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Many plants grow organs and tissues with twisted shapes. Arabidopsis mutants with

impaired microtubule dynamics exhibit such a phenotype constitutively. Although the

activity of the corresponding microtubule regulators is better understood at the molecular

level, how large-scale twisting can emerge in the mutants remains largely unknown.

Classically, oblique cortical microtubules would constrain the deposition of cellulose

microfibrils in cells, and such conflicts at the cell level would be relaxed at the tissue scale

by supracellular torsion. This model implicitly assumes that cell-cell adhesion is a key step

to transpose local mechanical conflicts into a macroscopic twisting phenotype. Here we

tested this prediction using the quasimodo1 mutant, which displays cell-cell adhesion

defects. Using the spriral2/tortifolia1 mutant with hypocotyl helical growth, we found

that qua1-induced cell-cell adhesion defects restore straight growth in qua1-1 spr2-2.

Detached cells in qua1-1 spr2-2 displayed helical growth, confirming that straight growth

results from the lack of mechanical coupling between cells rather than a restoration of

SPR2 activity in the qua1mutant. Because adhesion defects in qua1 depend on tension

in the outer wall, we also showed that hypocotyl twisting in qua1-1 spr2-2 could be

restored when decreasing the matrix potential of the growth medium, i.e., by reducing the

magnitude of the pulling force between adjacent cells, in the double mutant. Interestingly,

the induction of straight growth in qua1-1 spr2-2 could be achieved beyond hypocotyls,

as leaves also displayed a flat phenotype in the double mutant. Altogether, these results

provide formal experimental support for a scenario in which twisted growth in spr2mutant

would result from the relaxation of local mechanical conflicts between adjacent cells via

global organ torsion.
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INTRODUCTION

Because complex morphogenesis generally involves differential growth, mechanical conflicts are
widespread in developing organisms. In animals, such conflicts can be resolved through cell
rearrangements, as cells are in principle free to move. Yet, cell-cell adhesion often prevents such
outcome and patterns of tension and compression appear. Mechanical conflicts can be resolved
through global tissue deformation, as shown for instance in the gut (Savin et al., 2011; Nerurkar
et al., 2019). Interestingly, some of the relevant mechanotransduction factors play a role in cell-cell
adhesion. For instance, cadherins are both central regulators of epithelial cohesions and transducers
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of mechanical signals inside the cell (Leckband and de Rooij,
2014). Therefore, while mechanical conflicts emerge from
differential growth and cell-cell adhesion, they also in turn
contribute to growth patterns and adhesion through the cell
response to mechanical stress, in a feedback loop.

With few exceptions such as pollen tube and fiber cell growth
(Gorshkova et al., 2012; Chebli and Geitmann, 2017; Marsollier
and Ingram, 2018), cell-cell adhesion and thus symplastic growth
is ubiquitous in developing plant organs. The presence of
contiguous cell walls with a pectin-rich middle lamella maintains
adhesion between adjacent cells (Jarvis et al., 2003) (Daher and
Braybrook, 2015) Besides, many reports point at the high degree
of growth heterogeneity in plant tissues (Hong et al., 2018).
It follows that mechanical conflicts are widespread in growing
plants. As reported in animals, plant cells are able to sense and
respond to such cues to control cell division plane orientation
(Lintilhac and Vesecky, 1984; Louveaux et al., 2016), growth
direction (Green and King, 1966; Hamant et al., 2008), cell
polarity (Heisler et al., 2010; Nakayama et al., 2012; Bringmann
and Bergmann, 2017) and cell identity (Coutand et al., 2009;
Landrein et al., 2015). In parallel to these active responses to
stress, mechanical conflicts may also be resolved through passive
and global tissue deformation (Coen et al., 2004). For instance,
mechanical conflicts are thought to play a major role in shaping
complex floral shapes, such as Antirhinum petals, as a result of
instructive biochemical signals, but without necessarily involving
an active mechanical feedback on cells (Coen and Rebocho, 2016;
Rebocho et al., 2017). One of the challenges for future research in
this area is to understand the relative contributions of passive and
active responses to mechanical stress in morphogenesis. Here we
take the example of organ twisting to explore that question.

