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Abstract

Horňak, Przybyło and Woźniak recently proved that almost every digraph can be 4-arc-
weighted so that, for every arc −→uv, the sum of weights incoming to u is different from the
sum of weights outgoing from v. They conjectured a stronger result, namely that the same
statement with 3 instead of 4 should also be true. We verify this conjecture in this work.

This work takes place in a recent “quest” towards a directed version of the 1-2-3 Con-
jecture, the variant above being one of the last introduced ones. We take the occasion of
this work to establish a summary of all results known in this field, covering known up-
per bounds, complexity aspects, and choosability. On the way we prove additional results
which were missing in the whole picture. We also mention the aspects that remain open.

Keywords: 1-2-3 Conjecture; Directed variants; Bounds; Complexity; Choosability.

1. Introduction

Let G be an undirected graph, and ω be an edge-weighting of G. From ω, we can
associate to every vertex v the sum σ(v) of the weights on its incident edges. We call ω
neighbour-sum-distinguishing if σ(u) 6= σ(v) for every edge uv of G. It turns out that G
always admits such neighbour-sum-distinguishing edge-weightings, unless it includes K2

as a connected component. Thus, we call G nice whenever it has no such connected
component.

Whenever G is nice, it is legitimate to wonder what is the smallest k such that G ad-
mits neighbour-sum-distinguishing k-edge-weightings; the smallest such k for G is denoted
χΣ(G). Karoński, Łuczak and Thomason conjectured in 2004 that for every nice graph G,
the value of χΣ(G) should never exceed 3. This is known as the 1-2-3 Conjecture nowa-
days [11].

1-2-3 Conjecture (Karoński, Łuczak, Thomason [11]). For every nice graph G, we have
χΣ(G) ≤ 3.

So far, the best known result towards the 1-2-3 Conjecture is due to Kalkowski, Karoński
and Pfender [10], who proved that χΣ(G) ≤ 5 holds for every nice graph G. It has to be
known also that there exist graphs G with χΣ(G) = 3; however, it is NP-complete to decide
whether χΣ(G) ≤ 2 is true for a given G, as first proved by Dudek and Wajc [9]. For more
results and details, refer to [14] for a survey by Seamone.

In the recent years, there have been quite a few efforts for bringing the 1-2-3 Conjecture
to digraphs. This does look as a promising direction for research. Indeed, note that, by an
arc-weighting of a digraph D, each vertex v gets associated two sums σ−(v), σ+(v), being
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the sum of weights on the arcs incoming and outgoing, respectively, to and from v. Since
there are here two sum parameters to play with, there are several natural ways for defining
a directed 1-2-3 Conjecture; and one can expect them to show different behaviours that
might be or be not reminiscent of that behind the original 1-2-3 Conjecture. As will be
described in Sections 4 and 5, things actually turned out to be rather deceiving from that
perspective.

We are going to discuss about most known directed variations of the 1-2-3 Conjecture.
Most of the such studied variants ask, for any arc −→uv of a digraph (arc-weighted by ω),
that one of the parameters σ−(u), σ+(u) is different from one of σ−(v), σ+(v). To get a
consistent terminology, we deal with these variants as follows. To each symbol α ∈ {−,+},
we associate a parameter: − is associated to σ− while + is associated to σ+. Now, for two
symbols α, β ∈ {−,+}, we say that an arc-weighting of a digraph D is (α, β)-distinguishing
if, for every arc −→uv of D, the parameter of u associated to α is different from the parameter
of v associated to β. When writing χα,β(D), we refer to the least k such that D admits
(α, β)-distinguishing k-arc-weightings, if any. When referring to the (α, β) variant of the
1-2-3 Conjecture, we mean the variant involving (α, β)-distinguishing arc-weightings.

Note that this terminology already allows to encapsulate four natural directed variants
of the 1-2-3 Conjecture (with the (−,−) variant being actually identical to the (+,+)
variant, up to reversing arc directions [4]). Among these four variants, the (−,+) variant is
the most recent one, as it was only introduced in 2018 by Horňák, Przybyło andWoźniak [7].
They first noticed that χ−,+(D) is not defined for digraphs having an arc −→uv such that u
is a source (vertex without arcs incoming) and v is a sink (vertex without arcs outgoing).
Such an arc is called an ss-arc. For digraphs with no ss-arcs, it turns out that χ−,+ is not
bounded by an absolute constant, but this is only because of the presence of so-called lonely
arcs, which are arcs −→uv such that d+(u) = d−(v) = 1 (i.e., −→uv is the only arc outgoing from
u, and the only arc incoming to v). Regarding the (−,+) variant, a digraph is said nice
whenever it has no ss-arcs nor lonely arcs; this terms makes sense because χ−,+ becomes
bounded by a constant for digraphs without such bad arcs.

Theorem 1.1 (Horňák, Przybyło, Woźniak [7]). For every nice digraph D, we have
χ−,+(D) ≤ 4.

Horňák, Przybyło and Woźniak did not come up with an example of digraph showing
that Theorem 1.1 is tight; they thus left the following conjecture open, which would be
reminiscent of the 1-2-3 Conjecture:

Conjecture 1.2 (Horňák, Przybyło, Woźniak [7]). For every nice digraph D, we have
χ−,+(D) ≤ 3.

As a support to Conjecture 1.2, its authors proved it for several families of digraphs,
including tournaments and symmetric digraphs.

Our original intention in this paper is to pursue the work of Horňák, Przybyło and
Woźniak, by providing two more results on the (−,+) variant of the 1-2-3 Conjecture. Our
first main result, given in Section 2, is a proof of Conjecture 1.2. Our second result, in
Section 3, is a series of complexity results on the (−,+) variant; in particular, we prove that
there is no “good” characterization of nice digraphs D with χ−,+(D) ≤ 2, unless P=NP.

We also take the occasion of this work to summarize, in Table 1 of Section 4, all results
known so far on directed variants of the 1-2-3 Conjecture. The aspects we survey include
known bounds, complexity aspects, and choosability. In the same section, we provide a few
additional results for the purpose of filling in some missing results. Some aspects remain
totally open though; such open questions are raised in concluding Section 5.
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2. Proof of Conjecture 1.2

To get their upper bound of 4 on χ−,+, Horňák, Przybyło and Woźniak, in [7], made
use of the following relationship between graph weighting and digraph weighting, first used
by Barme, Bensmail, Przybyło and Woźniak in [1] to deal with the (+,−) variant of the
1-2-3 Conjecture. To a digraph D, we can associate the following bipartite graph B(D):

• To each vertex v of D, we associate two vertices v+ and v− in B(D).

• For each arc −→uv of D, we add the edge u+v− to B(D).

Barme et al. noticed that, for the (+,−) variant, finding a (+,−)-distinguishing k-arc-
weighting of D is equivalent to finding a neighbour-sum-distinguishing k-edge-weighting of
B(D). This is because, given an arc-weighting ω of D and its corresponding edge-weighting
ω′ of B(D) (obtained in the obvious way by translating the weights directly from an arc to
the corresponding edge), the value of any σ+

ω (v) is exactly σω′(v+), while σ−ω (v) is exactly
σω′(v

−). Furthermore, for every arc −→uv of D, in B(D) we have the edge u+v−; hence, when
ω′ is neighbour-sum-distinguishing, we have σω′(u+) 6= σω′(v

−) which depicts exactly that
we require σ+

ω (u) 6= σ−ω (v) in the (+,−) variant.
The proof of Theorem 1.1 by Horňák et al. in [7] again relies on this notion of associated

bipartite graph. For the (−,+) variant, however, we note that this transformation is not
so appropriate any more. Indeed, consider a digraph D and its associated bipartite graph
B(D). For every arc −→uv of D, we have a corresponding edge u+v− in B(D). In a neighbour-
sum-distinguishing edge-weighting of B(D), we do require σ(u+) to be different from σ(v−),
which is not representative of what we require in a (−,+)-distinguishing arc-weighting of
D, namely that σ−(u) gets different from σ+(v). In B(D), it is actually probable that
σ(u−) gets equal to σ(v+), as u− and v+ might not be adjacent. The crucial point is that
edge-weighting B(D) gives an arc-weighting of D that is equivalent in terms of obtained
sums; however, it is not equivalent in terms of sum constraints, because, from the point of
view of the constraints, the structure of B(D) is not representative of that of D.

To overcome this point, Horňák et al. build neighbour-sum-distinguishing edge-weightings
of B(D) that, when derived to D, yield (−,+)-distinguishing arc-weightings no matter
what the sum constraints actually are. To that aim, they weight B(D) so that the σ(v+)’s
are different from all σ(v−)’s; this way, back in D, this yields an arc-weighting where the
σ+(v)’s are different from the σ−(v)’s. This is done by making sure the incident sums
range in two disjoint sets.

