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Abstract

We consider robust and nonparametric estimation of the coefficient of tail dependence
in presence of random covariates. The estimator is obtained by fitting the extended Pareto
distribution locally to properly transformed bivariate observations using the minimum den-
sity power divergence criterion. We establish convergence in probability and asymptotic
normality of the proposed estimator under some regularity conditions. The finite sample
performance is evaluated with a small simulation experiment, and the practical applicability
of the method is illustrated on a real dataset of air pollution measurements.
Keywords: Coefficient of tail dependence, robustness, local estimation, empirical process.

1 Introduction

Many problems involving extreme events are inherently multivariate, and hence they should
be handled with appropriate multivariate extreme value methods. Of particular interest is the
estimation of the extremal dependence between two or more variables. A full characterization of
the extremal dependence between variables can be obtained from functions like the spectral dis-
tribution function or the Pickands dependence function. We refer to Beirlant et al. (2004), and
de Haan and Ferreira (2006), and the references therein, for more details about this approach.
Alternatively, similar to classical statistics one can try and summarize the extremal dependency
in a number of well-chosen coefficients that give a representative picture of the full dependency
structure, like, e.g., the coefficient of tail dependence (Ledford and Tawn, 1997). Modelling
tail dependence is a critical issue in many scientific disciplines. For instance, in finance and
actuarial science an important problem is to estimate very large quantiles of the distribution
of the sums of possibly dependent risks (Barbe et al., 2006). In environmental science, study-
ing dependence in extreme levels of pollutants like ozone, particulate matter, carbon monoxide
and temperature is important as combined high levels of these variables may pose a major
threat to human health (Escobar-Bach et al., 2018). In this paper, we will consider robust and
nonparametric estimation of the coefficient of tail dependence when there are random covariates.
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Let pY p1q, Y p2qq be a bivariate random vector recorded along with a random covariate X P Rp.
The covariate X has density function fX with support SX Ă Rp, having non-empty interior.
The continuous conditional marginal distribution functions of Y pjq given X “ x are denoted by
Fjp¨|xq, j “ 1, 2, and the joint conditional distribution function of the pair satisfies that for all
x P SX and y P r0, 1s

P
´

1´ F1pY
p1q|xq ă y, 1´ F2pY

p2q|xq ă y
ˇ

ˇ

ˇ
X “ x

¯

“ Cpxq y
1

ηpxq

ˆ

1`
1

ηpxq
δpy|xq

˙

,

where ηpxq P p0, 1s is the conditional tail dependence coefficient, and |δp¨|xq| is a regularly vary-
ing function in the neighborhood of zero with index τpxq ą 0. In this paper we focus on the
estimation of ηpxq, and introduce a nonparametric estimator, which is obtained from local fits
of the above model in a neigborhood of x, a point of interest in the covariate space. In absence
of covariates, several estimators for η have been introduced in the extreme value literature. We
refer to Ledford and Tawn (1997), Peng (1999), Draisma et al. (2004), Beirlant et al. (2011),
and Goegebeur and Guillou (2013), to name but a few.

Our aim in this paper is to estimate the conditional tail dependence coefficient in a robust way,
in order to ensure that our estimation procedure works in the presence of possible outliers. To
achieve this, we will use the idea of the density power divergence introduced by Basu et al.
(1998). In particular, the density power divergence between density functions h and g is given
by

∆αph, gq :“

#

ş

R
“

g1`αpyq ´
`

1` 1
α

˘

gαpyqhpyq ` 1
αh

1`αpyq
‰

dy, α ą 0,
ş

R log hpyq
gpyqhpyqdy, α “ 0.

(1)

Here h is assumed to be the true (typically unknown) density of the data, whereas g is a paramet-
ric model, depending on a parameter vector θ which is determined by minimizing the empirical
version of (1). The resulting estimator will be called, in the sequel, minimum density power
divergence (MDPD) estimator. In the present paper we will adjust this criterion to the local
estimation context with focus on estimating conditional extreme dependence. Dutang et al.
(2014) used this criterion to obtain a robust estimator for η, but in a context without covariates.
To the best of our knowledge, robust nonparametric estimation of the conditional coefficient of
tail dependence has not been considered so far in the extreme value literature.