Several mutations on microtubule regulators, or even on
tubulins, lead to twisted organs in Arabidopsis (Ishida et al.,
2007b; Smyth, 2016). In such mutants, cells exhibit oblique
cortical microtubule orientations and the handedness of the
microtubule helix is always opposite to the handedness of tissue
growth (Ishida et al., 2007a). For instance, the lefty mutations
in α-tubulins lead to both a left-handed helical growth and
a right-handed cortical microtubule orientations in the root
epidermis (Thitamadee et al., 2002). Such phenotypes are only
partially understood.

What is best known is the relation between microtubule
orientation and growth: except for a few counterexamples
[e.g., (Himmelspach et al., 2003; Sugimoto et al., 2003)],
cortical microtubules generally guide the deposition of cellulose
microfibrils; as cellulosemicrofibril stiffness constrain cell growth
direction, cortical microtubule orientation becomes a proxy
for the mechanical anisotropy of cell walls. Therefore, right-
handed microtubule orientations would inevitably drive cell
growth direction in a left-handed helix (Thitamadee et al.,
2002; Smyth, 2016). Conversely, organ twisting is affected
when the cellulose synthase—microtubule nexus is impaired
in the csi1 mutant (Landrein et al., 2013). Another cell wall
mutant has recently been shown to have organ twisting without
affecting microtubule organization, but is nevertheless believed
to impact cellulose organization and cell wall mechanical
anisotropy (Saffer et al., 2017).

What is least known is 2-fold. First, it is unclear how
microtubule arrays would acquire a stable and oblique
orientation. Reports so far rather suggest that unstable
microtubules tend to acquire a right-handed orientation
(as in the lefty mutants), while stabilized microtubules acquire
a left-handed orientation (Ishida et al., 2007b). This latter
case is typical of the spiral2/tortifolia1 mutant, which exhibits
right-handed helical growth (Buschmann et al., 2004; Shoji et al.,
2004). SPR2 was recently shown to bind and stabilize the minus
end of microtubules to control their depolymerization rate, with
an indirect impact on microtubule severing (Fan et al., 2018;
Nakamura et al., 2018), although this latter point is debated and
might depend on tissue identity (Wightman et al., 2013). In
the end, microtubule dynamics are stimulated in spr2 mutants,
resulting in more stable cortical microtubule alignments. It
remains unclear how affecting microtubules dynamics would
lead to stable and consistent left or right handedness of cortical
microtubule arrays. It has been proposed that the origin of such
handedness lies in the microtubule structure itself. Microtubules
are in general composed of 13 protofilaments and this confers
them a straight structure. However, microtubules can in
principle be composed of 10 to 16 protofilaments, some of these
configurations conferring them a consistent left or right handed
twisted structure (Pampaloni and Florin, 2008). Such chirality
at the molecular level could be the basis for the consistent tilted
microtubule arrays, however this has not been confirmed in
twisting mutants so far (Ishida et al., 2007b). Second, it is unclear
how local cell wall modifications would lead to torsion of a
whole organ. Indeed, because they exhibit oblique mechanical
anisotropy in their walls, each cell would simply twist around
their axis as they grow, if they were not attached to one another
(Wada and Matsumoto, 2018). However, because of cell-cell
adhesion, these cells cannot twist independently. It has been
proposed that such local mechanical conflicts could be relaxed
by the global torsion of the organ (Wada and Matsumoto, 2018,
see Figures 1A,B). However, the presence of these conflicts, and
their role in helical growth, has never been demonstrated in vivo.
This is what we aim at testing here.

MATERIALS AND METHODS

Plant Material and Genotyping
The qua1-1 (WS-4) T-DNA insertion line and the spr2-2 (Col-0)
EMS mutant, were previously reported in Bouton et al. (2002)
and Shoji et al. (2004), respectively. The qua1-1 mutant was
genotyped using the primers described in Bouton et al. (2002)
and the spr2-2mutant was genotyped by Sanger sequencing using
the following primers: FW_5′-TGTCATCAGCAGCTCAGACA-
3′ and RV_5′-TGAGAGAGTGGAACCATCGG-3′.

Growth Conditions
Arabidopsis thaliana seeds were sown on solid custom-
made Duchefa “Arabidopsis” medium (DU0742.0025, Duchefa
Biochemie), containing either 1 or 2.5% agarose as gelling agent
(Figures 4K,L, and see Verger et al., 2018).

