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Abstract: Significant progress has expanded our knowledge of the signaling pathways coordinating
muscle protein turnover during various conditions including exercise. In this manuscript, the multiple
mechanisms that govern the turnover of cellular components are reviewed, and their overall roles
in adaptations to exercise training are discussed. Recent studies have highlighted the central role of
the energy sensor (AMP)-activated protein kinase (AMPK), forkhead box class O subfamily protein
(FOXO) transcription factors and the kinase mechanistic (or mammalian) target of rapamycin complex
(MTOR) in the regulation of autophagy for organelle maintenance during exercise. A new cellular
trafficking involving the lysosome was also revealed for full activation of MTOR and protein synthesis
during recovery. Other emerging candidates have been found to be relevant in organelle turnover,
especially Parkin and the mitochondrial E3 ubiquitin protein ligase (Mul1) pathways for mitochondrial
turnover, and the glycerolipids diacylglycerol (DAG) for protein translation and FOXO regulation.
Recent experiments with autophagy and mitophagy flux assessment have also provided important
insights concerning mitochondrial turnover during ageing and chronic exercise. However, data in
humans are often controversial and further investigations are needed to clarify the involvement of
autophagy in exercise performed with additional stresses, such as hypoxia, and to understand the
influence of exercise modality. Improving our knowledge of these pathways should help develop
therapeutic ways to counteract muscle disorders in pathological conditions.
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1. Introduction

Skeletal muscles are fundamental to the body’s maintenance, and disorders in their function or
metabolism are related to numerous diseases. Improved skeletal muscle activity has a significant effect
on major processes in the body, such as the regulation of glucose homeostasis, contributing to enhanced
health. Importantly, our capacity to recover from illness also depends on skeletal muscle oxidative
capacity. Hence, skeletal muscle displays noteworthy adaptive responses from several stimuli, such as
contractile activity, nutritional interventions, and environmental factors like hypoxia. These conditions
may induce a transitory cellular stress leading to numerous adaptations, such as modifications in fiber
composition, improvements of cell ability to renew cellular proteins and organelles, and modifications
of muscle size [1–3].

Among the molecular sensors involved in adaptations to training, the adenosine monophosphate
(AMP)-activated protein kinase (AMPK) is an enzyme composed of two regulatory domains
(i.e., AMPK-ß, AMPK-γ) and a catalytic domain (i.e., AMPK-α). AMPK is a critical enzyme for
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preserving cellular homeostasis under conditions of low energy [4,5]. AMPK activity is increased by
several energy stresses, including hypoxia/ischemia [6,7], electrical-stimulated muscle contraction [8,9],
starvation [10], and physical exercise [11–13]. When cellular ATP is depleted, AMP modulates AMPK
activity in an allosteric way, thereby promoting the phosphorylation of a threonine residue (Thr-172)
within the α subunit by other enzymes called the “AMPK kinases” (AMPKK) [14]. There are three
AMPKK proposed to date, the Ca2+/calmodulin- dependent protein kinase ß (CaMKKß) [15,16],
the liver kinase B1 (LKB1) [17,18], and the transforming growth factor ß-activated kinase 1 (TAK-1) [19].
Of note, the binding of ADP, like AMP, prevents AMPK Thr-172 dephosphorylation [20]. On the
contrary, AMPK is inhibited by ATP and glycogen [21,22]. AMPK is involved in cell metabolism and
several data have highlighted the physiological relevance of its activation in skeletal muscle [4,23].
Thus, AMPK promotes energy production through the anaerobic and aerobic systems (i.e., glycolysis
and oxidation of fatty acids) and, conversely, inhibits glycogenesis and cholesterol synthesis [5,24–28].
AMPK enhances mitochondrial biogenesis by stimulating PGC-1α (peroxisome proliferator-activated
receptor gamma coactivator 1 alpha) expression [29]. A study by Jager et al. also showed that AMPK
phosphorylates PGC-1α on two residues (Thr-117 and Ser-538) in vitro and in cells [30]. PGC-1α
consecutively regulates the activity of PPARs (peroxisome proliferator-activated receptors) and NRFs
(nuclear respiratory factors), leading to mitochondrial adaptations [30–32].

AMPK’s biological functions are not limited to energy metabolism. In the last decade, AMPK
was found to coordinate cell component turnover. AMPK decreases protein translation by reducing
the activity of the mechanistic (or mammalian) target of rapamycin complex 1 (MTORC1) signaling,
and promotes protein breakdown by regulating several component of the ubiquitin-proteasome and
autophagosome-lysosome systems [5]. Major targets of AMPK are the forkhead box class O subfamily
proteins 1 and 3 (FOXO1 and FOXO3, respectively). FOXO proteins are important transcription factors
highly conserved through evolution and their various functions in skeletal muscle (i.e., cell cycle,
DNA damage repair, apoptosis, energy metabolism, and oxidative stress resistance) have been recently
reviewed [33]. In recent years, the AMPK-FOXO3 axis has been extensively studied with an important
focus on processes regulating organelle turnover, especially mitophagy.

In this review, recent discoveries on AMPK-MTORC1 and AMPK-FOXO axes in the coordination
of muscle organelle renewal and the importance of physical exercise on both acute and chronic
adaptations are discussed. The multiple modes of regulation of these sensors are detailed, as their
implication in the regulation of skeletal muscle protein and organelle turnover, especially mitophagy.
Apparent discrepancies between the data are discussed in regard to the methodology used to access
autophagy or mitophagy activity. The functions of newly identified actors in protein and organelle
quality control, specifically the diacylglycerol kinase ζ (DGKζ), Parkin (RING-between-RING E3
ligase), and Mul1 (mitochondrial E3 ubiquitin protein ligase), are also presented. We finally discuss the
impact of exercise modality, hypoxia, and examine the current limitations in the literature to suggest
other perspectives.