We prove our main result in this section using the same idea, but with a more refined
analysis. More precisely:

Theorem 2.1. Every nice connected bipartite graph G with bipartition U ∪ V has a
neighbour-sum-distinguishing 3-edge-weighting ω where:

• for every u ∈ U , we have σ(u) ∈ U and

• for every v ∈ V , we have σ(v) ∈ V,

for

• U := {0, 3} ∪ {3k + 1 : k ≥ 1} and

• V := {0, 1, 2} ∪ {3k − 1, 3k : k ≥ 2}.
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To make it clearer, we have

U := {0, 3, 4, 7, 10, 13, 16, ...}

and
V := {0, 1, 2, 5, 6, 8, 9, 11, 12, 14, 15, ...}.

The value 0 in both U and V is to catch vertices with degree 0, which can occur in associated
bipartite graphs. We note that the sets U and V are quite restrictive. Notably, for every
vertex u ∈ U with d(u) = 1, its unique incident edge must be weighted 3. However, the
sums in U and V that must be reached for vertices become more “regular” as soon as the
degree is large enough. For instance, every vertex with degree at least 4 cannot have sum
in {1, 2, 3} which are the peculiar values of the sets U and V. Vertices with small degree
will indeed be the most troublesome vertices in our upcoming proof of Theorem 2.1.

Before proceeding to proving Theorem 2.1, let us first prove it holds in particular cases.

Observation 2.2. Theorem 2.1 holds when G is a nice star.

Proof. Since G is nice, it has at least two leaves. If the leaves lie in U , then assigning
weight 3 to all edges is correct, as, that way, we get σ(u) = 3 ∈ U for every u ∈ U , while
we get σ(v) = 3k for the unique v ∈ V , where σ(v) ∈ V since k ≥ 2. If the leaves lie in V ,
then we consider two cases. Assume first there are 2k+ 1 leaves, for k ≥ 1. Then assigning
weight 1 to k + 1 edges and weight 2 to the remaining k edges is correct, as, that way, we
get σ(u) = k+ 1 + 2k = 3k+ 1 for the unique u ∈ U , where σ(u) ∈ U since k ≥ 1, while we
get σ(v) ∈ {1, 2} ⊂ V for every v ∈ V . Assume now there are 2k leaves, for k ≥ 1. Then
assigning weight 1 to k − 1 edges and weight 2 to the remaining k + 1 edges is correct, as,
here, we get σ(u) = k − 1 + 2(k + 1) = 3k + 1 for the unique u ∈ U , where σ(u) ∈ U since
k ≥ 1, while we get σ(v) ∈ {1, 2} ⊂ V for every v ∈ V .

Observation 2.3. Theorem 2.1 holds when G is a nice path.

Proof. Since G is nice, it is a path x1..., xn with length at least 2. We prove the result in
three steps, distinguishing whether the two end-vertices are in U or V .

• Assume x1, xn ∈ U . If G has length 2, then a desired weighting is obtained when
assigning weight 3 to the two edges: this way, x1 and x3 both have sum 3 ∈ U , while
x2 has sum 6 ∈ V. If G has length 4, then a desired weighting is obtained when
assigning weights 3, 2, 2, 3 as traversing the edges from x1 to x5: this way, x1 and x5

both have sum 3 ∈ U , x3 has sum 4 ∈ U , while x2 and x4 have sum 5 ∈ V.
We now prove the general case by induction. Let x1, ..., x2k+1 be a path of length
2k (k ≥ 3) where x1, x2k+1 ∈ U . We here remove the last four edges x2k−3x2k−2,
x2k−2x2k−1, x2k−1x2k and x2kx2k+1 from G. By the induction hypothesis, the result-
ing smaller path G′ admits a desired 3-edge-weighting, which we wish to extend to
the four removed edges. Note that, in G′, vertex x2k−3 has degree 1; for its sum to
be in U , its unique incident edge must thus be weighted 3. We extend the weighting
to G by assigning weight 1 to x2k−3x2k−2 and x2k−2x2k−1, and weight 3 to x2k−1x2k

and x2kx2k+1. This way, the sum of x2k−3 and x2k−1 becomes 4 ∈ U , the sum of
x2k+1 is 3 ∈ U , the sum of x2k−2 is 2 ∈ V, and the sum of x2k is 6 ∈ V.

• Assume x1 ∈ U and xn ∈ V . We here remove the edge xn−1xn from G, resulting in a
smaller path G′ having its two end-vertices in U . In the previous case, we have seen
that such a path can be correctly 3-edge-weighted. Since xn−1 has degree 1 in G′,
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for its sum to belong to U its unique incident edge must be weighted 3. We extend
this weighting to xn−1xn, thus to G, by assigning weight 1 to xn−1xn. This way, the
sum of xn−1 becomes 4 ∈ U , while the sum of xn is 1 ∈ V.

• Assume x1, xn ∈ V . Just as in the previous case, we remove the edge xn−1xn from
G, resulting in a smaller path G′ with end-vertices x1 ∈ V and xn−1 ∈ U . By the
previous item, it can be correctly weighted, and necessarily xn−1 has sum 3 by any 3-
edge-weighting. Then we can again extend this weighting to G by assigning weight 1
to xn−1xn, for the same reasons.

Observation 2.4. Theorem 2.1 holds when G is a bipartite cycle.

Proof. Let G be an even-length cycle x1, ..., x2kx1. Assume that xi ∈ U for every odd
i ≥ 1, and xi ∈ V for every even i ≥ 2. Let G′ be the graph obtained from G by removing
x2k. This G′ is a path with both end-vertices in U . According to Observation 2.3, G′

admits a desired 3-edge-weighting. By that weighting, since x1 and x2k−1 have degree 1,
their unique incident edge must be weighted 3 so that their sum gets in U . We extend this
edge-weighting to G by assigning weight 1 to both x1x2k and x2k−1x2k. This way, the sum
of x1 and x2k−1 becomes 4 ∈ U , while x2k gets sum 2 ∈ V.

We now proceed with the proof of our main result.

Proof of Theorem 2.1. We may assume that U has vertices of degree at least 2, as otherwise
G would be a star, in which case the result holds by Observation 2.2. Let thus u∗ ∈ U be
a vertex with degree at least 2. From u∗, we deduce a partition L0 ∪L1 ∪ ...∪Ld of G into
layers where each Li contains the vertices at distance i from u∗. In particular, L0 = {u∗},
and U contains the vertices from the even layers (i.e., with even index) while V contains
the vertices from the odd layers (i.e., with odd index). Since G is bipartite, no edge joining
a vertex in L2k and a vertex in L2k′ exists (and similarly for L2k+1 and L2k′+1). More
precisely, by the way the Li’s were obtained, every edge joins vertices in two consecutive
layers. From the point of view of a vertex w of G in layer Li, an incident edge ww′ is said
upward (resp. downward) if w′ ∈ Li−1 (resp. w′ ∈ Li+1). Note that every vertex but u∗ is
incident to an upward edge. Similarly, an upward path (resp. downward path) from w is a
path starting from w that repeatedly traverses upward edges (resp. downward edges). We
say a vertex w′ is a descendant of a vertex w if there is a downward path from w to w′. A
descendant w′ of w is a son of w if ww′ is a (downward) edge.

We try to deduce a desired 3-edge-weighting of G through the following iterative layer-
by-layer process. We consider the vertices of Ld in arbitrary order first, then those of Ld−1,
and so on until considering the vertices of L1 (layer L0 does not have to be considered).
Each time a vertex w is considered that way, we want to weight its incident upward edges
so that the sum of w lies in the corresponding U or V. More precisely, when considering
w, the process has already been applied to its sons, meaning that the downward edges
incident to w have already been weighted. Vertex w thus has a current sum, which we
need to alter in a satisfactory way by weighting its at least one incident upward edges.

We claim that this can always be done correctly; we distinguish two main cases, de-
pending on whether w ∈ U (i.e., w ∈ L2k) or w ∈ V (i.e., w ∈ L2k+1):

• Assume w ∈ U . First, suppose w is incident to only one upward edge. If the current
sum of w is 0, 1 or 2, then we assign weight 3, 2 or 1, respectively, to the upward
edge so that σ(w) = 3 ∈ U . If the current sum of w is 3k, 3k + 1 or 3k + 2 for
some k ≥ 1, then we assign weight 1, 3 or 2, respectively, to the upward edge so that
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σ(w) = 3k′ + 1 with k′ ≥ 1, and thus σ(w) ∈ U . Second, suppose w is incident to at
least two upward edges. Here, we first assign weight 3 to all incident upward edges
but one. Updating the current sum of w , we are left with one incident upward edge
to weight, which can be done similarly as in the previous case. Note, in particular,
that the current sum of w is at least 3 due to some incident upward edges being
weighted 3.