Seeds were cold treated for 48 h to synchronize germination
and then grown in a phytotron at 20◦C. For hypocotyl etiolation,
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FIGURE 1 | Twisting, from the molecular to the organ scale. (A,B) Schematic

representation of the effect of cortical microtubules (represented in green)

orientation at the cell level (small cylinder on the left) and its effect at the whole

organ level (cylinder on the right), explaining straight, and twisting growth in a

cylindrical organ. (A) Transverse cortical microtubules promote the longitudinal

expansion of the cell, which leads to straight cell files at the organ level, as

observed in wild-type hypocotyls, at least when considering inner cells

(Crowell et al., 2011). (B) Tilted cortical microtubules impose a tilted

mechanical anisotropy of the cell wall leading to the twisting of the cell at the

single cell level. However, because cells are attached to one another they

cannot twist by themselves and the mechanical conflict is relaxed through

global organ torsion, as in spr2-2 seedlings.

seeds were exposed to light for 4 h to induce germination. The
plates were then wrapped in three layers of aluminum foil to
ensure skotomorphogenesis, and placed in a phytotron at 20◦C
for 4 days before imaging.

Cell Wall Staining and Confocal
Microscopy
For cell wall staining, plants were immersed in 0.2 mg/ml
propidium iodide (PI, Sigma-Aldrich) for 10min and washed
with water prior to imaging. For imaging, samples were placed
between glass slide and coverslip separated by 400µm spacers to
prevent tissue crushing. Images were acquired using a Leica TCS
SP8 confocal microscope. PI excitation was performed using a
552 nm solid-state laser and fluorescence was detected at 600–
650 nm. Stacks of 1024× 1024 pixels (pixel size of 0.363× 0.363
micron) optical section were generated with a Z interval of 1µm.

Twisting Angle Quantifications and
Statistical Analyses
We quantified the angle of cell files of the first cortex cell layer
in the hypocotyl (i.e., the layer under the epidermis, Figure 2K).
For each condition/mutant we quantified the twisting angle of
12 hypocotyls from 3 biological replicates. The angles were
measured relative to the hypocotyl axis. An angle of 0◦ reveals
no twisting, while positive and negative angle values mark left-
handed and right-handed twisting, respectively. Twisting angle
measurement was performed with Fiji (https://fiji.sc/). Statistical
analyses and data plotting was performed with R (https://www.r-
project.org/). Pairwise Wilcoxon rank sum tests were performed
to test the differences of twisting angle between the samples.

RESULTS

Loss of Cell-Cell Adhesion Prevents
Hypocotyl Twisting in qua1-1 spr2-2
To reveal the mechanical conflicts in mutants exhibiting helical
growth, we reasoned that disrupting cell-cell adhesion would lead
to cell autonomous behavior through the (partial) mechanical
uncoupling of cells, and would possibly affect the helical growth
of organs. To test that hypothesis, we thus analyzed the spr2
phenotype in the presence of cell-cell adhesion defects. The
QUA1 gene encodes a glycosyltransferase and mutation in the
gene impairs pectin synthesis and cell-cell adhesion (Bouton
et al., 2002;Mouille et al., 2007).We generated qua1-1 spr2-2 lines
and observed the hypocotyl phenotype by measuring the twisting
angle θT . An angle of 0◦ reveals no twisting, while positive
and negative angle values mark left-handed and right-handed
twisting, respectively. As reported before, hypocotyls exhibit
straight cell files for both WS-4 (Mean θTof −0.72 ± 1.18◦, n =

12 samples, Figures 2A,F) and Col-0 (Mean θTof 0.09± 1.74◦, n
= 12 samples, Figures 2B,G). As expected, in spr2-2, hypocotyls
exhibited a pronounced right-handed helix of cell files (Mean
θTof −9.98 ± 2.85◦, n = 12 samples, Figures 2D,I). For qua1-
1, in many cases cell files could not be properly recognized due
to the presence of major cell-cell adhesion defects (Figure 2C).
However, we could observe cell files in the cortex layer under
the epidermis, which revealed no twisting for qua1-1 (Mean
θTof −1.23 ± 1.63◦, n = 12 samples, Figure 2H). Note that,
to allow comparison between genotypes, all quantifications of
twisting angles were obtained on that cell layer (Figure 2K, see
material and method). Strikingly, we found that in the qua1-1
spr2-2 double mutant, cell files were straight: spr2-induced helical
growth was suppressed (θTof −0.23 ± 2.56◦, n = 12 samples,
Figures 2E,J). Pairwise Wilcoxon rank sum test was used to test
the differences between these genotypes. While WS-4, Col-0,
qua1-1, and qua1-1 spr2-2 were not significantly different from
one another, only spr2-2 was found to be significantly different
from all the other genotypes (Figure 2L). This suggests that the
mechanical coupling between adjacent cells is indeed required for
the production of twisted hypocotyls in spr2.