The remainder of the paper is organized as follows. In Section 2, we simplify the problem to
the case where the conditional marginal distributions are known and we prove the existence,
convergence in probability and asymptotic normality of the MDPD estimator of the conditional
tail dependence coefficient. Then in Section 3, the realistic situation where the margins are
unknown is considered and similar results are established. The efficiency and robustness of our
MDPD estimator are illustrated in a small simulation study in Section 4 and on a real dataset
on air pollution in Section 5. Finally, all the proofs are postponed to the appendix.
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2 Case of known margins

In this section, we assume that the conditional marginal distribution functions F1p¨|xq and
F2p¨|xq are known.

Define Z :“ min
´

1
1´F1pY p1q|Xq

, 1
1´F2pY p2q|Xq

¯

. Direct computations yield for all x P SX

FZpz|xq :“ PpZ ą z|X “ xq “ Cpxqz
´ 1
ηpxq

ˆ

1`
1

ηpxq
δZpz|xq

˙

, (2)

where

δZpz|xq :“ δ

ˆ

1

z

ˇ

ˇ

ˇ
x

˙

.

Here |δZp¨|xq| is a regularly varying function at infinity with index ´τpxq, which is additionally
assumed to be normalized, i.e., such that

δZpz|xq “ Apxq exp

ˆ
ż z

1

εpu|xq

u
du

˙

, (3)

with Apxq P R and εpz|xq Ñ ´τpxq as z Ñ8.

Note that the conditional distribution of Z, given X “ x, satisfies Condition pRq in Dierckx
et al. (2014) with second order parameter ρpxq :“ ´τpxqηpxq. Thus, one can approximate the
conditional distribution of Z{u, given Z ą u, where u denotes a high threshold value, by the
extended Pareto distribution given by

Gpz; η, δ, ρq “

$

&

%

1´
”

z
´

1` δ ´ δz
ρ
η

¯ı´ 1
η
, z ą 1,

0, z ď 1,

and density function

gpz; η, δ, ρq “

$

&

%

z
´ 1
η´1

η

”

1` δ
´

1´ z
ρ
η

¯ı´ 1
η
´1 ”

1` δ
´

1´
´

1` ρ
η

¯

z
ρ
η

¯ı

, z ą 1,

0, z ď 1,

where η ą 0, ρ ă 0, and δ ą maxt´1, η{ρu.

Indeed, as shown in Beirlant et al. (2009), we have

sup
zě1

ˇ

ˇ

ˇ

ˇ

FZpuz|xq

FZpu|xq
´Gpz; ηpxq, δZpu|xq, ρpxqq

ˇ

ˇ

ˇ

ˇ

“ opδZpu|xqq if uÑ8.

Clearly, based on this result, one can obtain an estimator for ηpxq by fitting the extended Pareto
distribution to the relative excesses over a high threshold.
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Let pX1, Z1q, . . . , pXn, Znq be independent copies of the random vector pX,Zq. We develop a
nonparametric, robust and asymptotically unbiased estimator for ηpxq by fitting g locally to
the relative excesses Zi{un, i “ 1, . . . , n, by means of the MDPD criterion, adjusted to locally
weighted estimation, i.e., we minimize

p∆αpη, δZ ; ρq :“
1

n

n
ÿ

i“1

Khnpx´Xiq

"
ż 8

1
g1`αpz; η, δZ , ρqdz ´

ˆ

1`
1

α

˙

gα
ˆ

Zi
un

; η, δZ , ρ

˙*

1ltZiąunu,

in case α ą 0 and

p∆0pη, δZ ; ρq :“ ´
1

n

n
ÿ

i“1

Khnpx´Xiq ln g

ˆ

Zi
un

; η, δZ , ρ

˙

1ltZiąunu,

in case α “ 0, where Khnpxq :“ Kpx{hnq{h
p
n, K is a joint density function on Rp, hn is a non-

