008) (equation 23), except for the
logarithmic pre-factor in Schulte’s expression for the integrated scattering power (see section A).
In fact, it would be possible to derive our MLP starting from the conventional equation 23.
When the function T (u) is approximated by a polynomial, which is common practice in proton
CT reconstruction, the MLP expression automatically becomes a polynomial (equation 18). The
order M of the T (u) polynomial determines the order N = M + 3 of the MLP polynomial.
For M = 5, as used by Williams (2004) and Schulte et al. (2008), the proton CT images of
the Catphan phantom reconstructed with our MLP and with the conventional expression are
virtually identical (figure 7). The residual noise is mainly due to the additional pre-factors in
Schulte’s MLP formula which are not present in ours (see equations 25 to 27). There are also
slight numerical differences in the polynomial fits to the 1/β2p2(u) function used in Schulte’s
formalism and to the scattering power T (u) used in our method, respectively.

A cubic MLP, such as used by Li et al. (2006), is equivalent to M = 0 and thus implies
neglecting energy loss in the medium. Inside the medium, the cubic MLP expression yields a less
accurate estimate than an MLP estimate with M > 0 (figure 6). Accordingly, the reconstructed
Catphan images have a lower spatial resolution (visually assessed), although only slightly. This is
coherent with the results reported by Li et al. (2006). Collins-Fekete et al. (2015) also estimate the
MLP with a cubic polynomial, however only impose the constraints on entry and exit position,
tMLP(u = 0) = tin and tMLP(u = uout) = tout. The propagation angles at θMLP(u = 0) and
θMLP(u = uout) are scaled through an empirical Monte Carlo based calibration.

In view of the methods reported in this work, an alternative approach would be to select the
desired order M and obtain N as a consequence rather than fixing it a priori. The choice of M
generally depends on the water equivalent thickness of the object compared to the proton range
at the beam energy used for image acquisition (see figure 2). Our results (see figure 7) suggest
that M = 0 would be sufficient for a 20 cm (water equivalent) thick object if the proton range is
26 cm (200MeV), but thatM = 1 (or higher) would be preferable when the range is only 21.7 cm
(180MeV). We note that ideal trackers were used in the simulation and that the measurement
uncertainty of a real proton CT scanner would additionally degrade the image resolution (Krah
et al., 2018).

Furthermore, we evaluated the scattering power T (u) only in water in this study so that the
analytically generated trajectories as well as the MLP formulae are strictly valid only in water.
The same is true in conventional MLP estimation methods used in proton CT reconstruction.
We underline, however, that material heterogeneities along the beam path, i.e. which are mainly
a function depth u, could be easily considered. An example could be protons passing trough
different slabs of soft tissue and bone. To this end, the protons’ energy loss would need to be
calculated in the heterogeneous geometry to adjust the β2p2-term in T (u) and the X0(u) factor
would need to reflect the varying radiation length of the material, similar to what has been
suggested by (Collins-Fekete et al., 2017). Such an approach would provide a way to sample
proton trajectories and estimate an MLP in media with the above described heterogeneities.
Clearly, this would require some prior knowledge about the imaged object.

If variation of material properties in depth are considered by appropriately adjusting the
β2p2-term in T (u) and the radiation length X0(u), the polynomial degree M will likely depend
on the degree of heterogeneity. The impact of material heterogeneities on the MLP has been
studied elsewhere (Wong et al., 2009; Khellaf et al., 2019) and was not the subject of this work.

5 CONCLUSION

We proposed a functional to quantify the likelihood of proton trajectories under the influence
of multiple Coulomb scattering and achieved two things: first, the likelihood functional provides
an efficient way to analytically sample proton trajectories in homogeneous media instead of gen-
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erating them trough a Monte Carlo simulation. Second, maximising the functional yields an
expression for the most likely path of a proton which can be used in proton computed tomog-
raphy reconstruction. When the protons’ energy loss is approximated by a polynomial function
of depth, the most likely path is a polynomial itself. Our most likely path expression is analyt-
ically equivalent to the conventional ones available in the literature. Our results suggest that
it is sufficient to describe the energy loss with a linear or at most quadratic function of depth
instead of a fifth order polynomial. Treating the proton energy as constant leads to a slightly
degraded spatial resolution. Evaluating our most likely path expression requires fewer floating
point operations than the conventional ones.
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A Relation with conventional MLP expression

We summarize the steps to link our MLP expression (equation 14) with the ones reported by
Williams (2004) and Schulte et al. (2008), which we state here for completeness:

yMLP = (tMLP, θMLP)T =
(
Σ−11 +RT1 Σ−12 R1

)−1 · (Σ−11 R0yin +RT1 Σ−12 yout
)
, (23)

where

Σ1 =

(
σ2t1 σ2t1θ1
σ2t1θ1 σ2θ1

)
, Σ2 =

(
σ2t2 σ2t2θ2
σ2t2θ2 σ2θ2

)
, R0 =

(
1 u− uin
0 1

)
, R1 =

(
1 uout − u
0 1

)
. (24)

The matrices R0 and R1 are essentially small angle rotation matrices and Σ1 and Σ2 quantify the
spatial and angular dispersion in a certain depth due to MCS. Their components are calculated
through the following integral expressions:

σ2t1 =

(
1 + 0.038 ln

u− uin
X0

)2

×
∫ u

uin

T (v)(v − uin)2 dv (25)

σ2θ1 =

(
1 + 0.038 ln

u− uin
X0

)2

×
∫ u

uin

T (v) dv (26)

σ2θ1t1 =

(
1 + 0.038 ln

u− uin
X0

)2

×
∫ u

uin

T (v)(v − uin) dv. (27)

One obtains the components of Σ2 by replacing uin with u and u with uout in the equations
above. We recall that we have chosen uin = 0 for simplicity in our work. The quadratic pre-
factor containing the logarithmic term is reported only by Schulte et al. (2008), not by Williams
(2004).

To derive the relation between our MLP formulæ and the conventional one, we observe
that the integral expressions in equations 13 and 14 can be linked to the conventional ones
(equations 25, 26, 27; neglecting the logarithmic pre-factor) as
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∫ u

0
dv T (v) = σ2θ1 (28)∫ u

0
dv T (v)v = (u− uin)σ2θ1 − σ

2
θ1t1 (29)∫ u

0
dv

∫ v

0
dwT (w) = σ2θ1t1 (30)∫ u

0
dv

∫ v

0
dwT (w)w = σ2θ1t1(u− uin)− σ2t1 (31)

and that the terms in equation 16 can be expressed as

A = σ2θ1 + σ2θ2 (32)

B = (u− uin)σ2θ1 − σ
2
θ1t1 + (uout − u)σ2θ2 − σ

2
θ2t2 + (u− uin)σ2θ2 (33)

C = (uout − u)σ2θ1 + σ2θ1t1 + σ2θ2t2 (34)

D = (uout − u)(u− uin)σ2θ1 − (uout − u)σ2θ1t1 + (u− uin)σ2θ1t1 − σ
2
t1 − σ

2
t2 + (uout − uin)σ2θ2t2

(35)

Inserting these relations into equations 13, 14, and 15, and after some matrix manipulations,
one recovers equation 23. This means that the conventional MLP, although constructed as
succession of most likely positions, is actually the trajectory which minimises our likelihood
functional (equation 3). The only slight difference to Schulte et al. (2008) is the logarithmic
pre-factor in equations 25, 26, and 27.
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