qua1-1 spr2-2 Cells Retain the Ability to
Undergo Helical Growth
To explain the restoration of straight growth in qua1-1 spr2-
2, one may invoke alternative hypotheses. For instance, an
unknown genetic interaction between qua1 and spr2 mutations
may compensate the loss of spr2 activity, e.g., by affecting
microtubule dynamics. Asmentioned above, the relation between
microtubule dynamics and the helical behavior of their arrays
is still an open question, so we cannot completely exclude
that scenario. Yet, the mechanical uncoupling of adjacent cells
in qua1-1 and qua1-1 spr2-2 offers the unique opportunity to
reveal the contribution of SPR2 to growth direction in semi-
isolated cells. In qua1-1, detached epidermal cells curled outward
from the hypocotyl, as previously reported (Figures 3A,C,D and
Movies S1, S2). More importantly, we observed that these cells
did not exhibit twisted growth, they detached and curled along
their longitudinal axis, showing that the qua1mutation does not
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FIGURE 2 | Loss of cell-cell adhesion prevents hypocotyl twisting in qua1-1 spr2-2. (A–E) Z-projections (maximal intensity) of confocal stacks from representative (12

samples observed in 3 biological replicates for each genotype/condition), propidium iodide stained, four-day old dark-grown hypocotyls. (F–J) Optical sections from

the corresponding stacks from A–E, revealing the first cortex cell layer in the hypocotyl (i.e., the layer under the epidermis), following the yellow line drawn in (K). (K) is

an orthogonal section of an hypocotyl showing the epidermal as well as the two cortex cell layers. (A,F) WS-4, (B,G) Col-0, (C,H) qua1-1, (D,I) spr2-2, and (E,J)

qua1-1 spr2-2, highlight the twisting phenotype of spr2-2 as compared to the straight growth of the other genotypes. (L) Boxplot of twisting angle values,

representing each data point and their distribution for each genotype. An angle of 0◦ corresponds to no twisting (straight growth), while positive and negative angle

values mark left-handed and right-handed twisting, respectively. Wilcoxon rank sum test ***p < 0.0005. Scale bars, 50µm.

affect cell twisting. In the qua1-1 spr2-2 background, epidermal
cells also detached, but they displayed a clear torsion at the single
cell level (Figures 3B,E–H and Movies S3,S4). This phenotype
could be observed on every qua1-1 spr2-2 samples. Note that cells
had to be sufficiently detached along their axis to exhibit torsion
(see Figure 3B in which one cell is largely detached and is twisted,
whereas surrounding cells exhibit abnormal morphology but are
not twisting on their own as they are not detached from the
epidermis). We never observed cells curling “straight” along the
longitudinal axis of the hypocotyl in the qua1-1 spr2-2 line. This
strongly suggests that the spr2 mutation still promotes helical
growth in the qua1-1 background. Therefore, the mechanical
uncoupling between adjacent cells in qua1 spr2-2 allows the
relaxation of the local torsional stress by single cell, rather than
whole organ, twisting.

Hypocotyl Twisting in qua1-1 spr2-2 Is
Restored Through the Modulation of
Cell-Cell Adhesion Defects
To further confirm that cell-cell adhesion is indeed required
for hypocotyl twisting in spr2-2, we next undertook to restore
adhesion defects in qua1-1 spr2-2 and check whether hypocotyl

twisting would also be restored in these conditions. To do so,
we grew the seedlings on medium containing 2.5% agarose,
instead of 1% agarose (Figures 4K,L). Indeed, increasing agarose
concentration decreases the matrix potential, which in turn
affects plant cell mechanics: water availability to the plant and
tension in the outer wall are reduced, as previously shown
using atomic force microscopy (Verger et al., 2018). In these
conditions, cell-cell adhesion defects were largely rescued in
qua1-1, as previously shown (Verger et al., 2018), consistent with
a scenario in which cracks between cells occur only if tension
in the epidermis is strong enough to pull cells apart (Figure 4).
Therefore, this strategy allowed us to mechanically rescue the
adhesion defects in the qua1-1 spr2-2 double mutant and test its
impact on hypocotyl shape.