2. AMPK and MTORC1 Pathways

2.1. AMPK/MTORC1 Axis in Organelle Quality Control during Exercise

Protein synthesis machinery is globally decreased during exercise. The MTORC1 pathway is
a central regulator of protein turnover under conditions of increased external loading by the regulation
of ribosomal translation. Thus, the kinase MTOR modulates mRNA translation and protein synthesis
by regulating major regulators of ribosomal activity, 4E-BP1 (eukaryotic translation initiation factor
4E-binding protein 1) and S6K1 (ribosomal protein S6 kinase 1). MTOR phosphorylates S6K1 at
Thr-389 (its hydrophobic motif), which, in turn, phosphorylates translational effectors such as rpS6
(ribosomal protein S6) and eIF4B (eukaryotic translation initiation factor 4B) [34,35]. In addition, PDK1
(phosphoinositide-dependent kinase-1) phosphorylates S6K1 at Thr-229 provides its full activation [36,37].
4E-BP1 phosphorylation by MTOR on Thr-37/46 provides its disconnection from the preinitiation complex
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(PIC) promoting the transcription of protein-coding genes [38,39]. In a study conducted in mice, moderate
endurance exercise decreased the phosphorylation state of MTORC1 signaling (i.e., MTOR, S6K1, rpS6,
and 4E-BP1) from 90 min [40]. These modulations were concomitant with a raise of the phosphorylation
state of eiF2α (Ser-51), an indicator of endoplasmic reticulum stress and AMPK activation. The AMPK
mediates inhibition of MTORC1 through phosphorylation of MTOR at Thr-2446 [41], of the tuberous
sclerosis complex 2 (TSC2) at Thr-1227 and Ser-1345 [42] and the associated regulatory protein of MTOR
complex-1 (RPTOR) on two well-conserved serine residues (Ser-722/792) [43,44] leads to the sequestration
of the raptor by 14-3-3 proteins [44]. These events promote the inhibition of Rheb (Ras homolog enriched
in brain) and overall MTORC1 inhibition (Figure 1). However, data on the involvement of AMPK/RPTOR
axis for MTORC1 inhibition during endurance exercise are lacking.
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complex through phosphorylation of the associated regulatory protein of MTOR complex-1 (RPTOR). 
MAFbx/atrogin-1 and MuRF1 target sarcomeric proteins. MAFbx/atrogin-1 also targets factors 
involved in cell growth including the transcription factors Myogenin and MyoD, and the eukaryotic 
initiation factor 3f (eIF3f). PTEN-induced putative kinase protein 1 (PINK1)/Parkin and Mul1 axes 
enhance mitophagy through ubiquitination of mitochondrial proteins. 
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Figure 1. (AMP)-activated protein kinase (AMPK), forkhead box class O subfamily protein (FOXO), and
mechanistic (or mammalian) target of rapamycin complex 1 (MTORC1) in the regulation of protein and
organelle turnover. FOXO proteins increase the transcription of the E3 ubiquitin protein ligases muscle
atrophy F-box (MAFbx)/atrogin-1, muscle RING finger 1 (MuRF1), mitochondrial E3 ubiquitin protein
ligase (Mul1), several autophagic genes (Atgs), and BCL2/adenovirus E1B 19 kDa protein-interacting
protein 3 (BNIP3) in muscle cells. MTOR and AMPK differentially modulate autophagy initiation
by phosphorylation of the Unc-51-like kinase (ULK1). AMPK also activates FOXO1 and FOXO3
and tuberous sclerosis complex 2 (TSC)1/TSC2 complex, and inhibits MTORC1 complex through
phosphorylation of the associated regulatory protein of MTOR complex-1 (RPTOR). MAFbx/atrogin-1
and MuRF1 target sarcomeric proteins. MAFbx/atrogin-1 also targets factors involved in cell growth
including the transcription factors Myogenin and MyoD, and the eukaryotic initiation factor 3f (eIF3f).
PTEN-induced putative kinase protein 1 (PINK1)/Parkin and Mul1 axes enhance mitophagy through
ubiquitination of mitochondrial proteins.

A single bout of exercise may lead to a strong stimulation of muscle protein synthesis during the
recovery period. Synthesis of myofibrillar proteins is elevated after resistance exercise [45–47] and seems
to become more pronounced in trained athletes compared to untrained individuals [48]. Endurance
training also increases protein synthesis during the recovery since the MTORC1 pathway is altered in
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response to this type of exercise. Indeed, increased phosphorylation of several MTOR targets occur in
both mice and humans after moderate and exhaustive endurance exercises [40,49,50]. However, selective
activation of MTORC1 by specific intracellular signaling pathways is involved according to the exercise
modality. Acute sprint exercise or electrical stimulation at high frequency increases PKB (protein kinase
B or Akt) and MTOR phosphorylation during recovery [51,52]. Importantly, a recent study conducted
in rats compared different resistance exercise models and suggested that hypertrophic response is
correlated with the phosphorylation level of MTOR and its regulators or targets (i.e., Akt, the extracellular
signal-regulated kinases ERKs, p38, the mitogen-activated protein kinases MAPKs, 4E-BP1) [53]. Finally,
the study by Ogasawara highlighted that both rapamycin-sensitive and rapamycin-insensitive MTOR
signaling regulate MTOR-dependent muscle protein synthesis during resistance exercise [54]. Concerning
endurance exercise, several studies failed to observe modulation of Akt during recovery, whatever
exercise intensity [52,55]. Thus, it has been proposed that an AMPK-Akt switch may be involved in
the occurrence of specific adaptations to resistance and endurance training [55], with a more specific
contribution of Akt/TSC1/TSC2 cascade for resistance, strength, and sprint exercises. This also means
that Akt is not essential for MTORC1 activation and protein synthesis during endurance exercise. AMPK
activation also contributes to decrease the rate of protein production during resistance exercise. However,
protein translation augments from 1 h post-exercise even if AMPK activity becomes less pronounced from
2 h [56]. Finally, in individuals accustomed to training, MTORC1 signaling appears preferably involved
for hypertrophy-inducing exercises and the AMPK axis seems to be more specific to endurance training
adaptations [57]. It is interesting to note that a combination of endurance and resistance training may
affect protein synthesis differentially. Indeed, AMPK activation via endurance exercise may negatively
affect MTORC1 activation induced by resistance training. This effect is increased when the endurance
exercise is carried-out after a bout of resistance exercise [58].