random sequence of bandwidths with hn Ñ 0 if n Ñ 8, 1ltAu is the indicator function on the
event A and un is a local non-random threshold sequence satisfying un Ñ8 if nÑ8. Note that
in case α “ 0, the local empirical density power divergence criterion corresponds with a locally
weighted log-likelihood function. The parameter α controls the trade-off between efficiency and
robustness of the MDPD criterion: the estimator becomes more efficient but less robust as α
gets closer to zero, whereas for increasing α the robustness increases and the efficiency decreases.
Note that we only estimate ηpxq and δZpun|xq with the MDPD criterion, while the second order
parameter ρpxq will be fixed at some value. Fixing second order parameters like ρpxq here at
some value is a common practice in extreme value statistics, and was also proposed in Beirlant et
al. (1999), Feuerverger and Hall (1999), and Gomes and Martins (2004). Alternatively, one can
replace ρpxq by an external consistent estimator. However, the estimation of ρpxq in a robust
way is still an open problem, and moreover, using an external consistent estimator rather than a
canonical value, does not, in general, improve the performance of the final MDPD estimator in
practice. For all these reasons, we only use a canonical value for the parameter ρpxq in the sequel.

The MDPD estimators of pηpxq, δZpun|xqq satisfy the estimating equations

0 “
1

n

n
ÿ

i“1

Khnpx´Xiq1ltZiąunu

ż 8

1
gαpz; η, δZ , ρq

Bgpz; η, δZ , ρq

Bη
dz

´
1

n

n
ÿ

i“1

Khnpx´Xiqg
α´1

ˆ

Zi
un

; η, δZ , ρ

˙ Bg
´

Zi
un

; η, δZ , ρ
¯

Bη
1ltZiąunu, (4)

0 “
1

n

n
ÿ

i“1

Khnpx´Xiq1ltZiąunu

ż 8

1
gαpz; η, δZ , ρq

Bgpz; η, δZ , ρq

BδZ
dz

´
1

n

n
ÿ

i“1

Khnpx´Xiqg
α´1

ˆ

Zi
un

; η, δZ , ρ

˙ Bg
´

Zi
un

; η, δZ , ρ
¯

BδZ
1ltZiąunu. (5)

The following statistic is crucial for studying the asymptotic behavior of the estimators. Set
ln` x :“ ln maxtx, 1u, x ą 0, and

TnpK, s, t|xq :“
1

n

n
ÿ

i“1

Khnpx´Xiq

ˆ

Zi
un

˙sˆ

ln`
Zi
un

˙t

1ltZiąunu,
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where s ď 0 and t ě 0. The motivation for considering this type of statistic is that the estimat-
ing equations (4) and (5) only depend on statistics of this form. Note that ln` x is introduced
to ensure that pln` Zi{unq

t is always well defined (t is nonnegative, not necessary integer).

Due to the regression context, we need the following classical Hölder-type conditions. Here } ¨ }
denotes some norm on Rp.

Assumption pHq There exist positive constants MfX , MC , MA, Mη, Mε, δfX , δC , δA, δη, and
δε, such that for all px, zq P SX ˆ SX :

|fXpxq ´ fXpzq| ď MfX }x´ z}
δfX ,

|Cpxq ´ Cpzq| ď MC}x´ z}
δC ,

|Apxq ´Apzq| ď MA}x´ z}
δA ,

|ηpxq ´ ηpzq| ď Mη}x´ z}
δη ,

sup
yě1

|εpy|xq ´ εpy|zq| ď Mε}x´ z}
δε .

Also, the following assumption, standard in the context of local estimation, is required on the
kernel function.

Assumption pK1q K is a bounded density function on Rp, with support SK included in the unit
ball of Rp.

In order to establish the asymptotic normality of the consistent sequence of solutions ppηnpxq, pδZ,npxqq
of the estimating equations (4) and (5), we introduce

Spjqn psq :“

b

nhpnFZpun|xqfXpxq

«

TnpK, s, j|xq

FZpun|xqfXpxq
´

j!ηj0pxq

r1´ sη0pxqsj`1

ff

, j P t0, 1, 2, 3u,

where we denote by η0pxq, resp. ρ0pxq, the true conditional tail dependence coefficient, resp.
second order parameter.