When seedlings were grown on medium containing 2.5%
agarose, hypocotyls still exhibited straight cell files in WS-4
(Mean θTof 0.11 ± 1.36◦, n = 12 samples, Figures 4A,F), Col-
0 (Mean θTof −0.48 ± 2.07◦, n = 12 samples, Figures 4B,G)
and qua1-1 (Mean θTof −0.02 ± 2.65◦, n = 12 samples,
Figures 4C,H). Similarly the spr2-2 mutant still exhibited a
pronounced right-handed helix of cell files (Mean θTof −9.47
± 2.14◦, n = 12 samples, Figures 4D,I). However, twisting
growth was almost fully restored in the qua1-1 spr2-2 background
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FIGURE 3 | qua1-1 spr2-2 cells retain the ability to undergo helical growth. (A–H) Z-projections (maximal intensity) of confocal stacks from representative, propidium

iodide stained, four-day old dark-grown hypocotyls from (A,C,D) qua1-1 and (B,E–H) qua1-1 spr2-2. Panel C and E are close-ups from (A,B) respectively. (D,F,G,H)

Are additional close-up views from additional qua1-1 (D) and qua1-1 spr2-2 (F,G,H) samples. qua1-1 cells detach and curl along their longitudinal axis, while in the

qua1-1 spr2-2 background, epidermal cells also detach, but they displayed a clear torsion at the single cell level. Scale bars, 30µm.

(Mean θTof −6.91 ± 3.53◦, n = 12 samples, Figures 4E,J).
Pairwise Wilcoxon rank sum tests showed that WS-4, Col-0,
qua1-1were not significantly different from one another, whereas
spr2-2 and qua1-1 spr2-2 were both significantly different from
WS-4, Col-0 and qua1-1. Note that spr2-2 and qua1-1 spr2-2
were also significantly different from each other. This suggests
that the twisting in qua1-1 spr2-2 is not restored up to the
degree observed in spr2-2 (Figure 4M), also consistent with
the observation that cell adhesion defects of qua1-1 in these
conditions are largely rescued but not fully restored (Figure 4E).
Nevertheless, it remains that the mechanical “re-coupling” of
adjacent cells in qua1-1 is sufficient to generate a significant
impact on twisted growth.

Cell-Cell Adhesion Defects Suppress
Twisted Growth in qua1-1 spr2-2 Leaves
Because hypocotyl may have a rather specific growth mode
(Gendreau et al., 1997) and involving strong tissue tension

resulting from mechanical conflicts between the epidermis and
inner tissues (Kutschera, 1992; Robinson and Kuhlemeier, 2018),
the restoration of straight growth in qua1-1 spr2-2may be specific
to the hypocotyl. Furthermore, hypocotyl elongation in the qua1-
1 spr2-2 line was reduced, when compared to spr2-2 mutants
(Figures 5D,E) and this may also contribute to the degree of
hypocotyl twisting. To test whether the mechanical uncoupling
of adjacent cells is sufficient to restore straight growth beyond
hypocotyl cells, we grew the double mutant in the greenhouse,
on soil. Indeed, in vitro plants grow in an atmosphere that
is saturated in water, and unless the matrix potential or the
osmolarity of the medium is changed, growth conditions are very
hypo-osmotic, consistent with the dramatic adhesion defects in
qua1-1 mutants on 1% agar. In fact, in these conditions, viable
adult plants cannot be retrieved as the shoot apical meristem also
experiencemassive disorganization and rather resembles a callus-
like structure (Verger et al., 2018). Plants that are grown and
watered on soil are likely under less hypo-osmotic conditions,
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FIGURE 4 | Hypocotyl twisting in qua1-1 spr2-2 is restored on 2.5% agarose medium. (A–E) Z-projections (maximal intensity) of confocal stacks from representative

(12 samples observed in 3 biological replicates for each genotype/condition), propidium iodide stained, four-day old dark-grown hypocotyls. (F–J) Optical sections

from the corresponding stacks. (A,F) WS-4, (B,G) Col-0, (C,H) qua1-1, (D,I) spr2-2, and (E,J) qua1-1 spr2-2, highlight the restoration of twisting phenotype of

qua1-1 spr2-2 to a degree comparable to that of spr2-2. (K,L) Rescue of qua1-1 cell adhesion defect via the modulation of the medium water potential.