• Assume w ∈ V . First, suppose w is incident to only one upward edge. If the current
sum of w is 0, 1 or 2, then we assign weight 1, 1 or 3, respectively, to the upward
edge so that σ(w) ∈ {1, 2, 5} ⊂ V. If the current sum of w is 3k, 3k+ 1 or 3k+ 2 for
some k ≥ 1, then we assign weight 3, 2 or 1, respectively, to the upward edge so that
σ(w) = 3k′ for some k′ ≥ 2, and get σ(w) ∈ V. Second, suppose w is incident to at
least two upward edges. Here, as in the previous case, we first assign weight 3 to all
upward edges incident to w but one. That way, the current sum of w is at least 3,
and there is one remaining upward edge to be weighted. Then we can proceed just
as in the previous case.

We process all vertices of G that way, layer by layer, starting from the vertices in the
deepest layers and finishing with those in L1. Note that it results in a weighting of all edges
of G. Furthermore, every vertex in V (G)\{u∗} has its sum belonging to the corresponding
of U and V. If the sum of u∗ inherited from the weighting of its incident downward edges
belongs to U , then we are done. So we can assume this is not the case.

Let us consider the moment where a vertex w ∈ L1 is considered in the process. We
note that if w has degree 1, then its unique (upward) incident edge can be weighted either 1
or 2 (so that the sum gets in V). Similarly, if the current sum of w is at least 3, then there
are actually two ways to weight its incident upward edge going to u∗. Namely:

• If the current sum of w is 3k for some k ≥ 1, then wu∗ can be weighted either 2 or 3
so that the sum of w gets 3k + 2 = 3(k + 1)− 1 or 3k + 3 = 3(k + 1), thus in V.

• If the current sum of w is 3k + 1 for some k ≥ 1, then wu∗ can be weighted either 1
or 2 so that the sum of w gets 3k+ 2 = 3(k+ 1)− 1 or 3k+ 3 = 3(k+ 1), thus in V.

• If the current sum of w is 3k + 2 for some k ≥ 1, then wu∗ can be weighted either 3
or 1 so that the sum of w gets 3k+ 5 = 3(k+ 2)− 1 or 3k+ 3 = 3(k+ 1), thus in V.

A vertex of L1 is said to be a choice vertex if, at the moment we consider it in the
layer-by-layer process, there are two possible ways for weighting its unique incident upward
edge (going to u∗). If L1 has at least two choice vertices, then we are done. Indeed, let w∗1
and w∗2 be two choice vertices of L1. We repeat the whole layer-by-layer weighting process,
making sure to finish with w∗1 and w∗2. This means we are left with weighting u∗w∗1 and
u∗w∗2. By definition, from the point of view of w∗1 and w∗2, there are two possible correct
weights x1, x2 for u∗w∗1, and there are two possible correct weights y1, y2 for u∗w∗2. No
matter what x1, x2, y1, y2 are, there is always one combination that makes the sum of u∗

lie in U . Namely:

• If {x1, x2} = {1, 2} and {y1, y2} = {1, 2}, then we can alter the sum of u∗ by any
value in {2, 3, 4}. If the current sum of u∗ is 0, 1, 2, or 3, then we can weight the
two remaining edges so that the sum of u∗ is altered by 3, 2, 2 or 4, respectively, so
that the sum becomes 3, 3, 4 or 7, respectively, thus in U . If the current sum of u∗

is 3k + 1, 3k + 2 or 3k + 3 for some k ≥ 1, then we can alter the sum by 3, 2 or 4,
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respectively, so that it becomes 3(k+ 1) + 1, 3(k+ 1) + 1 or 3(k+ 2) + 1, respectively,
thus in U .

• If {x1, x2} = {1, 2} and {y1, y2} = {1, 3}, then we can alter the sum of u∗ by any
value in {2, 3, 4, 5}, and the previous case applies.

• If {x1, x2} = {1, 2} and {y1, y2} = {2, 3}, then we can alter the sum of u∗ by any
value in {3, 4, 5}. If the current sum of u∗ is 0, 1, 2, or 3, then we can weight the
two remaining edges so that the sum of u∗ is altered by 3, 3, 5 or 4, respectively, so
that the sum becomes 3, 4, 7 or 7, respectively, thus in U . If the current sum of u∗

is 3k + 1, 3k + 2 or 3k + 3 for some k ≥ 1, then we can alter the sum by 3, 5 or 4,
respectively, so that it becomes 3(k+ 1) + 1, 3(k+ 2) + 1 or 3(k+ 2) + 1, respectively,
thus in U .

• If {x1, x2} = {1, 3} and {y1, y2} = {1, 3}, then we can alter the sum of u∗ by any
value in {2, 4, 6}. If the current sum of u∗ is 0, 1, 2, or 3, then we can weight the
two remaining edges so that the sum of u∗ is altered by 4, 6, 2 or 4, respectively, so
that the sum becomes 4, 7, 4 or 7, respectively, thus in U . If the current sum of u∗

is 3k + 1, 3k + 2 or 3k + 3 for some k ≥ 1, then we can alter the sum by 6, 2 or 4,
respectively, so that it becomes 3(k+ 2) + 1, 3(k+ 1) + 1 or 3(k+ 2) + 1, respectively,
thus in U .

• If {x1, x2} = {1, 3} and {y1, y2} = {2, 3}, then we can alter the sum of u∗ by any
value in {3, 4, 5, 6}. The same arguments as in the third case above apply.

• If {x1, x2} = {2, 3} and {y1, y2} = {2, 3}, then we can alter the sum of u∗ by any
value in {4, 5, 6}. If the current sum of u∗ is 0, 1, 2, or 3, then we can weight the
two remaining edges so that the sum of u∗ is altered by 4, 6, 5 or 4, respectively, so
that the sum becomes 4, 7, 7 or 7, respectively, thus in U . If the current sum of u∗

is 3k + 1, 3k + 2 or 3k + 3 for some k ≥ 1, then we can alter the sum by 6, 5 or 4,
respectively, so that it becomes 3(k+ 2) + 1, 3(k+ 2) + 1 or 3(k+ 2) + 1, respectively,
thus in U .

So we may assume that L1 contains at most one choice vertex. As said earlier, if a
vertex w in L1 is not a choice vertex, then its degree must be 2 or 3. In the latter case,
this is because if the degree of w is at least 4, then it has at least three incident downward
edges, meaning that, when considering w in the layer-by-layer process, its current sum is
at least 3.

In what follows, we prove that there is actually a way to have weight choices for a
limited number of non-choice vertices of L1. Let us illustrate this with the simplest case.
Assume L1 has a choice vertex w∗1. Recall that d(u∗) ≥ 2, so let w∗2 be any other (non-
choice) vertex of L1. Let us consider a longest downward path P from w∗2 to a deepest
vertex w in some L2k+1 (thus in V ). Since w∗2 is incident to downward edges (because it
has degree more than 1), P has length at least 1. Note also that it might be that w∗2 = w,
in case where the descendants of w∗2 are actually its sons, i.e., its sons have no sons.

Now let us perform the layer-by-layer process again, with the exception that we do not
actually assign a weight to the edges of P , but instead “memorize” the possible weights that
can correctly be assigned to them. This is similar to applying the process from bottom to
top on the edges of G− u∗ but those of P , and then repeating the process from bottom to
top on the edges of P , taking all already weighted edges into account when computing the
current sums. We say that P is a choice path if, whatever the other edge weights are, when
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considering every edge of P from bottom to top, there are always two possible weights that
can correctly be assigned to it. Note that if P is indeed showed to be a choice path, then
we are done, because w∗2 can then be viewed as a choice vertex itself:

• Assume the edge e of P incident to w∗2 can be assigned either of weights 1 and 2. If
the current sum of w∗2 is 0, then we can consider an edge-weighting assigning weight 1
to e and 1 to u∗w∗2 (so that w∗2 gets sum 2 ∈ V), or assigning weight 2 to e and 3 to
u∗w∗2 (so that w∗2 gets sum 5 ∈ V). If the current sum of w∗2 is 1, then we can consider
an edge-weighting assigning weight 1 to e and 3 to u∗w∗2 (so that w∗2 gets sum 5 ∈ V),
or assigning weight 2 to e and 2 to u∗w∗2 (so that w∗2 gets sum 5 ∈ V). If the current
sum of w∗2 is 2, then we can consider an edge-weighting assigning weight 1 to e and 2
or 3 to u∗w∗2 (so that w∗2 gets sum 5 or 6 in V). As already proved when defining
choice vertices, we are done as well as soon as the current sum is at least 3.

• Assume e can be assigned either of weights 1 and 3. Then by assigning weight 3 to
e, the current sum of w∗2 gets at least 3. As mentioned earlier, this is a favourable
case for having two possible ways of weighting u∗w∗2.

• Assume e can be assigned either of weights 2 and 3. The same argument as in the
previous case applies.

We now prove that P is indeed a choice path. Let us consider the end-vertex w ∈ P of
P . We prove that its incident upward edge e in P is subject to a choice.