2.2. MTORC1 Regulators and Exercise: Recent Data on DGKs, FOXO, eIF3f and Cellular Trafficking

Among MTORC1 regulators, the PI3K (phosphoinositide 3-kinase)/Akt axis is notably modulated
by exogenous nutrients and the release of growth factors [59–62]. MTOR phosphorylation during
mechanical overload, and at the early phase of recovery, is related to MEK/ERK signaling through
phosphorylation of TSC2 at Ser-664 but not to PI3K/Akt signaling [63]. ERK1/2 also regulates nuclear
transcriptional factors, such as Elk-1 (E-26-like protein 1), c-Myc, c-Jun, and c-Fos that play a role in
muscle growth [64]. Activation of ERK1/2 and MTORC1 seems to be required for full stimulation
of protein synthesis in humans [65]. However, none of these MTORC1 regulators are recognized as
critical actors for fiber hypertrophy during resistance exercise [59–61].

It is also recognized that mechanical stimulus enhances the activation of PLD (phospholipase D) and
production of PA (phosphatidic acid), promoting activation of MTORC1. PA is a lipid messenger that
binds to MTOR’s FKBP12- rapamycin binding domain, favoring its activation [61,66–68]. Nonetheless,
PLD activity modulation does not seem only implicated in PA production or MTORC1 activation [69].
Thus, studies from Hornberger’s lab investigated the role of diacylglycerol (DAG) and DAG kinases
(DGKs) in PA production during mechanical stimulation. DGKζ (DAG zeta) is known to be involved
in PA accumulation via DAG phosphorylation and was strongly suggested to be essential for PA
production and enhanced MTORC1 activity during mechanical stimulation. More recently, the same
group explored the importance of DGKζ in muscle adaptations in vivo with a hypertrophic model
of mechanical loading [70]. Thus, the authors reported that DGKζ isoform is the most highly raised
and is of importance for muscle growth and hypertrophy. Studies on the mechanisms underlying
these adaptations highlighted that DGKζ also suppresses FOXO3 activity, leading to a decline of
MAFbx (muscle atrophy F-box)/atrogin-1 and MuRF1 (muscle RING finger 1) induction. Conversely,
the expression of these E3 ligases during exercise was increased in DGKζ knock-out muscles, confirming
the role of DGKζ in limiting protein breakdown during mechanical overload. Even if the precise
mechanism needs to be identified, DGKζ relocation in the nucleus seems to be essential for inhibiting
FOXO3 transcriptional activity during mechanical overload. Interestingly, the authors also found
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that mechanical overload increases expression of the eukaryotic initiation factor 3 subunit f (eIF3f),
and this increase is totally blunted in DGKζ knock-out muscles. Given the importance of eIF3f
in protein translation process, it can be hypothesized that DGKζ-dependent alteration of FOXO
pathway during mechanical overload may also have effects on the translational machinery. Indeed,
the FOXO-dependent E3 ligase MAFbx/atrogin-1 is well known to target eIF3f leading to its proteasomal
degradation [71].

The role of eIF3f and MTORC1 intracellular trafficking in adaptation to exercise has been also
recently investigated. eIF3f belongs to the translation initiation factor complex eIF3f among its 13
subunits involved in mRNA translation initiation. In the last two decades, studies from Leibovitch’s
lab highlighted eIF3f’s involvement in skeletal muscle protein synthesis and hypertrophy [72]. It was
demonstrated that a TOS (TOR signaling) motif in eIF3f operates as a scaffold to connect MTORC1 with
its translational substrates and to support the initiation of cap-dependent translation [73]. Starvation
muscle atrophy is suppressed when an eIF3f mutant insensitive to polyubiquitination by MAFbx is
overexpressed, showing its critical role in muscle homeostasis during such a stress [74]. More recently,
eIF3f was found to be essential for mouse embryonic development and its partial depletion reduces
adult skeletal mass and amplifies muscle loss during disuse by mainly modulating protein synthesis [75].
Concerning exercise, an increase of eIF3f expression was evidenced during overload [70], suggesting
a role in adaptations to exercise. Studies in human tissue model that used immunofluorescence
approaches identified a type of cellular trafficking involving eIF3f that occurs during a single bout
of resistance exercise [76]. Thus, the complex composed of MTORC1/eIF3f was found to co-localize
with the lysosome, where the GTPase Rheb is known to trigger the kinase activity of MTOR enhancing
MTORC1 substrates phosphorylation [77]. In accordance, studies in vitro and in animals highlighted
that MTORC1 recruitment to the lysosome surface is critical to raise MTOR kinase activity [78,79].
After resistance exercise, the MTORC1/LAMP2 complex was found to rapidly translocate at the cell
membrane in close proximity to capillaries [76]. Importantly, TSC2 abundance at the cell membrane
was also reduced with a dissociation from Rheb, suggesting a decrease of MTOR inhibition favorable
to its full activation. These innovative results suggest that, at least in humans, MTORC1 is recruited
and activated at the cell periphery following resistance exercise. Interestingly, a protein–carbohydrate
beverage post-exercise does not alter MTORC1/eIF3f translocation but increases the interaction between
MTOR and eIF3f [76], an association well recognized to drive MTORC1 activation and enhance MTOR
target activity [72]. Thus, a bout of resistance exercise may enhance mRNA translational capacity
through the association and the translocation to the cell periphery of MTOR and its positive regulators
eIF3f and Rheb.