Theorem 2.1 Let pX1, Z1q, . . . , pXn, Znq be a sample of independent copies of the random vec-
tor pX,Zq where the distribution of Z, given X “ x, satisfies (2) and (3), X follows a distribu-
tion with density function fX , and assume pHq and pK1q hold. For all x P IntpSXq with fXpxq ą
0, we assume that un Ñ 8 and hn Ñ 0 in such a way that hδεn lnun Ñ 0, nhpnFZpun|xq Ñ 8,
b

nhpnFZpun|xqδZpun|xq Ñ λ P R,
b

nhpnFZpun|xqh
δfX^δC
n Ñ 0,

b

nhpnFZpun|xqh
δη
n lnun Ñ 0.

Then in C4prS, 0sq, S ă 0,

pSp0qn , Sp1qn ,Sp2qn ,Sp3qn q pSp0q, Sp1q, Sp2q,Sp3qq, for nÑ8,

a Gaussian process, with, for s P rS, 0s, mean functions

ErSpjqpsqs “ ´λ
a

fXpxqj!η
j´1
0 pxq

„

1

r1´ sη0pxqsj`1
´

1´ ρ0pxq

r1´ ρ0pxq ´ sη0pxqsj`1



, j P t0, 1, 2, 3u,
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and covariance functions given by

CovpSpjqps1q,Spkqps2qq “
pj ` kq!ηj`k0 pxq}K}22

r1´ ps1 ` s2qη0pxqs1`j`k
, pj, kq P t0, 1, 2, 3u2.

Note that Dierckx et al. (2014) obtained a similar result, though under their high level assump-
tion called pMq, which is avoided in the present paper.

Based on this theorem, one can now establish the existence, convergence in probability and
asymptotic normality of the MDPD estimators of pη0pxq, δZpun|xqq, when suitably normalized.
This theorem is similar to Theorems 2 and 3 in Dierckx et al. (2014) with our new conditions
given in our Theorem 2.1, and thus the proof is omitted.

Theorem 2.2 Let pX1, Z1q, . . . , pXn, Znq be a sample of independent copies of the random vec-
tor pX,Zq where the distribution of Z, given X “ x, satisfies (2) and (3), X follows a distribu-
tion with density function fX , and assume pHq and pK1q hold.

For all x P IntpSXq with fXpxq ą 0, let un Ñ8 and hn Ñ 0 in such a way that nhpnFZpun|xq Ñ

8 and h
δη^δε
n lnun Ñ 0. Then with probability tending to 1, there exists sequences of solu-

tions ppηnpxq, pδZ,npxqq of the estimating equations (4) and (5), with ρ fixed at ρ0pxq such that

ppηnpxq, pδZ,npxqq
P
ÝÑ pη0pxq, 0q.

If additionally,

b

nhpnFZpun|xq δZpun|xq ÝÑ λ P R, (6)
b

nhpnFZpun|xqh
δfX^δC
n ÝÑ 0, (7)

b

nhpnFZpun|xqh
δη
n lnun ÝÑ 0, (8)

then

b

nhpnFZpun|xqfXpxq

„

pηnpxq ´ η0pxq
pδZ,npxq ´ δZpun|xq



 N2

`

0,C´1pρ0pxqqBpρ0pxqqΣpρ0pxqqB1pρ0pxqqC´1pρ0pxqq
˘

,

for nÑ8, where the matrix Bpρ0pxqq is defined by

Bpρ0pxqq :“ η´α´20 pxq

»

—

–

´
αη0pxqp1`η0pxqq
r1`αp1`η0pxqqs2

η0pxq 0 ´1

´
αη0pxqρ0pxqp1`η0pxqq

r1`αp1`η0pxqqsr1´ρ0pxq`αp1`η0pxqqs
η0pxq ´η0pxqp1´ ρ0pxqq 0

fi

ffi

fl

,
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the elements of the symmetric p4ˆ 4q matrix Σpρ0pxqq are given by