• First, if w does not have any son, then, in the layer-by-layer process, the current sum
is 0 when considering the vertex. If w has degree 1, then e can be assigned any of
weights 1 and 2 since 1, 2 ∈ V. If w has degree more than 1, then we first assign
weight 3 to all its incident edges different from e. This way, the current sum of w
becomes 3k for some k ≥ 1. Then e can be assigned any of weights 2 or 3, since
3k′ − 1 and 3k′ are in V for all k′ ≥ 2.

• Second, assume that w has a son w′ ∈ U . By the choice of P , w′ does not have any
son. Consider the moment where w′ is treated in the layer-by-layer process. If w is
the only neighbour of w′, then we can correctly assign weight 3 to w′w so that w′

gets sum 3 ∈ U . That way, when later considering w in the process, its current sum
will be at least 3, and the same arguments as in the previous case apply. So lastly
assume that w′ has more than one neighbour. When consider w′, we assign weight 3
to all edges incident to w′ but one different from w′w, which we assign weight 1.
That way, w′ gets sum 3k+ 1 for some k ≥ 1, thus in U . Again, this makes w having
current sum at least 3 because of w′w. Then two choices are available at e.

It now remains to prove that all other edges of P also are subject to choices. Assume
xx′ and x′x′′ are two consecutive edges of P , where x ∈ Li, x′ ∈ Li+1 and x′′ ∈ Li+2, and
that x′x′′ can be weighted in two different ways. We prove that xx′ also does.

• Assume the possible choices for x′x′′ are 1 and 2, and consider the moment where x′

is treated in the layer-by-layer process.

– Assume x′ ∈ V . If x′ has incident upward edges different from xx′, then we
assign them weight 3. If, when virtually assigning to x′x′′ any of weights 1
and 2, the current sum of x′ becomes at least 3, then again there are two
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choices as xx′. This means that the current sum of x′ is 0, i.e., xx′ and x′x′′ are
the only edges incident to x′. Then we could here assign weight 1 to x′x′′ and
weight 1 to xx′ so that x′ gets sum 2 ∈ V, or weight 2 to x′x′′ and weight 3 to
xx′ so that x′ gets sum 5 ∈ V. Thus 1 and 3 are two possible choices for xx′.

– Otherwise, x′ ∈ U . Again, if x′ is incident to upward edges different from x′x,
then we assign them weight 3. If the current sum of x′ is 0, then we can virtually
assign weight 1 to x′x′′ and 2 or 3 to xx′ so that x′ gets sum 3 or 4 in U ; 2
and 3 are then two choices for xx′. If the current sum of x′ is 1, then we can
virtually assign weight 1 to x′x′′ and 1 or 2 to xx′ so that x′ gets sum 3 or 4 in
U ; 1 and 2 are then two choices for xx′. If the current sum of x′ is 2, then we
can virtually assign weight 1 to x′x′′ and 1 to xx′ so that x′ gets sum 4 ∈ U ,
and assign weight 2 to x′x′′ and 3 to xx′ so that x′ gets sum 7 ∈ U ; 1 and 3
are then two choices for xx′. So the current sum of x′ is at least 3. Note that,
by virtually assigning weight 1 to x′x′′ and weights 1, 2, 3 to xx′, we can alter
the sum of x′ by any of 2, 3, 4. By virtually assigning weight 2 to x′x′′ and
weights 1, 2, 3 to xx′, we can alter the sum of x′ by any of 3, 4, 5. Thus there
are two ways to alter the sum by 3 and 4, and they involve assigning different
weights to xx′. Note that the two ways for altering the sum by 2 and 5 involve
assigning different weights to x′x as well. We are now done: Consider the next
smallest values 3k+ 1 and 3(k+ 1) + 1 that are strictly larger than the current
sum of x′. By the previous arguments, they can be reached in two different ways
which involve assigning different weights to xx′. We thus have two choices.

• Assume now the possible choices for x′x′′ are 1 and 3.

– Assume x′ ∈ V . This time, when virtually assigning weight 3 to x′x′′, the
current sum of x′ gets at least 3. As said earlier, there are two choices for x′x
here.

– Otherwise, x′ ∈ U . Again, we assign weight 3 to all upward edges different from
x′x incident to x′, if any. If the current sum of x′ is 0, then we can virtually
assign weight 1 to x′x′′ and 2 or 3 to xx′ so that x′ gets sum 3 or 4 in U ; 2 and 3
are then two choices for xx′. If the current sum of x′ is 1, then we can virtually
assign weight 1 to x′x′′ and 1 or 2 to xx′ so that x′ gets sum 3 or 4 in U ; 1 and 2
are then two choices for xx′. If the current sum of x′ is 2, then we can virtually
assign weight 1 to x′x′′ and 1 to xx′ so that x′ gets sum 4 ∈ U , and assign
weight 3 to x′x′′ and 2 to xx′ so that x′ gets sum 7 ∈ U ; 1 and 2 are then two
choices for xx′. So the current sum of x′ is at least 3. Note that, by virtually
assigning weight 1 to x′x′′ and weights 1, 2, 3 to xx′, we can alter the sum of x′

by any of 2, 3, 4. By virtually assigning weight 3 to x′x′′ and weights 1, 2, 3 to
xx′, we can alter the sum of x′ by any of 4, 5, 6. Thus there are two ways to
alter the sum by 4, and they involve assigning different weights to xx′. Note
that the two ways for altering the sum by 2 and 5 involve assigning different
weights to x′x as well, and similarly for 3 and 6. We are then done by the same
arguments as earlier.

• Assume finally that the possible choices for x′x′′ are 2 and 3.

– Assume x′ ∈ V . Again, when virtually assigning weight 3 to x′x′′, the current
sum of x′ gets at least 3 and we are done.
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– Otherwise, x′ ∈ U . We assign weight 3 to all upward edges different from x′x
incident to x′, if any. If the current sum of x′ is 0, then we can virtually assign
weight 2 to x′x′′ and 1 or 2 to xx′ so that x′ gets sum 3 or 4 in U ; 1 and 2 are
then two choices for xx′. If the current sum of x′ is 1, then we can virtually
assign weight 2 to x′x′′ and 1 to xx′ so that x′ gets sum 4 ∈ U , or virtually
assign weight 3 to x′x′′ and 3 to xx′ so that x′ gets sum 7 ∈ U ; 1 and 3 are then
two choices for xx′. If the current sum of x′ is 2, then we can virtually assign
weight 2 to x′x′′ and 3 to xx′ so that x′ gets sum 7 ∈ U , and assign weight 3
to x′x′′ and 2 to xx′ so that x′ gets sum 7 ∈ U ; 2 and 3 are then two choices
for xx′. So the current sum of x′ is at least 3. Note that, by virtually assigning
weight 2 to x′x′′ and weights 1, 2, 3 to xx′, we can alter the sum of x′ by any
of 3, 4, 5. By virtually assigning weight 3 to x′x′′ and weights 4, 5, 6 to xx′, we
can alter the sum of x′ by any of 4, 5, 6. Thus there are two ways to alter the
sum by 5, and they involve assigning different weights to xx′. Note that the two
ways for altering the sum by 4 and 6 involve assigning different weights to x′x
as well. Again, we are thus done.

Thus, P is indeed a choice path, and, by our assumption, we thus have two choices for
weighting each of u∗w∗1 and u∗w∗2. Taking the current sum of u∗ into account, as pointed
out earlier there must be a combination of two weights that guarantees that the sum of u∗

eventually lies in U , as required. Thus, we are done if L1 has one choice vertex.

We are thus left with the case when no vertex of L1 is a choice vertex. This implies that
in G all vertices of V must be of degree 2 or 3 as otherwise we could just choose another
u∗ that would guarantee the existence of a choice vertex in L1. Also, no vertex of U can be
of degree 1, as otherwise its neighbour in V would be a choice vertex when choosing as u∗

another of its neighbours being of degree more than 1 (which exists since G is not a star).
Let us choose w∗1 and w∗2 two arbitrary vertices of L1. For each i = 1, 2, let Pi be a

longest downward path starting from w∗i and ending at another vertex x∗i ∈ V in a lowest
layer. Possibly these paths intersect, and also we possibly have x∗1 = x∗2. If P1 and P2 do
not intersect and x∗1 and x∗2 do not share a son, then it is easy to see that the arguments
used earlier show that both P1 and P2 are choice paths (as P1 and P2 then get sufficiently
independent). This occurs for instance when u∗ is a cut-vertex and w∗1 and w∗2 belong
to different connected components of G − u∗. From this, we can further suppose that no
vertex of U is a cut-vertex. In what follows, we prove that by carefully studying how P1

and P2 interact, we can deduce choice paths ending in w∗1 and w∗2, respectively, concluding
the proof.