Interestingly, nonprotein dietary factors also influence post-exercise myofibrillar protein synthesis.
In humans, it was recently reported that the ingestion of egg whites alone results in lower myofibrillar
protein synthesis activation than the ingestion of whole eggs during the recovery from resistance
exercise [80]. In accordance, whole egg ingestion increases the phosphorylation level of MTOR, 4E-BP1,
rpS6 to a greater extent than egg white ingestion. Whole egg ingestion was also found to increase
MTORC1 co-localization with the lysosome after resistance exercise, and this result was correlated
with higher rates of myofibrillar protein synthesis [81]. This observation suggests a better mRNA
translational capacity after whole egg consumption than after egg white consumption. The underlying
mechanisms have been partially studied and PA was proposed to have a role among the potential
factors involved in MTORC1 recruitment to the lysosome. Egg yolk contains phosphatidylcholine
and oleic acid that can be converted to PA via de novo synthesis, and DAG [82–84]. In addition,
the egg yolk is enriched in low-density lipoprotein (LDL)-derived cholesterol that was shown to play
a role in MTORC1 recruitment to the lysosome in a SLC38A9-Niemann-Pick C1 (a sterol transport
system) signaling complex fashion [85]. In summary, these results highlighted the importance of a new
intracellular trafficking mechanism and nonprotein dietary factors that drive optimal myofibrillar
protein synthesis after resistance exercise (Figure 2).
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Figure 2. Cellular trafficking of mechanistic (or mammalian) target of rapamycin complex 1 (MTORC1)
and lysosome after resistance exercise. In response to resistance exercise, MTORC1 co-localizes with
the lysosome and translocates at the cell membrane. MTORC1 recruitment to the lysosome surface is
critical to increase MTOR kinase activity. Contractions lead to a decrease of tuberous sclerosis complex
2 (TSC2) abundance and, conversely, to the activation of MTOR by the GTPase Ras homolog enriched in
brain (Rheb). A protein-carbohydrate beverage post-exercise increases the interaction between MTOR
and eukaryotic initiation factor 3f (eIF3f) without altering MTORC1/eIF3f translocation. Whole eggs
ingestion enhances MTORC1 co-localization to the lysosome after resistance exercise.

3. AMPK and FOXO Transcription Factors

3.1. FOXO Homologues in Energy Metabolism and Post-Translational Modifications

Four FOXO members (FOXO1/3/4/6) are expressed in muscle. FOXO6 represses PGC-1α expression
and low intensity exercise reduces FOXO6 induction [86], suggesting that exercise-induced PGC-1α
may be partially dependent on FOXO6. Nonetheless, data concerning this factor remain limited in
this tissue. FOXO1, 3, and 4 have been more extensively investigated, notably due to their important
roles in cell cycle, apoptosis, muscle growth, and muscle regeneration [33]. FOXO3 regulates MyoD
(an essential myogenic differentiation factor) transcription [87]. FOXO1 and FOXO3 play critical roles
in energy homeostasis by favoring mitochondrial metabolism, inhibiting glycolysis, and enhancing
lipolytic flux [88–91]. FOXO3 plays a role in the regulation of mitochondrial genome through AMPK
and the mitochondrial Sirtuin 3 (SIRT3) [92,93]. FOXO1 and FOXO3 also regulate exercise-induced
angiogenesis. FOXOs contribute to the repression of muscle angiogenic response through the induction
of thrombospondin 1 (THBS1) during the first days of chronic exercise. Importantly, FOXO repression
is critical for long term adaptations to endurance training, especially for angiogenesis [94,95].

FOXO proteins are regulated by several post-translational mechanisms, and numerous enzymes have
been identified as kinases of FOXO, including AMPK, Akt, and, more recently, DGKζ. In muscle cells,
AMPK activates FOXO3 by phosphorylation at Ser413/588 [23,96]. We recently found that AMPK
activation by 5-aminoimidazole-4-carboxamide-1-ß-d-ribofuranoside (AICAR) extends the FOXO3
protein half-life in skeletal muscle primary cells [97]. AMPK also increases the cellular NAD+ level,
thus enhancing the activity of histone deacetylase Sirtuin 1 (SIRT1) [98]. This process induces the
deacetylation of FOXO1 and 3 leading to their activation [98]. Conversely, Akt, when inhibited by the
phosphatidylinositol 3-kinase (PI3K), is responsible for FOXO1 protein translocation from the nucleus
to the cytoplasm, leading to its inactivation [99]. Akt phosphorylates FOXO3 on several residues
(Thr-32, Ser-253/315), and the phosphorylation of residues Thr-32 and Ser-253 promotes its cytoplasmic
retention by a mechanism involving the 14-3-3 chaperone protein [100]. FOXO regulation by Akt induces
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a decrease in the binding between FOXO and its DNA sequences targets and, consequently, decreases
FOXO transcriptional activity [101,102]. In addition, FOXO3 is targeted by the histone acetyl-transferase
p300 for its ubiquitination by Mdm2 (E3 ligase murine double minute 2) and subsequent degradation
by the proteasome [103]. In muscle, p300 alters differentially the expression of FOXO 1 and 4 without
affecting the expression of FOXO3 [104]. Furthermore, p300 alters FOXO3 and FOXO4 activity but
increases the nuclear localization of FOXO1 and the transcription of FOXO1-dependant genes underlining
the differential regulation of the FOXO homologues [104]. Finally, DGKζ has been recently found to
suppress FOXO3 activity in skeletal muscle [70], extending the role of the DGK to the regulation of
catabolism (Figure 3).
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Figure 3. (AMP)-activated protein kinase AMPK and forkhead box class O subfamily protein FOXO
regulation in skeletal muscle. FOXO proteins are phosphorylated and inhibited by protein kinase B
(PKB or Akt) in response to insulin or growth factor. Under the condition of energy stress, AMPK, which
is activated by the AMPK kinases (AMPKK) Ca2+/calmodulin- dependent protein kinase ß (CaMKKß),
liver kinase B1 (LKB1), and transforming growth factor ß-activated kinase 1 (TAK-1), phosphorylates
and increases FOXO3 activity. AMPK is also involved in FOXO deacetylation through Sirtuin 1 (SIRT1)
and Sirtuin 3 (SIRT3). AMPK activation by 5-aminoimidazole-4-carboxamide-1-ß-D-ribofuranoside
(AICAR) stabilizes FOXO3 by increasing its protein half-life. Moreover, AMPK favors the association
between FOXO3 and mitochondrial DNA through SIRT3, mediating the transcription of mitochondrial
genes. During mechanical overload, FOXO3 transcriptional activity is inhibited by diacylglycerol
kinase ζ (DGKζ) by a mechanism independent of DGKζ kinase activity within the nucleus.
Cytosolic FOXO3 is targeted by E3 ligase murine double minute 2 (Mdm2) for degradation via the
ubiquitin-proteasome system. FOXO3 and FOXO4 are acetylated by the histone acetyltransferase p300.
Abbreviations undefined in the main text: IRS1, insulin receptor substrate 1; PIP2, phosphatidylinositol
4,5-bisphosphate; PIP3, phosphatidylinositol 3,4,5-triphosphate.
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3.2. AMPK/FOXO Axis in Organelle Quality Control during Exercise