(K) Schematic representation of a dark-grown qua1-1 hypocotyl grown on a 1% agarose medium, and displaying extensive cell adhesion defects (Growth conditions

used in Figure 1). (L) Schematic representation of a dark-grown qua1-1 hypocotyl grown on a 2.5% agarose medium, and displaying reduced cell adhesion defects

(Growth conditions used in this figure). (M) Boxplot of twisting angle values, representing each data point and their distribution for each genotype. An angle of 0◦

reveals no twisting (straight growth), while positive and negative angle values mark left-handed and right-handed twisting, respectively. Wilcoxon rank sum test ***p <

0.0005. Scale bars, 50µm.

simply because the atmospheric hygrometry is not saturated
in water. Typically, in our greenhouse, we keep hygrometry
at 70%. In such conditions, cell-cell adhesions defects are still
present in qua1-1, but are not as dramatic as in in vitro
plants grown on 1% agar. This allowed us to explore the qua1-
1 spr2-2 phenotype beyond the opened cotyledon stage, and
in particular in leaves and petioles where tissue twisting is
easily detectable. As expected, greenhouse-grown spr2-2mutants
exhibited twisted leaves (Figure 5). However, such phenotype
was not observed in the qua1-1 spr2-2 double mutant: leaf aspect-
ratio was slightly affected, but leaves remained flat (Figure 5).
Altogether, these results demonstrate that spr2-2 mutant cells
experience a mechanical conflict that is resolved through organ
torsion, via the mechanical coupling of adjacent cells.

DISCUSSION

Although mechanical conflicts are thought to be widespread in
developing organisms, their presence is most often only predicted
through computational modeling, or revealed through invasive

mechanical alterations such as laser ablations. Here, using the
qua1-1 spr2-2 double mutant with naturally occurring cell-
cell adhesion defects and twisted cell growth, we reveal that
individual cells tend to undergo torsion, while the restoration
of adhesion prevents single cell torsion but leads to organ
torsion. Therefore, we provide experimental support for the
theory in which organ torsion relaxes the local mechanical
conflicts that emerge between adjacent cells with oblique cortical
microtubules, and arguably, oblique cellulose microfibrils (Wada
and Matsumoto, 2018).

Note that the picture is actually slightly more complex than
what is described in Figures 1A,B, notably regarding the actual
organization of cortical microtubules and cellulose microfibrils
in the hypocotyl. Cortical microtubules and cellulose microfibrils
in the epidermis are initially aligned transversely during early
and accelerating growth phases of the dark-grown hypocotyl.
However they then gradually reorient longitudinally in the outer
wall of the epidermis during the rapid and decelerating growth
phase, arguably to resist growth and stress from internal tissues
(Crowell et al., 2011; Robinson and Kuhlemeier, 2018; Verger
et al., 2018), while they remain transverse on the lateral and
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FIGURE 5 | Cell-cell adhesion defects suppress twisted growth in qua1-1 spr2-2 leaves. (A–E) Pictures of 2-week old plants grown on soil. (A) WS-4, (B) Col-0,

(C) qua1-1, (D) spr2-2, and (E) qua1-1 spr2-2, highlight the twisting phenotype of spr2-2 as compared to the straight growth of the petiole and leaves for the other

genotypes. Scale bars, 1 cm.

inner wall faces of the epidermal cells. In fact, such differential
mechanical anisotropy on the different faces of the cell could
explain the curling phenotype of the detached cells in qua1-
1 (Figures 3A,C,D) as well as the helical shape (rather than
simply twisted shape) of the detached cells in qua1-1 spr2-
2 (Figures 3B,E–H). This particular microtubule and cellulose
organization remains compatible with the twisting growth model
proposed by Wada and Matsumoto (Wada and Matsumoto,
2018). Notably, when a genetic mutation, like spr2-2, imposes
oblique cortical microtubule orientations, the resistance of
longitudinal cellulose microfibrils in the outer cell wall becomes
less directional, thus leading to twisting.