As a first case, let us assume that P1 and P2 intersect in a vertex y different from x∗1
and x∗2. This implies that y has degree at least 3. We here distinguish two cases:

• y ∈ U . In that case, we consider P ′2 the subpath of P2 that goes from w∗2 to the
vertex y′ ∈ V such that yy′ ∈ P2 and y is the son of y′. We claim that some edges of
G can be weighted so that P1 and P ′2 are choice paths. To see this holds, let us assign
weight 3 to yy′. This way, when later considering y′ in the layer-by-layer process, its
current sum will be at least 3, and as seen earlier this means that, no matter how
the other edges incident to y′ are weighted, there is always two ways to weight the
edge of P ′2 incident to y′. This is because V contains all values 3k − 1 and 3k for
every k ≥ 2. The fact that yy′ is weighted 3 has no influence on the fact that P1 is
a choice path, as long as this assigned weight is taken into account when considering
y in the process.
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• y ∈ V . In that case, we consider P ′2 the subpath of P2 that goes from w∗2 to the vertex
y′′ ∈ V such that y′′y′ ∈ P2 (where y′ is defined as in the previous case) and y′ is
the son of y′′. We here proceed as follows. When considering y in the layer-by-layer
process, we do not assign a weight to yy′ right away. When later considering y′, we
first assign weight 3 to y′y′′, and then choose the weights of its other incident edges
(including yy′) so that the sum of y′ gets in U . Note that this is possible since the
current sum of y′ is at least 3 and 3k + 1 ∈ U for every k ≥ 1. This makes y′′ have
current sum at least 3, and, as explained earlier, this makes P ′2 be a choice path.
On the other hand, if z denotes the son of y on P1, then we note that assigning the
biggest choice (which is at least 2) as the weight of yz makes y get current sum at
least 3 (due to the weighting of yy′). Since y ∈ V , as already seen this means that at
least two choices are available when weighting the upward edge incident to y in P1.
Thus P1 remains a choice path.

Thus we may assume that P1 and P2 do not intersect on inner vertices. Assume now
they intersect on their end-vertex x = x∗1 = x∗2. Recall that x is a vertex of V . Let us
denote by z1 and z2 the vertices in U such that z1x

∗
1 is the last edge of P1, and similarly

z2x
∗
2 is the last edge of P2. We may assume that z1 and z2 have no other sons, as otherwise

we could choose P1 and P2 so that they do not intersect (and then we fall in the last case
below). Thus z1 and z2 have degree at least 2, and only one son each. Denote by z′1 and z′2
the other neighbours of z1 and z2, respectively, in P1 and P2, respectively. That is, z′1z1 is
a downward edge of P1, and similarly z′2z2 is a downward edge of P2. By definition of P1

and P2, all sons of x (if any) have no descendants. If x has no sons, then, when considering
x in the layer-by-layer process, we assign weight 1 to both xz1 and xz2, and weight 3
to all remaining incident upward edges. This makes x get sum 2 (if it has degree 2) or
3k + 2 (otherwise) for k ≥ 1, thus in V. When later considering z1 (and similarly z2) in
the process, the current sum will be 1, and thus assigning weight 3 to all incident upward
edges will make z1 (resp. z2) have sum 3k + 1 for some k ≥ 1, thus in U . When later
considering z′1 and z′2, the current sum will thus be at least 3; as already mentioned, this
implies that P ′1 and P ′2, the subpaths of P1 and P2 from w∗1 to z′1 and w∗2 to z′2 become
choice paths.

Assume now x has sons. Actually, x has only one son y, as otherwise x would be a
vertex of V with degree at least 4, and there would be a better choice as u∗. Also y cannot
be of degree 1, as otherwise there would be a choice of u∗ for which it would neighbour a
vertex (y) neighbouring a vertex with degree 1, and that would thus be a choice vertex.
However, since y is in a deepest layer, all its incident edges are upward edges. In this
situation, we proceed as follows. When we consider y in the layer-by-layer process, we
assign weight 3 to all but one incident upward edge different from xy. That way, y gets
sums 3k+1 for some k ≥ 1, thus in U . When later considering x, its current sum is thus 3;
we here assign weight 1 to both xz1 and xz2 so that x (which recall has degree 3) gets sum
5 ∈ V. When later considering z1 (and similarly z2), its current sum is 1; we here assign
weight 3 to all upward edges (thus including z1z

′
1 (resp. z2z

′
2)) so that z1 (resp. z2) gets

sum 3k + 1 for some k ≥ 1, thus in U . We now get the situation where z′1 and z′2 have
current sum at least 3. By previous arguments, this means that the subpath of P1 from
w∗1 to z′1 is a choice path, and similarly for the subpath of P2 from w∗2 to z′2.

We may thus now assume that P1 and P2 do not intersect at all. Recall that x∗1 and x∗2
are in V , and their sons (if any) are in U and have no descendants. If at least one of x∗1
and x∗2 has no sons, then P1 and P2 are independent and are choice paths by arguments
used earlier. So we may assume they both have sons. If the total number of sons of x∗1
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and x∗2 is at least 2, then we can proceed as follows. Let y1 and y2 be two of their sons,
where y1 neighbours x∗1 (and perhaps x∗2) and y2 neighbours x∗2 (and perhaps x∗1). When
considering y1 in the layer-by-layer process, we can correctly (i.e., so that its sum gets in
U) weight all edges incident to y1 so that y1x

∗
1 is weighted 3. This is because 3 ∈ U and

also 3k + 1 ∈ U for k ≥ 1. Similarly, when considering y2 in the process, we can correctly
weight all edges incident to y2 so that y2x

∗
2 is weighted 3. Then, by arguments used earlier,

we deduce that P1 and P2 are choice paths, since x∗1 and x∗2 will have current sum at least 3
when considered by the process. So lastly assume that x∗1 and x∗2 have the same unique
son y. If y has a third neighbour, then, when considering y in the process, we can assign
weight 3 to all incident upward edges but one different from yx∗1 and yx∗2, and weight 1 to
the remaining edge. This way, the sum of y is some 3k + 1 for k ≥ 2, and is thus in U .
Furthermore, the current sum of both x∗1 and x∗2 gets at least 3, and, as seen earlier, this
means that P1 and P2 are choice paths.

So y can be assumed to be of degree 2. Now, if at least one of x∗1 and x∗2, say x∗1, is
incident to a third (upward) edge, then we can proceed as follows. When considering y in
the process, we can assign weight 1 to yx∗1 and weight 3 to yx∗2 so that y gets sum 4 ∈ U .
When later considering x∗2 in the process, its current sum will be at least 3, implying that
P2 is a choice path. When later considering x∗1, we can first assign weight 3 to its incident
upward edge not in P1; that way, x∗1 gets current sum at least 3, and P1 becomes a choice
path as well.

Thus, the last case we get to consider is that where y, x∗1 and x∗2 are vertices of degree 2.
Free to consider y as u∗, we can assume that u∗, w∗1 and w∗2 are of degree 2 as well. Since
G is not a cycle, as otherwise Observation 2.4 would apply, we get that at least one of P1

and P2 has an inner vertex being of degree at least 3 (thus distinct from u∗, w∗1, w∗2, x∗1,
x∗2, y). Assume thus P2 has inner vertices of degree at least 3, and consider one, z. Let z′

be the neighbour of z in P2 so that z′z is a downward edge and z is a son of z′. We note
that none of the edges incident to z not in P2 can be upward. This is because otherwise:

• If z ∈ U , then, we considering z in the layer-by-layer process, we can always assign
weight 3 to zz′, since we can then adjust the sum of z, by weighting another upward
edge, so that it gets in U . This way, z′ ∈ V gets current sum at least 3, and the
subpath of P2 going from w∗2 to z′ is a choice path. This has no effect on P1, which
is thus a choice path.

• If z ∈ V , then, when considering z in the layer-by-layer process, we can here assign
weight 3 to an incident upward edge different from zz′. This way, the current sum of
z gets at least 3, and, as seen earlier, this means that the subpath of P2 going from
w∗2 to z is a choice path. Again, P1 is now a choice path.

Thus, the edges not in P2 incident to z are downward edges. Now consider the path P ′2
obtained by starting from w∗2, following P2 until reaching z, and then leaving P2 through a
downward edge not in P2, and going downward as long as possible until reaching a deepest
vertex of V . We note that P ′2 cannot intersect P2 on a lower vertex, as otherwise that
vertex would be a vertex of P2 with degree at least 3 incident to an upward edge not in
P2 (case we have handled earlier). Since we are going downward, we also cannot meet P1,
as otherwise we would find a vertex with degree at least 3 in P1 with an incident upward
edge not in P1 (also a similar case as earlier). Furthermore, since x∗1, x∗2 and y were shown
to be of degree 2, this path P ′2 cannot reach these vertices. This means that P1 and P ′2
are two disjoint paths having their end-vertices different from w∗1 and w∗2 sharing no sons.
Then P1 and P2 are two independent paths, thus choice paths, and we are done.
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As a corollary of Theorem 2.1, we can now prove Conjecture 1.2:

Theorem 2.5. For every nice digraph D, we have χ−,+(D) ≤ 3.