σ11pρ0pxqq :“ }K}22

σ21pρ0pxqq :“
}K}22

1` αp1` η0pxqq

σ22pρ0pxqq :“
}K}22

1` 2αp1` η0pxqq

σ31pρ0pxqq :“
}K}22

1´ ρ0pxq ` αp1` η0pxqq

σ32pρ0pxqq :“
}K}22

1´ ρ0pxq ` 2αp1` η0pxqq

σ33pρ0pxqq :“
}K}22

1´ 2ρ0pxq ` 2αp1` η0pxqq

σ41pρ0pxqq :“
η0pxq}K}

2
2

r1` αp1` η0pxqqs2

σ42pρ0pxqq :“
η0pxq}K}

2
2

r1` 2αp1` η0pxqqs2

σ43pρ0pxqq :“
η0pxq}K}

2
2

r1´ ρ0pxq ` 2αp1` η0pxqqs2

σ44pρ0pxqq :“
2η20pxq}K}

2
2

r1` 2αp1` η0pxqqs3

and those of the symmetric p2ˆ 2q matrix Cpρ0pxqq by

C11pρ0pxqq :“ η´α´20 pxq
1` α2p1` η0pxqq

2

r1` αp1` η0pxqqs3

C21pρ0pxqq :“ η´α´20 pxq
ρ0pxqp1´ ρ0pxqqr1` αp1` η0pxqq ` α

2p1` η0pxqq
2s ` α3ρ0pxqp1` η0pxqq

3

r1` αp1` η0pxqqs2r1´ ρ0pxq ` αp1` η0pxqqs2

C22pρ0pxqq :“ η´α´20 pxq
p1´ ρ0pxqqρ

2
0pxq ` αρ

2
0pxqp1` η0pxqqrαp1` η0pxqq ´ ρ0pxqs

r1` αp1` η0pxqqsr1´ ρ0pxq ` αp1` η0pxqqsr1´ 2ρ0pxq ` αp1` η0pxqqs
.

Note that the expected value of the limiting random vector in Theorem 2.2 is zero, whatever
the value of λ. The estimator is therefore said to be asymptotically unbiased.

The following proposition deals with the behavior of the MDPD estimators ppηnpxq, pδZ,npxqq when
the parameter ρpxq is fixed at some value rρ ă 0, possibly mis-specified.

Proposition 2.1 Under the assumptions of Theorem 2.2, but now with ρ fixed at rρ in the es-
timating equation (4) and (5), with probability tending to 1, there exists sequences of solutions

ppηnpxq, pδZ,npxqq of the estimating equations such that ppηnpxq, pδZ,npxqq
P
ÝÑ pη0pxq, 0q.
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If additionally (6), (7) and (8) hold, then

b

nhpnFZpun|xqfXpxq

„

pηnpxq ´ η0pxq
pδZ,npxq



 N2

´

´λ
a

fXpxqC´1prρqBprρqD,C´1prρqBprρqΣprρqB1prρqC´1prρq
¯

,

for nÑ8, where the elements of the vector D are the following

D1 :“ 0

D2 :“ ´
αρ0pxqp1` η0pxqq

η0pxqr1` αp1` η0pxqqsr1´ ρ0pxq ` αp1` η0pxqqs

D3 :“ ´
rαp1` η0pxqq ´ rρsρ0pxq

η0pxqr1´ rρ` αp1` η0pxqqsr1´ ρ0pxq ´ rρ` αp1` η0pxqqs

D4 :“
ρ0pxqp1´ ρ0pxqq ´ α

2ρ0pxqp1` η0pxqq
2

r1` αp1` η0pxqqs2r1´ ρ0pxq ` αp1` η0pxqqs2
.

Again the proof of Proposition 2.1 is similar to the one of Proposition 1 in Dierckx et al. (2014)
and thus is omitted. Note that in case rρ is mis-specified, then the mean of the limiting normal
distribution is not necessarily zero, and hence one possible loses the asymptotic unbiasedness.
However, as will be clear from the simulations, even though rρ is mis-specified, the proposed
MDPD estimator performs well with respect to bias. Also note that the asymptotic variance
expression in Proposition 2.1 is the same as that in Theorem 2.2, though with ρ0pxq replaced by rρ.