In addition to its role in muscle metabolism, AMPK/FOXO axis represents a major actor in
cellular components turnover via the ubiquitin-proteasome and autophagosome-lysosome proteolytic
systems. The ubiquitin-proteasome pathway involves E3 ubiquitin-ligases that target substrates
to the 26S proteasome for degradation after poly-ubiquitination. FOXO1 and FOXO3 regulate
the transcription of crucial ubiquitin ligases, including MuRF1, Trim32 (tripartite motif-containing
protein 32), and MAFbx/atrogin-1, implicated in myofibrillar protein removal (i.e., myosin light
chain 1 and 2, myosin heavy chain protein, myosin-binding protein C, actin, tropomyosin, troponins,
alpha-actinin, desmin, Z-bands, thin filaments), and myogenic/growth factors (i.e., MyoD, myogenin,
eIF3f) [71,89,99,105–116]. Autophagy is a critical stress response that allows the replacement of protein,
organelles, and other cellular components. In the first stage, proteins or other cellular constituents
(e.g., mitochondria, ribosomes, peroxisomes, endoplasmic reticulum, lipids, polysaccharides) are
incorporated in a double-membrane vesicle called the autophagosome. Then, the content of the
autophagosome is removed by another vesicle named the lysosome that contents acid hydrolases.
FOXO3 promotes the transcription of a plethora of autophagy genes (ATGs) involved in autophagosome
biogenesis and maturation, including ATG4B, ATG12L, Beclin, BNIP3 (BCL2/adenovirus E1B 19 kDa
protein-interacting protein 3), GABARAPL1 (GABA Type A Receptor Associated Protein Like 1),
LC3 (microtubule-associated protein light chain 3), PI3KIII, ULK2 (Unc-51-like kinase) [106,117].
Of note, BNIP3/BNIP3L are involved in mitophagy since BNIP3 is a mitochondrial receptor that directly
connects to the Atg8 homolog LC3 and GABARAP, leading to the recruitment of autophagosome
to damaged mitochondria [118–120]. FOXO1 also activates the lysosomal protease cathepsin L in
skeletal muscle [121]. In mice, several autophagy markers are more expressed in slow-twitch muscles
but basal autophagy flux appears to be higher in glycolytic muscles, suggesting that autophagy in
glycolytic muscle might be more tightly regulated [122]. Importantly, AMPK and MTOR differentially
regulate the initiator of autophagy ULK1 (Atg1) through phosphorylation [123–125], noticeably in
skeletal muscle [5,23,126]. AMPK phosphorylates ULK1 at several residues (Ser-317/467/555/777)
leading to autophagy initiation in condition of energy stress. Conversely, MTOR inhibits ULK1 by
phosphorylating Ser-757 when nutrients are plentiful.

In the last decade, studies have revealed that acute endurance exercise affect the expression
and phosphorylation level of markers involved in protein and organelle removal. FOXO1 and
FOXO3 level increases after exhaustive exercises [33], and it was found that several proteolytic actors
(i.e., MAFbx/atrogin-1, MuRF1, LC3B-II, and Atg12 expression, etc.) and proteasome β2 subunit activity
may be enhanced after marathon or ultra-endurance exercise [127,128]. Some of these modulations
were also reported in response to exercise performed at moderate intensity [129–131]. Increases in
protein breakdown may be useful to favor cell component turnover during recovery, or, alternatively,
amino acids can serve as substrates when exercise is prolonged. Interestingly, the enhanced muscle
protein anabolic response with ingestion of essential amino acids and carbohydrates during the
recovery of resistance exercise seems primarily due to an increase in protein translation compared
to modulation of protein degradation [132]. More conventional endurance exercise may augment
the expression of autophagy markers according to exercise intensity and the nutritional state. When
performed in a fasted state, exercise promotes more important increases of autophagy markers (LC3B,
GABARAPL1 lipidation, cATG12 protein level, p62 mRNA level) and more specific inductions of
actors involved in mitophagy (BNIP3 and Parkin expression) compared to exercise conducted in
a fed state [133]. Consistently, rises in DRP1 (dynamin related protein 1) phosphorylation, a GTPase
involved in fission of mitochondria, quickly occurs during exercise, including endurance exercise
conducted at moderate intensity (40–50% of

.
VO2max) in sedentary rodents [40]. Exercise at moderate

intensity quickly increases phosphorylation of AMPK and induces initiation of the autophagy pathway
through ULK1 [40]. An increase in autophagy markers (i.e., LC3 lipidation and p62 expression) can
be observed near to exhaustion [40]. Importantly, the modulation of autophagy markers during
endurance exercise differs between rodent and human muscles. Indeed, regarding LC3 lipidation or
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p62 expression, acute endurance exercise seems to promote enhanced autophagosome content in mice,
while the opposite can be found in humans [134,135]. However, 60 min of cycling exercise at moderate
intensity increases ULK1 phosphorylation concomitantly to a decrease in LC3 lipidation in human
skeletal muscle, suggesting an initiation of autophagy [129]. It will be necessary to define if these
contradictive results found in humans can be explained by a decrease in autophagy or alternatively by
a fast degradation of the autophagosome by the lysosome because of an abrupt induction of overall
system. Development of valid markers of autophagic flux in humans should contribute to a better
understanding of this pathway.