Proof. Consider B(D) the bipartite graph associated to D, with bipartition U ∪V (where,
say, U contains the v+’s and V contains the v−’s). Since D is nice, so is B(D). By
Theorem 2.1, every connected component of B(D) admits a 3-edge-weighting verifying the
properties in the statement. Invoking this result with preserving the bipartition of these
connected components as in B(D), we get that B(D) itself has a 3-edge-weighting where
vertices in U have sum in U while vertices in V have sum in V. As described earlier, we
derive this 3-edge-weighting of B(D) to a 3-arc-weighting of D, by assigning to any arc
−→uv the weight of u+v−. By that weighting, all vertices v of D get σ+(v) in U and σ−(v)
in V. By the definition of U and V, and because D is nice, this resulting arc-weighting is
(−,+)-distinguishing.

3. Complexity aspects of the (−,+) variant

We first prove that for every k ≥ 3, deciding whether a digraph D verifies χ−,+(D) ≤ k
is equivalent to the k-Colouring problem (Given a graph G, decide whether χ(G) ≤ k,
i.e., whether it admits a proper k-colouring, meaning a partition of its vertex set into k
stable sets), and is thus NP-complete.

Theorem 3.1. For every k ≥ 3, it is NP-complete to decide whether χ−,+(D) ≤ k holds
for a given digraph D.

Proof. Let k ≥ 3 be fixed. The NPness of the problem being obvious, let us focus on
proving its NP-hardness. This is done by reduction from the k-Colouring problem,
which is well-known to be NP-complete. From a given undirected graph G, we construct,
in polynomial time, a digraph D such that χ(G) ≤ k if and only if χ−,+(D) ≤ k.

The construction of D is achieved as follows. Arbitrarily denote by v1, ..., vn the vertices
of G, and let

−→
G be the (acyclic) orientation of G obtained by orienting every edge vivj

from vi to vj if i < j, or from vj to vi otherwise. For every vertex vi in G, we add an
arc
−−→
aibi to D, where ai, bi are two new vertices. Now, for every arc −−→vivj of

−→
G , thus with

i < j, we add the arc
−−→
biaj to D. Finally, for every i = 1, ..., n, we add d−D(ai) + 1 arcs

outgoing from bi and going to new pendant vertices ci,1, ..., ci,d−D(ai)+1 with indegree 1 and
outdegree 0. Clearly, the construction of D is achieved in polynomial time.

Note that, in D, for each arc
−−→
aibi, we have d+(ai) = d−(bi) = 1. Hence, for every

arc-weighting ω of D, we have σ+(ai) = σ−(bi) = ω(
−−→
aibi). Furthermore, for every arc of

the form
−−→
bici,j , we cannot get σ−(bi) = σ+(ci,j) as d−(bi) = 1 > 0 = d+(ci,j). Thus, from

the point of view of that arc, ω(
−−→
bici,j) can be assigned any value without creating any sum

conflict involving its two ends; let us thus assign weight k to all such arcs from now on.
Under that hypothesis, note that for every arc

−−→
aibi also we cannot get σ−(ai) = σ+(bi), as

σ−(ai) ≤ k · d−(ai) < k · d−(ai) + 1 ≤ σ+(bi).

Thus, conflicts can only involve arcs of the form
−−→
biaj for some i < j. Since d−(bi) =

d+(aj) = 1, we get that, for ω to be (−,+)-distinguishing, the weights ω(
−−→
aibi) and ω(

−−→
ajbj)

must be different. Thus, every two such arcs
−−→
aibi and

−−→
ajbj being “adjacent” this way must

receive different weights. This depicts the fact that the edge vivj is present in G, and vi, vj
must thus receive different colours by a proper k-colouring of G. The equivalence between
edge-weighting D and vertex-colouring G should thus be easy to visualise now.
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u1

u2

u3

Figure 1: The digraph H used in the proof of Theorem 3.4. Dotted lines represent many vertices with the
same neighbourhood.

The rest of this section is devoted to proving the counterpart of Theorem 3.1 for k = 2,
in Theorem 3.4 below. We actually prove the result for nice digraphs, which is of interest
as χ−,+ is bounded by 3 for these digraphs (recall Theorem 2.5). We first need need to
introduce the digraph H depicted in Figure 1 and highlight some of its properties we will
use.

Lemma 3.2. H is nice. Furthermore, assuming dotted lines represent sufficiently many
vertices, we have χ−,+(H) ≤ 2, and, in every (−,+)-distinguishing 2-arc-weighting of H:

• all red arcs are assigned weight 2;

• all blue arcs are assigned weight 1.

Therefore, σ+(u2) = 3 and σ+(u3) = 6.

Proof. Note first that H has no source nor sink, and thus no ss-arc. Furthermore, it can be
checked that, for every arc −→uv, either u has another outgoing arc or v has another incoming
arc. Thus, H has no lonely arcs and it is nice.

In H, it can also be noted that there are some red arcs −→uv where 1) δ+(u) = 1, and
2) there is a blue arc −→xy such that δ−(y) = 1 and −→yu is an arc. Clearly, whenever a red
arc and a blue arc verify these assumptions, they should be assigned different weights by
a (−,+)-distinguishing 2-arc-weighting of H. Also, we note that all arcs incoming to u1

are red arcs, all arcs outgoing from u2 are blue arcs, and all arcs outgoing from u3 are blue
arcs, while −−→u1u2 and −−→u1u3 are arcs. From these arguments and the connection between the
blue arcs and red arcs, it can be deduced that either all red arcs must be weighted 1 and
all blue arcs must be weighted 2, or conversely. The first of these two cases is not correct,
as we would get σ−(u1) = 6 (since all arcs incoming to u1 are red) and σ+(u2) = 6 (since
all arcs outgoing from u2 are blue), while −−→u1u2 is an arc of H. In the second case, we get
σ−(u1) = 12 and σ+(u2) = 3, which yields no conflict between u1 and u2. Also, by the
same reasoning, we get σ+(u3) = 6.
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Figure 2: The variable gadget Dv, its white vertex being the root.

To complete the proof, we claim that assigning weight 1 to the remaining arcs (that
are not red or blue) indeed yields a (−,+)-distinguishing 2-arc-weighting of D, assuming
the number of vertices in the dotted parts are conveniently chosen. The main argument
is that, under that hypothesis, most black arcs −→uv are “unbalanced” in the sense that they
verify either d−(u) > 2d+(v) or 2d−(u) < d+(v); when this is the case, it does not get
possible getting σ−(u) = σ+(v) for such an arc.

We will also be using the variable gadget Dv depicted in Figure 2. Its white vertex is
called the root of Dv, while the unique arc incident to the root is called the root arc. It
can easily be checked that Dv fulfils the following.

Observation 3.3. Dv is nice. Furthermore, we have χ−,+(Dv) ≤ 2, and there exist (−,+)-
distinguishing 2-arc-weightings where the root arc is weighted 1, and (−,+)-distinguishing
2-arc-weightings where the root arc is weighted 2. This remains true if an arbitrary number
of pending arcs outgoing from the root is added to Dv.

We are now ready to prove our main result in this section.

Theorem 3.4. It is NP-complete to decide whether χ−,+(D) ≤ 2 holds for a given nice
digraph D.

Proof. We again focus on proving the NP-hardness, which we establish through a reduction
from Monotone Not-All-Equal 3-SAT, which is well-known to be NP-hard [12]. In
this problem, we are given a 3CNF formula F whose each clause contains three distinct
variables, and we aim at finding a nae truth assignment to the variables, i.e., a truth
assignment such that every clause gets at least one true variable and at least one false
variable. Note that we might assume that all clauses of F have three different variables.
We construct, in polynomial time, a nice digraph D such that F has a nae truth assignment
if and only if χ−,+(D) ≤ 2.

The construction is as follows. First add a copy of the digraph H (Figure 1) to D.
In the sequel, when referring to the vertices u2, u3 of D, we mean those of H. We then
consider every variable xi of F . Assume xi appears in the x distinct clauses Cj1 , ..., Cjx of
F . We add a copy Dxi of the variable gadget Dv (Figure 2) to D (with root denoted ri),
and add x arcs −−−→rivi,j1 , ...

−−−→rivi,jx where vi,j1 , ..., vi,jx are new pendant vertices. Now consider
every clause Cj of F . We add to D a new clause vertex cj , and, assuming Cj contains the
distinct variables xi1 , xi2 , xi3 , we add the arcs −−−→vxi1 cj ,

−−−→vxi2 cj ,
−−−→vxi3 cj . Finally, we add the arcs

−−→cju2,
−−→cju3 to D, where u2, u3 belong to H added earlier.
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We claim that we have the desired equivalence, for the following reasons. Weighting the
root arc of a variable gadget Dxi either 1 or 2 by a 2-arc-weighting of D should be thought
of as setting the variable xi to true or false, respectively. Note that, by construction, the
root arc −→xy of Dxi verifies σ−(y) = 1, and, for every clause Cj that contains xi, we also
have σ+(vi,j) = 1 while −−−→vi,jcj is an arc. Thus, −→xy and −−−→vi,jcj must get different weights by a
(−,+)-distinguishing 2-arc-weighting of D. This is true for every clause Cj that contains
xi. Thus, as soon as −→xy is weighted, the different weight is forced on every arc of the form
−−−→vi,jcj ; this models the fact that, by a nae truth assignment of F , a variable brings its truth
value to every clause that contains it.