Organ twisting is also a good system to analyze the balance
between active and passive mechanical response to mechanical
conflicts. Indeed, as adjacent cells become separated following
cell-cell adhesion defects, the supracellular propagation of
mechanical signals also becomes impaired. Typically, tensile
stress direction has been proposed to serve as an instructive
cue that provides consistent cortical microtubule alignments
over several cell files in several plant tissues (Hejnowicz et al.,
2000; Hamant et al., 2008; Robinson and Kuhlemeier, 2018).
Because the epidermis of aerial organs is under tension in
plants, this comes down to a coordinating role of the outer
wall that embeds all epidermal cells. Cell-cell adhesion defects
generate cracks in that outer wall, disrupting the co-alignment
of cortical microtubules (Verger et al., 2018). Therefore, organ
torsion in mutants with microtubule defects requires adhesion
as a passive mediator of mechanical continuity between adjacent
cells, but it may also require adhesion as an active synchronizer
of microtubule behavior through mechanical stress propagation.
In that respect, the identification of interactions between certain
wall receptor kinases and pectin (e.g., Feng et al., 2018),
may open the way for an analysis of the interplay between
mechanoperception and adhesion in morphogenesis.

Cell-cell adhesion defects also destroy plasmodesmata
connections, and thus alter the possibility to have large
symplastic domains with consistent growth properties. In
that scenario, isolated cells in adhesion mutants may grow
independently from their neighbors, as clearly shown by the
detached qua1-1 spr2-2 mutant cell morphology. This may have

two effects: cell growth heterogeneity may increase because
neighboring cells would not mutually constrain their growth
anymore, and this would likely result in distorted organ shapes.
In an alternative scenario, growth heterogeneity may decrease,
either because the presence of adjacent cells rather fuels growth
heterogeneity, as observed in shoot apical meristems (Uyttewaal
et al., 2012), or because the supracellular averaging of individual
cells growing at different speed may produce more reproducible
organs than large sectors of cells growing at different speed,
as shown in sepals (Hong et al., 2016). The ambivalent nature
of mechanical conflicts in growth heterogeneity has recently
been analyzed in computer simulations (Fruleux and Boudaoud,
2019). In a more complex scenario, plasmodemata may have a
direct role in organ twisting. Although this is less likely and still
largely hypothetical, carpels were shown to twist in the quirky
mutant (Trehin et al., 2013) and the QUIRKY protein localizes to
plasmodesmata (Vaddepalli et al., 2014).When confronted to our
results, these alternative scenarios are not exclusive. Yet, the idea
that cell-cell adhesion primarily disrupts the passive relaxation
of local mechanical conflicts is by far the most parsimonious in
the case of organ torsion.

Finally, we focused here on the spiral2 mutant with a fixed
handedness, which is usually the case for mutants affected in
microtubule functions. There are other ways to induce organ
twisting in Arabidopsis. In particular, mutants affected in auxin
response or transport can exhibit twisted organs too, although the
handedness is not fixed in such cases (Ishida et al., 2007b). More
generally, organ twisting is widespread in Angiosperms, and
this offers several adaptative and evolutive advantages (Smyth,
2016). For instance, growing organs can rapidly twist in order
to reorient relative to light source or gravity field in a process
called “helical tropism” (Borchers et al., 2018). Thin vertical
leaves of Typha sp. tend to twist and this has been associated to
increased stability and reduced bending of the leaf in response
to its own weight (Schulgasser and Witztum, 2004); twisted
awns of wheat seeds contribute to their dispersal (Elbaum et al.,
2007); tendrils twist through contraction of internal tissues,
thereby allowing mechanical support (Gerbode et al., 2012).
Understanding organ twisting may thus also have important
ecological and developmental implications.
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in Figure 3C.
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in Figure 3D.

Movie S3 | Cell curling in qua1-1 spr2-2. 360 degree rotation from the sample

presented in Figure 3E.

Movie S4 | Cell curling in qua1-1 spr2-2. 360 degree rotation from the sample

presented in Figure 3G.
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