Autophagy is an essential system for muscle maintenance since chronic autophagy deficiency leads
to increased proportion of centralized nuclei and pro-apoptotic markers, reduced force, altered twitch
kinetics in glycolytic muscle, as well as enhanced calpain and proteasomal enzymatic activity [122].
In cardiac and skeletal muscles, autophagy plays a role in the exercise-related metabolic effects [130,131].
Disruption in autophagy decreases endurance performance and alters glucose metabolism. In addition,
autophagy failure results in mitochondria degeneration, sarcoplasmic reticulum distension and
disorganization of sarcomere [136], confirming the critical role of autophagy in mitochondria and
myofiber homeostasis. In response to chronic exercise, autophagy appears to be needed for exercise
training-induced mitochondrial remodeling and fiber-type transition [137].

3.3. Exercise and Autophagy/Mitophagy Flux

The majority of the aforementioned studies investigated autophagy at the transcriptional or
translational level. However, these approaches are not suitable for the interpretation of autophagy
activity. The “autophagic flux assay”, an accurate method to access autophagy activity, is based on the
turnover of LC3 and p62. Inhibitors of autophagy (colchicine, chloroquine, NH4Cl, or bafilomycin A1)
are used to block the incorporation of the autophagosomes into the lysosome or to reduce the activity of
lysosomal enzymes. This method avoids incorrect analysis of LC3-II or p62 protein level. For example,
LC3-II content can be increased when autophagy activity is enhanced but also when the latter stages
of the process (e.g., fusion between autophagosome and lysosome) is altered. Per contra, a decrease
of LC3-II levels could mean either a decrease or, when lysosomal degradation is fast, an elevation
in autophagy activity. Experiments with autophagy flux are lacking, especially in the evaluation of
the responses to chronic exercise in vivo. However, in a recent investigation [138], the authors used
colchicine treatment to establish a link between autophagy modulation during endurance training and
mitochondrial biogenesis in mice skeletal muscle. Thus, autophagy suppression by colchicine abrogated
mitochondrial adaptations linked to training. More recently, studies from Hood’s lab examined the
impact of ageing and chronic contractile activity on basal muscle autophagy and mitophagy flux. In these
experiments, mitophagy flux was assessed on isolated mitochondria. The authors found that aged
muscles present accelerated basal mitophagy flux, especially in intermyofibrillar mitochondria [139,140].
This result indicates that, during ageing, autophagy activity is increased to promote the targeting
of damaged organelles, especially mitochondria. Importantly, chronic contractile activity decreases
mitophagy flux in both aged and young muscles [139,140]. Hence, one might hypothesize that, in this
context, chronic contractile activity improves mitochondria quality and decreases the necessity to recycle
them through the autophagosome-lysosome pathway. Additional investigation using mitophagy flux
experiments is needed to examine the effect of exercise training on basal mitochondria turnover in vivo.
Importantly, the same group also reported that contractile activity may normalize autophagy flux and
reverse mitochondrial abnormalities during autophagy suppression [141]. In that respect, exercise may
represent an effective therapeutic issue to counterbalance diseases with defects in organelle replacement.
However, to date, no data have been made available on the effect of exercise on the turnover of other
organelles such as ribosomes or endoplasmic reticulum that represent crucial components in muscle
protein homeostasis.
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4. The Emerging Roles of Parkin and FOXO3-Dependant Mul1 Pathway in Organelle Turnover
and Adaptations to Exercise

In the last decades, the E3-ubiquitin ligase Parkin has been implicated in the control of mitophagy
with a particular focus on neuronal degeneration, especially during Parkinson disease (PD) [142–144].
PINK1 (PTEN- induced putative kinase protein 1) is a mitochondrial serine/threonine protein kinase
that is activated by the depolarization of mitochondrial membrane. PINK1 phosphorylates and
enhances Parkin activity [144]. Data highlighted that Parkin phosphorylation at Ser-65 is necessary for
its mitochondrial translocation, leading to the degradation of several actors involved in mitochondrial
dynamics and motility [142,145]. Parkin is known to ubiquitinate TOMM20 (translocase of outer
mitochondrial membrane 20), the mitochondrial fusion protein Mitofusin 1/2 (Mfn2 1/2), DRP1,
Fis1, Miro, and VDAC (voltage-dependent anion channel) [146–151], leading to the translocation of
autophagy receptors to mitochondria (i.e., LC3, SQSTM1/p62 and NBR1/autophagy cargo receptor) [152]
(Figure 1). In addition to its roles in mitophagy and mitochondrial dynamics, Parkin targets the
transcriptional repressor of PGC-1α PARIS (ZNF746, zinc finger protein 746), favoring mitochondrial
biogenesis [153]. Finally, a role of Parkin in the production of mitochondrial-derived vesicles playing
a role in mitochondrial quality control has also been revealed [154–158].