Now, we note that, for every clause vertex cj , its value of σ− by an arc-weighting of D
is inherited from all arcs of the form −−−→vi,jcj . There are only three such arcs, implying that
σ−(cj) ranges in the set {3, 4, 5, 6}. However, due to the presence of the arcs −−→cju2,

−−→cju3,
actually σ−(cj) cannot take value 3 or 6 by a (−,+)-distinguishing 2-arc-weighting of D, by
Lemma 3.2. Since these two values correspond to the cases where the three arcs incoming
to cj are all weighted 1 or all weighted 2, by the previous analogy this models the fact that,
by a nae truth assignment of F , a clause is not regarded as satisfied when all its variables
get assigned the same truth value.

Let us conclude by mentioning that D is indeed nice. This is because all gadgets
we have used for its construction are nice, and it can easily be checked that combining
them as we did did not introduce ss-arcs or lonely arcs. Also, because the gadgets admit
(−,+)-distinguishing 2-arc-weightings and the connexion between them is rather sparse,
the existence of a (−,+)-distinguishing 2-arc-weighting of D only relies on the equivalence
with satisfying F in a nae way. These arguments conclude the proof.

4. Results to date and filling results

In Table 1, we have listed all progress we are aware of regarding directed variants of the
1-2-3 Conjecture defined over the parameters σ−, σ+. Each row is dedicated to a variant,
the first column indicating the variant (it indicates, for every arc −→uv, which parameters of
u (left of 6= symbol) and v (right of 6= symbol) are required to differ). The column Bound
indicates the best upper bound we know on the chromatic index of a variant. The presence
of a star indicates that a bound is tight. The column Complexity gives information on
whether determining the index is easy (in P) or not (NP-complete). For those variants
where the upper bound of 2 was proved, such concerns barely make sense, as the value of
the index is 1 only for digraphs whose adjacent vertices have particular degree properties
(which can be checked in polynomial time). The column Choosability indicates whether
the best known upper bound on an index also applies to the list context (see below for
more details).

For every result appearing in a cell of Table 1, we mention where it was proved (either
a previous reference of the literature, and/or results in the current paper). Some of the
results actually follow from a combination of existing results; for every such combination
that might be not obvious for someone not familiar to the field, we add an explaining result
later in the section. For every cell for which we have no clue, more details are provided in
concluding Section 5 (see the corresponding Questions).

We note that the variant in the first row is actually equivalent to the original 1-2-
3 Conjecture, as the orientation could just be dropped. Finally, let us mention that the
variant presented as the last row of Table 1 is a new directed variant of the 1-2-3 Conjecture,
which, to the best of our knowledge, has not been considered before. It relies on the
following ideas. By an arc-weighting of a digraph D, we have two parameters associated to
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Bound Complexity Choosability

σ− + σ+ 6= σ− + σ+ ≤ 5
[10]

≤ 1: in P
≤ 2: NPC

[9]

≤ ∆− + ∆+ + 1
[6]

|σ− − σ+| 6= |σ− − σ+| ≤ 2*
[5] ≤ 1: in P ≤ 2*

[8]

σ+ 6= σ+

(or σ− 6= σ−)
≤ 3*
[4]

≤ 1: in P
≤ 2: NPC

[4]

≤ 3*
Thm. 4.3

σ+ 6= σ−
≤ 3*
[1]

≤ 1: in P
≤ 2: in P

[1, 15], Thm. 4.2

unknown
Qst. 5.1

σ− 6= σ+

lonely allowed
≤ max{3,∆+ + ∆− + 1}

[7], Thm. 4.1

≤ 1: in P
≤ k: NPC (k ≥ 2)
Thm. 3.1, 3.4

unknown
Qst. 5.3

σ− 6= σ+

nice digraphs
≤ 3*

Thm. 2.5

≤ 1: in P
≤ 2: NPC
Thm. 3.4

unknown
Qst. 5.2

(σ−, σ+) 6= (σ−, σ+)
≤ 2*

Thm. 4.4 ≤ 1: in P ≤ 2*
Thm. 4.4

Table 1: All results known so far on directed variants of the 1-2-3 Conjecture.

any vertex v, namely σ−(v) and σ+(v). In this new variant, we ask all adjacent vertices u, v
to be distinguished by at least one of their parameters. That is, at least one of σ−(u), σ+(u)
should be different from at least one of σ−(v), σ+(v). We prove that this variant is far easier
than the 1-2-3 Conjecture, see Theorem 4.4.

We start off by proving the bound in Row “σ− 6= σ+ (lonely allowed)”, Column Bound
of Table 1.

Theorem 4.1. Let D be a digraph with no ss-arc. Then

χ−,+(D) ≤ max{3,∆+(D) + ∆−(D) + 1}.

Proof. If D has no lonely arcs, then χ−,+(D) ≤ 3 by Theorem 2.5. Now assume that D
has lonely arcs. We first make an observation on the consequences of removing lonely arcs
in D. We note that removing a lonely arc −→uv from D does not create new lonely arcs.
Indeed, if an arc −→xy becomes lonely in D − −→uv, then it would mean either that −→uv and
−→xy share a common head or tail in D, a contradiction to −→uv being lonely, or that −→xy was
already lonely in D. However, let us point out that repeatedly removing lonely arcs from
D can create ss-arcs.

To get a (−,+)-distinguishing max{3,∆+(D) + ∆−(D) + 1}-arc-weighting of D, we
proceed as follows. We first repeatedly remove all lonely arcs from D, which gives a
digraph D′ without lonely arcs. Forgetting about the sources and sinks of D′ being joined
by an ss-arc, using Theorem 2.5 we can deduce (−,+)-distinguishing 3-arc-weighting of D′

where the only conflicts are along arcs −→uv such that u is a source (thus σ−(u) = 0) and
v is a sink (thus σ+(v) = 0). Another way to see this is considering the nice digraph D′′

obtained from D′ by adding a new dummy pending arc incoming to every source, deducing
a (−,+)-distinguishing 3-arc-weighting of D′′, and then considering the edge-weighting
back in D′, by removing the dummy arcs.

Recall that D is nice; thus, the ss-arcs of D′ result from the removal of lonely arcs. In
a final step, we extend the 3-edge-weighting of D′ to a max{3,∆+(D) + ∆−(D) + 1}-arc-
weighting of D (by thus weighting the lonely arcs), thus removing the sum conflicts along
ss-arcs. We proceed as follows. Let −→uv be such a lonely arc. There are δ−(u) + δ+(v) ≤
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∆−(D) + ∆+(D) constraints around −→uv, namely σ−(v) should not be equal to any σ+(w)
where −→vw is an arc, and similarly for σ+(u) and σ−(w) where −→wv is an arc. Since we have
∆−(D)+∆+(D)+1 weights to play with, one can freely be assigned to −→uv without creating
any sum conflict. Note also that the conflicts between the ends of ss-arcs in D′ are fixed in
D, as otherwise it would mean that D has ss-arcs. More precisely, for every ss-arc, at least
one of its source and sink must be incident to lonely arcs. This concludes the proof.

The next result yields the answer in Row “σ+ 6= σ−”, Column Complexity of Table 1.

Theorem 4.2. Given a digraph D, deciding whether χ+,−(D) ≤ 2 can be done in polyno-
mial time.

Proof. As observed in [1], finding a (+,−)-distinguishing k-arc-weighting of D is equivalent
to finding a neighbour-sum-distinguishing k-edge-weighting of B(D), the bipartite graph
associated to D (see previous Section 2). Hence, χ+,−(D) ≤ 2 if and only if χΣ(B(D)) ≤ 2.
As proved by Thomassen, Wu and Zhang [15], a connected bipartite graph G verifies
χΣ(G) ≤ 2 if and only if G is not an odd multicactus, a class of 2-degenerate 2-connected
graphs that can be constructed and recognized easily.

Now, since constructing B(D) from D can be done in polynomial time, and checking
whether a bipartite graph is an odd multicactus can also be done in polynomial time
(see [15] for more details), the claim follows.

We now prove the result in Row “σ+ 6= σ+”, Column Choosability of Table 1. Assum-
ing each arc −→uv of a digraph D is assigned a list L(−→uv) of weights, by an L-arc-weighting
of D we mean an arc-weighting where each arc is assigned a weight from its list.

Theorem 4.3. Let D be a digraph, and L : A(D)→ N be any assignment of lists of size 3
to the arcs of D. Then D admits a (+,+)-distinguishing L-arc-weighting.