3 Case of unknown margins

In this section, we consider the general framework where both F1p¨|xq and F2p¨|xq are unknown
conditional distribution functions. We want to mimic what has been done in the previous section.
To this aim, we define

qZ :“ min

ˆ

1

1´ Fn,1pY p1q|Xq
,

1

1´ Fn,2pY p2q|Xq

˙

,

for suitable estimators Fn,j of Fj , j “ 1, 2. Then similarly as in the previous section, the statistic

qTnpK, s, t|xq :“
1

n

n
ÿ

i“1

Khnpx´Xiq

˜

qZi
un

¸s˜

ln`
qZi
un

¸t

1l
t qZiąunu

,

is the cornerstone for the MDPD estimator, denoted qηnpxq. In particular, the main result relies
essentially on the asymptotic properties of this statistic, and so the idea will be to decompose

b

nhpnFZpun|xqfXpxq

«

qTnpK, s, j|xq

FZpun|xqfXpxq
´

j!ηj0pxq

r1´ sη0pxqsj`1

ff

8



into the two terms

b

nhpnFZpun|xqfXpxq

«

TnpK, s, j|xq

FZpun|xqfXpxq
´

j!ηj0pxq

r1´ sη0pxqsj`1

ff

`

b

nhpnFZpun|xqfXpxq

«

qTnpK, s, j|xq

FZpun|xqfXpxq
´

TnpK, s, j|xq

FZpun|xqfXpxq

ff

. (9)

The first term can be dealt with using the results from the previous section, whereas we have
to show that the second term is negligible for all s ă 0 with j P t0, 1, 2, 3u or ps, jq “ p0, 0q.

In the sequel, we will use the empirical kernel estimator of the unknown distribution functions

Fn,jpy|xq :“

řn
i“1Kcpx´Xiq1ltY pjqi ďyu
řn
i“1Kcpx´Xiq

, j “ 1, 2,

where the bandwidth c :“ cn is a positive non-random sequence satisfying cn Ñ 0 as n Ñ 8.
Here we kept the same kernel K as in the divergence objective function, but of course any other
kernel function can be used.

Before stating our main results, we need to impose again some assumptions, in particular a
Hölder-type condition on each conditional marginal distribution function Fj similar to those
imposed in Section 2.

Assumption pFq. There exist MFj ą 0 and δFj ą 0 such that |Fjpy|xq ´ Fjpy|zq| ď MFj}x ´

z}
δFj , for all y P R and all px, zq P SX ˆ SX , and j “ 1, 2.

Concerning the kernel K a stronger assumption than pK1q is needed. Denote by Bzprq the closed
ball with center z and radius r with respect to }.}.

Assumption pK2q. K satisfies Assumption pK1q, there exists δ,m ą 0 such that B0pδq Ă SK
and Kpuq ě m for all u P B0pδq, and K belongs to the linear span (the set of finite lin-
ear combinations) of functions k ě 0 satisfying the following property: the subgraph of k,
tps, uq : kpsq ě uu, can be represented as a finite number of Boolean operations among sets
of the form tps, uq : qps, uq ě ϕpuqu, where q is a polynomial on Rp ˆ R and ϕ is an arbitrary
real function.

The latter assumption has already been used in Giné and Guillou (2002) or Giné et al. (2004). In
particular, it allows us to measure the discrepancy between the conditional distribution function
Fj and its empirical kernel version Fn,j , as stated in the following lemma established by Escobar-
Bach et al. (2018).

Lemma 3.1 Assume that there exists b ą 0 such that fpxq ě b,@x P SX Ă Rp, f is bounded,
and pK2q and pFq hold. Consider a sequence c tending to 0 as nÑ8 such that for some q ą 1

| log c|q

ncp
ÝÑ 0.

9



Also assume that there exists an ε ą 0 such that for n sufficiently large

inf
xPSX

λ ptu P B0p1q : x´ cu P SXuq ą ε,

where λ denotes the Lebesgue measure. Then, for any 0 ă δ ă minpδF1 , δF2q, we have

sup
py,xqPRˆSX

|Fn,jpy|xq ´ Fjpy|xq| “ oP

˜

max

˜

c

| log c|q

ncp
, cδ

¸¸

, for j “ 1, 2.

We are now able to study the second term in (9).