A recent study investigated the involvement of Parkin in the muscle phenotype of PD [159].
The authors reported that the mitochondrial uncoupler carbonyl cyanide m-chlorophenylhydrazone
(CCCP) promotes PINK1/Parkin-mediated mitophagy in C2C12 cells, and myotube atrophy. Ablation of
Parkin resulted in accumulation of dysfunctional mitochondria and myotubular atrophy, suggesting that
Parkin plays a role in skeletal muscle mitochondrial removal. More recently, Gouspillou and co-workers
highlighted, for the first time, the critical role of Parkin in contractile and mitochondrial properties of
healthy muscle [160]. The authors found that Parkin ablation causes muscle contractile dysfunction
associated with higher cross-sectional area of type-IIb fibers. Importantly, Parkin ablation results
in mitochondrial dysfunction with reduced maximal mitochondrial respiration and mitochondrial
uncoupling but without alteration of mitochondrial content. This study has also suggested that
Parkin ablation favors oxidative stress, decreases mitochondrial fusion, and increases mitochondrial
fission. Even if specific mitophagy flux has not been assessed, the authors also found an increase of
autophagy markers in Parkin−/− muscles. Thus, these data are consistent with global mitochondria
alteration and Parkin appears to be a critical actor in maintaining contractile properties efficiency in
normal skeletal muscle. In addition, a recent study from Hood’s lab [161] revealed that Parkin and
mitophagy are of importance for training-induced mitochondrial adaptations. However, in this study,
the authors showed that Parkin ablation does not significantly affect basal mitophagy flux. In response
to a single bout of endurance exercise, enhanced mitophagy flux and alterations of PGC-1α signaling
were observed in Parkin deficient mice, but mitochondrial content was increased in a similar extension
to the wild-type population. This result indicates that Parkin/PGC-1α axis seems unessential for
mitochondrial biogenesis during exercise. Importantly, the authors demonstrated that acute endurance
exercise elevates mitophagy flux and training attenuates this elevation in wild-type but not in Parkin
deficient animals. However, training does not alter basal mitophagy flux, even if the presence of Parkin
to mitochondrial membrane is enhanced in the basal state. These data seem to indicate that a lower
rate of mitophagy may occur thanks to training adaptations that may lead to a better mitochondria
quality. In agreement, the authors also found that training increased mitochondrial content in Parkin
knock-out mice, but these mitochondria showed several dysfunctions.

The E3-ligase Mul1 (or MULAN/GIDE/MAPL) was recently proposed to be associated to the
AMPK-FOXO3 signaling pathway in muscle [97]. Mul1 plays a role in the control of mitochondrial
quality by coordinating mitochondrial removal and dynamics but also apoptosis [162–164]. Mul1 is
upregulated by AMPK activation in primary myotubes [97] and AMPK could block the preservative
effects of IGF-1 on contractility of sensory-innervated muscle cells through Mul1 enhancement [165].
In skeletal muscle, changes in Mul1 expression lead to the degradation of Mfn2 and mitochondrial
fission, inducing mitochondrial elimination [166]. Mul1 also favors the fragmentation of mitochondria
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through DRP1 stabilization [167]. Interestingly, Mul1 was also found to stabilize ULK1 in HeLa
cells [163]. However, these recent findings have not yet been evaluated in muscle cells. Even if these
data highlight a role of Mul1 in mitochondrial turnover and muscle atrophy, data on exercise are still
limited and there is a need to examine the implication of Mul1 in adaptations to training. A recent study
revealed that Mul1 and the mitophagy pathway seems not to be involved in adaptations to training
in muscle of patients with type 2 diabetes [168]. However, an increase of Mul1 protein expression,
but not mRNA level, has been observed during acute endurance exercise in the muscles of healthy
rodents [40], indicating a potential role for Mul1 during such a stress.

5. Exercise in Hypoxia

Athletes currently use training under hypoxia as a method to enhance performance at sea level or
to prepare competitions at altitude. The addition of hypoxia during training elicits higher metabolic
stress and can promote selective adaptive responses for aerobic performance [169,170]. Recently, it was
found that repeated-sprint training in hypoxia also enhances repeated sprint ability in swimming
and team-sports [171–173]. Another protocol in which high-intensity exercises were conducted under
hypoxia and recoveries in normoxia, was also proposed for highly-trained athletes to provide additional
effects on endurance performance [174]. The most recognized effects of training under hypoxia on
skeletal muscle are related to oxidative capacity, capillary density, mitochondrial density, and enhanced
blood glucose utilization [170,175,176]. However, occurrence of adaptations depends on several
factors (e.g., hypoxic dose and duration) [177], and studies also reported no further positive effect on
performance at sea level [178–180].

Acute exposition to normobaric hypoxia was found to modulate basal protein turnover markers.
However, the majority of the works on hypoxia mainly focused on the modulation of protein translation
markers [181–184] and data on the effect of exercise conducted under hypoxia on protein balance are
lacking. Nevertheless, studies from Deldique’s lab recently suggested that acute exposition to hypoxia
increases or does not have effect on the MTORC1 pathway [185,186]. This discrepancy between studies
could be explained by differences in the nutritional pattern that affect insulin (or catecholamines)
concentration. Indeed, high plasma insulin concentration may upregulate the MTORC1 pathway
during exposure to hypoxia [185]. Concerning autophagy, recent studies from Masschlelein and
co-workers investigated its regulation during acute normobaric hypoxia in humans [186]. The authors
observed a raise in the LC3-II/I ratio and a reduction of p62 expression at rest, suggesting enhanced
autophagy. In addition, moderate cycling exercise increased the BNIP3 mRNA level, a marker of
mitophagy [186]. However, no study has performed autophagy flux measurement in response to both
acute and chronic hypoxia, limiting possible interpretations. Finally, concerning resistance training
in humans, a recent study from Deldique’s lab [187] highlighted that hypoxia (FiO2: 14%) blunts
the activation of protein synthesis and down-regulates the transcriptional program of autophagy.
Importantly, resistance exercise performed in hypoxia seems to initiate the transcription of genes
involved in satellite cell incorporation that potentially participate in gains of force production observed
in the long term [187]. Additional studies are also required to evaluate the gains in muscle mass and
force production compared to normoxia.