Proof. The proof is by induction on the number of arcs in D. Since the claim can easily
be verified by hand for digraphs with only a few arcs, we proceed with the general case.
Choose v a vertex of D verifying d−(v) ≤ d+(v); such a vertex exists as

∑
v∈V (D) d

−(v) =∑
v∈V (D) d

+(v). Let D′ be the digraph obtained from D by removing all arcs outgoing
from v; by the induction hypothesis, there exists a (+,+)-distinguishing L-arc-weighting
of D′. Our goal is to extend it to the arcs −→vu1, ...,

−−−−→vud+(v) outgoing from v without creating
sum conflicts. Note that assigning a weight to any such arc −→vui only affects σ+(v); thus,
our goal is to assign weights (from their lists) to the d+(v) −→vui’s in such a way that σ(v)
does not meet the value of σ+ of any of the at most 2d+(v) vertices neighbouring v in D.

The problem can be reformulated as follows: Given d 3-element lists L1, ..., Ld, by
picking elements e1, ..., ed in L1, ..., Ld, respectively, can we generate at least 2d+ 1 values
as e1 + ...+ ed? We show below that this is the case, hence proving the claim.

Assume that the three elements in the Li’s are ordered in increasing order of their
value. Let p1, ..., pd be a pointer for the elements in L1, ..., Ld, respectively (essentially,
each pointer pi is positioned on either the first, second or third element of Li). By v(pi),
we mean the value of the element pi is currently pointing at in Li. Assuming pi is not
pointing at the largest element of Li, by moving pi to the right, we mean making pi point
at the first element of Li that is larger than the one it is currently pointing at.

Start from each pi pointing at the smallest element of Li. The first sum we consider is
v(p1) + ...+ v(pd). To create the next d− 1 sums, thus d sums so far in total, we consider
i = 2, ..., d successively, move pi to the right, and consider v(p1) + ...+ v(pd) again. Since
all Li’s are ordered from smallest to greatest, clearly each step we get a sum that is strictly
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bigger than the one obtained at the previous step. The next d− 1 sums, thus 2d− 1 sums
so far in total, are obtained by again considering i = 2, ..., d successively, moving pi to the
right, and consider v(p1) + ...+ v(pd). The remaining two sums are obtained in two steps
by moving p1 to the right twice, and again looking at v(p1) + ...+ v(pd).

Last, we prove the results in the last row of Table 1.

Theorem 4.4. Let D be a digraph, and L : A(D)→ N be any assignment of lists of size 2
to the arcs of D. Then D admits an L-arc-weighting such that, for every arc −→uv, we have
(σ−(u), σ+(u)) 6= (σ−(v), σ+(v)).

Proof. Given an arc-weighting ω of D, for every vertex v we denote by Γ(v) the pair
(σ−(v), σ+(v)) resulting from ω. The crucial observation we are going to use is that the only
situation where two vertices u, v cannot be distinguished by Γ is precisely when σ−(u) =
σ+(u) = σ−(v) = σ+(v).

The proof is by induction on the number of vertices of D. We focus on proving the
general case. Let v be any vertex of D. According to the induction hypothesis, the digraph
D′ obtained by removing v from D has an L-arc-weighting which is as desired. We wish to
extend it to all arcs (outgoing and incoming) incident to v. For every neighbour u of v in
D, it is possible that, when assigning a weight w from L(−→vu) (resp. L(−→uv)) to −→vu (resp. −→uv),
u is now involved in a conflict (regarding Γ) with one of its neighbours different from v. As
explained earlier, this only occurs when σ−(u) + w = σ+(u) (resp. σ+(u) + w = σ−(u)).
From that perspective, we say that w is unsafe in L(−→vu) (resp. L(−→uv)). A consequence
is that, when assigning the second weight from the list to −→vu (resp. −→uv), such a conflict
involving u cannot occur. That second weight of the list is thus said safe (with respect to
u). Thus, some of the neighbours of v in D are fragile, in the sense that the arc joining
them to u has its list including an unsafe weight. This is because the weight to be assigned
to the arc between v and a fragile vertex is somehow forced (the safe one must be assigned).

To every arc joining v and a fragile neighbour, let us thus assign the safe weight. Then:

• First assume that no arc incident to v remains to be weighted, i.e., all neighbours
of v were fragile. By definition, every neighbour u of v, because it was fragile, now
verifies σ−(u) 6= σ+(u); since, under that condition, no vertex can be in conflict with
u as stated earlier, in particular also v cannot; so the resulting arc-weighting of D is
as desired.

• Finally assume that some arcs incident to v remain to be weighted, i.e., some neigh-
bours of v were not fragile. By definition, whatever weight we assign to any such
arc −→vu or −→uv, it cannot be that u gets into a conflict, as we will eventually get
σ−(u) 6= σ+(u) in any case. All remaining such arcs we weight them arbitrarily in
such a way that, eventually, also σ−(v) 6= σ+(v) is satisfied. Such a condition can
clearly be reached, as all lists have size 2, and weighting an arc incident to v alters
only one of σ−(v), σ+(v). Furthermore, that condition guarantees that v cannot be
involved in a conflict. We are thus done here as well.

5. Conclusion and open questions

Our original intention in this work was to provide more details on the directed variant
of the 1-2-3 Conjecture introduced in [7] by Horňák, Przybyło and Woźniak. We managed
to fully prove Conjecture 1.2. We have also provided complexity results on that variant.
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There have been quite a few works on the quest towards a directed variation of the 1-2-3
Conjecture, so we wanted to take this occasion to make a summary of all results we know
on that very topic. This has resulted in Table 1. An interesting thing to emphasize is that
most of these directed variants were proved through fairly easy proofs, sometimes even in
much constrained settings (such as the list setting). Also, despite the fact that these proofs
are rather easy, it is interesting that the employed arguments differ from a version to the
others (sometimes easy inductive arguments apply, while equivalences to known cases of
the 1-2-3 Conjecture had to be established other times); this shows that all these variants
are easy for various reasons. We believe all this is an interesting phenomenon, as directed
variants of problems generally tend to become harder than their undirected counterpart.

For these reasons, we however feel that the quest might be not over yet, and perhaps
there are ways to define other variants whose behaviours would mimic those behind the
original 1-2-3 Conjecture better.

About Table 1, a few results are still missing, and we would like to raise the following
corresponding questions, whose answer would allow to complete the full picture.

Let us first consider the case of the cell in Row “σ+ 6= σ−”, Column Choosability.

Question 5.1. Let D be a nice digraph, and L : A(D) → N be any assignment of lists of
size 3 to the arcs of D. Does D always admit a (+,−)-distinguishing L-arc-weighting?

As noted in [1], the (+,−) variant of the 1-2-3 Conjecture is equivalent to the 1-2-3 Con-
jecture in bipartite graphs. Hence, Question 5.1 is equivalent to proving that all bipartite
graphs satisfy the List 1-2-3 Conjecture of Bartnicki, Grytczuk and Niwczyk [2], which is
wide open in general.

The same arguments apply to the (−,+) variant, as Horňák, Przybyło and Woźniak
proved that the notion of associated bipartite graph can also be employed in this context.
If our Theorem 2.5 held in the list context, then this would be a first step towards the
following two questions, which appear in Rows “σ+ 6= σ− (lonely allowed)” and “σ+ 6= σ−

(nice digraphs)”, Column Choosability of Table 1.

Question 5.2. Let D be a digraph with no ss-arcs, and L : A(D)→ N be any assignment
of lists of size k to the arcs of D. What is the least k such that D always admits a (−,+)-
distinguishing L-arc-weighting?

Question 5.3. Let D be a nice digraph, and L : A(D) → N be any assignment of lists of
size 3 to the arcs of D. Does D always admit a (−,+)-distinguishing L-arc-weighting?

An aspect we have not mentioned in Table 1, is the complexity of choosability for
some of the variants (whose list index was proved to be at least 3). To the best of our
knowledge, no such results are known here, and it might be interesting to establish new
hardness reductions for that need.

We have also not mentioned the total versions of the variants in Table 1, or, in other
words, directed variants of the 1-2 Conjecture raised by Przybyło and Woźniak [13]. The
idea here is that not only the edges/arcs should be weighted but also the vertices, the sum
of a vertex becoming the sum of weights on its incident edges/arcs plus its own weight. In
the undirected case, it is expected that graphs become easier to weight in the total version,
as the number 3 in the statement of the 1-2-3 Conjecture was dropped down to 2 in the
statement of the 1-2 Conjecture.

All aspects mentioned in Table 1 could thus be investigated in the context of directed
variants of the 1-2 Conjecture. Such results can actually already be found in the literature
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for some variants. For instance, in [3], the authors proved that the (+,+) variant of the
1-2 Conjecture is false in a strong sense. In [1], the authors proved that the (+,−) variant
of the 1-2 Conjecture is false for a particular family of digraphs, but conjectured that it
might be true for all other digraphs. To the best of our knowledge, this is pretty much
everything that is known to date on this topic.
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