Although studies on the acute effects of hypoxia on protein turnover are emerging, chronic
adaptations to altitude or normobaric hypoxic training remain largely unexplored. It is documented
that chronic hypoxia can cause skeletal muscle atrophy in rodent through a downregulation of
protein translation and enhanced proteolysis, as well as alterations in oxidative metabolism [188–190].
In humans, high altitude hypoxia exposure (4559 m) for 7–9 days induces a decline of iron
transport-related protein expression, tricarboxylic acid cycle, oxidative phosphorylation, and oxidative
stress [191]. Moreover, MTOR level may be reduced in such a condition [191], suggesting alteration
in protein translation. However, the effects of ambient hypoxia on both others proteins synthesis
markers (i.e., translational initiation markers) and catabolic signaling pathways (i.e., autophagy)
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remain to be clarified in humans, especially in combination with exercise training and nutritional
strategies [185,192].

6. Muscle Contraction Regimens and Cell Component Turnover

Numerous investigations have shown that resistance training with eccentric actions performed
at high intensities may have higher benefits for muscle strength and hypertrophy compared to
concentric or isometric contraction modes [193]. In addition, early adaptations have been reported
with eccentric overload training [194]. Protein turnover pathways can be affected by different modes
of contraction and the higher effects of eccentric mode on muscle growth seems to be associated with
a greater activation of MTORC1 pathway [195]. However, contraction mode appears less influential on
muscle hypertrophy with prolonged high-volume resistance training and protein and carbohydrate
supplementation becomes more critical factors to further increase muscle mass [195]. Furthermore,
when the magnitude of the force–time integral is normalized, studies in both rodents and humans found
that eccentric mode induces similar anabolic responses to concentric mode [196,197]. From a molecular
viewpoint, MTORC1 activation after eccentric contractions seems more related to PA synthesis than
the PI3K/Akt signaling pathway [198]. Even if muscular hypertrophy involves the MTORC1 pathway
during the post-exercise period [199], many weeks of training do not necessarily induce major changes
on the basal MTORC1 pathway [195]. Under the same force–time integral, with regard to proteolytic
markers (i.e., FOXO3 and ULK1 phosphorylation, LC3B-II/I ratio, and MAFbx/atrogin-1, MuRF1 and
p62 expression), the study from Ato and co-workers suggests that the contraction mode does not
appear as a factor that may differentially regulate proteolytic pathways in the early phase of muscle
contractions [200]. During exercise, a study from Sandri’s lab highlighted that autophagy seems
important to preserve mitochondrial function during damaging muscle eccentric contractions [201].
Altogether, these data still suggest that the magnitude of force–time integral should be the main factor
to explain differences in anabolic or catabolic response. The energy cost of eccentric actions is lower
compared with concentric contractions, and eccentric exercise allows one to develop higher loads
during a training session. In addition, autophagy flux experiments remain to be performed to avoid
misinterpretation of the modulation of autophagy or mitophagy according to contraction mode. Thus,
from our point of view, further studies have to consider these features.

Some studies explored the response to the combination of eccentric endurance exercise and
hypoxia in skeletal muscle. Thus, the study from Klarod and co-workers suggests that downhill
walking performed at a low altitude may present some advantages for physical fitness in pre-diabetic
men [202]. In this study, eccentric endurance exercise training at a low altitude (from 850 to 1360 m)
was shown to improve aerobic performance. At a moderate altitude (from 2000 to 2447 m), the same
exercise training program increased the biological antioxidant activity of plasma. In rodents, the study
from Rizo-Roca investigated if intermittent hypobaric hypoxia combined with aerobic exercise may
be beneficial for recovery from eccentric-damaging exercises. The authors found that this strategy
may reverse the signs of muscle damages and reinforce or preserve the fiber oxidative phenotype in
response to several weeks of training [203]. The same group reported that this strategy may improve
important mitochondrial aspects (i.e., fission/fusion markers and the expression of actors involved
in mitochondrial biogenesis) during recovery from eccentric exercises [204]. These results open
important perspectives on the use of hypoxia combined with aerobic exercise as a recovery method
from damaging exercises in both athletes and patients. However, to provide further recommendations
and better understand cellular adaptations, more studies have to be developed, especially studies
on myofibrillar protein synthesis and mitochondria remodeling, in response to the eccentric exercise
performed in hypoxia.

7. Conclusions and Perspectives

The preservation of muscle mass and oxidative capacity are essential for maintaining quality of
life. In the past few years, advances have expanded our understanding on the impact of exercise on
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the events that govern organelle turnover and the role played by crucial factors, especially AMPK,
MTORC1, and FOXO. Concerning protein synthesis, a major discovery of this last decade is that
DGKζ appears as a key regulator of MTORC1 during overload. Importantly, the modulation and
trafficking of eIF3f and its potential regulation through DGKζ/FOXO3 axis has been, for the first time,
pointed out in the context of exercise. In addition, our knowledge on the physiological significance
of MTORC1 recruitment to the lysosome and to the cell periphery has been significantly improved
by using immunofluorescence approaches. Concerning protein breakdown during exercise, Parkin
and Mul1 have been recognized as critical E3-ligases for normal skeletal muscle and mitochondria
maintenance. Parkin appears essential for mitochondrial adaptations to endurance training and the
maintenance of functioning mitochondria. However, the potential role of Mul1 in mitochondrial
adaptations to chronic exercise has to be addressed. Furthermore, studies on hypoxia highlighted that
hypoxic stress may blunt the MTORC1 pathway after resistance training but compensative mechanisms
(i.e., transcription of satellite cells regulators) are potentially involved in hypertrophy and strength
gains. Studies have to be initiated, in particular, with measurements of autophagy/mitophagy flux to
reinforce our knowledge on the effects of training in hypoxia on organelle quality control. Regarding
the mode of contraction, eccentric exercises lead to a greater activation of the MTORC1 pathway,
probably through a PA-dependent mechanism. Finally, further studies on this topic and the impact of
nutritional interventions have to be developed, to better understand skeletal muscle adaptations to
training, thanks to organelle quality, and to develop countermeasures during illness.
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