Theorem 3.1 Let pX1, Z1q, . . . , pXn, Znq be a sample of independent copies of the random
vector pX,Zq where the distribution of Z, given X “ x, satisfies (2) and (3), X follows a
distribution with a bounded density function fX , and such that there exists b ą 0 satisfying
fpxq ě b,@x P SX Ă Rp. Assume also Assumptions pHq, pK2q and pFq.
Consider now a sequence c tending to 0 as nÑ8 such that for some q ą 1

| log c|q

ncp
ÝÑ 0.

Also assume that there exists an ε ą 0 such that for n sufficiently large

inf
xPSX

λ ptu P B0p1q : x´ cu P SXuq ą ε,

where λ denotes the Lebesgue measure. Let un Ñ 8 and hn Ñ 0 in such a way that for any
δ P p0,minpδF1 , δF2qq

nhpnrn :“ nhpn max

˜

c

| log c|q

ncp
, cδ

¸

ÝÑ 0 (10)

nhpnFZpun|xq ÝÑ 8, (11)

then for any s ă 0 with j P t0, 1, 2, 3u or ps, jq “ p0, 0q, we have
d

nhpn

FZpun|xqfXpxq

”

qTnpK, s, j|xq ´ TnpK, s, j|xq
ı

“ oPp1q.

Using Theorem 3.1 we can now establish the main theorem of this paper, stating consistency
and asymptotic normality of the conditional η estimator, in case of general conditional marginal
distribution functions, which are estimated with kernel estimators.

Theorem 3.2 Under the same assumptions as in Theorem 3.1, let x P IntpSXq and suppose

that h
δη^δε
n lnun Ñ 0. Then with probability tending to 1, there exists sequences of solutions

pqηnpxq, qδZ,npxqq of the estimating equations (4) and (5) such that pqηnpxq, qδZ,npxqq
P
ÝÑ pη0pxq, 0q.

If additionally (6), (7) and (8) hold, then
b

nhpnFZpun|xqfXpxq

„

qηnpxq ´ η0pxq
qδZ,npxq



 N2

´

´λ
a

fXpxqC´1prρqBprρqD,C´1prρqBprρqΣprρqB1prρqC´1prρq
¯

.

The result of Theorem 3.2 follows directly from the decomposition (9) and Theorem 3.1, and
therefore we omit the proof of it from the paper.
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4 A simulation study

Our aim in this section is to illustrate the performance of our robust conditional tail depen-
dence coefficient estimator with a small simulation study in case p “ 1. The joint conditional
distribution function of the pair has the following form:

P
´

1´ F1pY
p1q|xq ă y1, 1´ F2pY

p2q|xq ă y2

ˇ

ˇ

ˇ
X “ x

¯

“ Cpy1, y2|xq,

where Cp., .|xq is one of the three copulas:

Case 1: The BB6 copula in Joe (1997, p. 152) defined for θpxq ě 1 and ζpxq ě 1, as follows

Cpy1, y2|xq “ 1´

«

1´ exp

#

´

ˆ

”

´ log
!

1´ p1´ y1q
θpxq

)ıζpxq
`

”

´ log
!

1´ p1´ y2q
θpxq

)ıζpxq
˙

1
ζpxq

+ff

1
θpxq

.

For this model exact independence is obtained for θpxq “ 1 with ζpxq “ 1, and perfect depen-
dence is achieved if either θpxq Ñ 8 or ζpxq Ñ 8. We can easily see that in case θpxq ą 1,

this model satisfies our model assumption (2) with ηpxq “ 2
´ 1
ζpxq , Cpxq “ rθpxqs2

1
ζpxq´1 and

τpxq “ 1. We take X „ Up1, 6q, θpxq “ 2 and ζpxq “ x.

Case 2: The Farlie Gumbel Morgenstern copula defined for ζpxq P p´1, 1s, as follows

Cpy1, y2|xq “ y1y2 r1` ζpxqp1´ y1qp1´ y2qs .

Exact independence is obtained for ζpxq “ 0, and perfect dependence is not attainable under
this model. Clearly, for ζpxq ‰ 0, our model assumption (2) is also satisfied, with ηpxq “ 1{2,
Cpxq “ 1` ζpxq and τpxq “ 1. We take X „ Up´0.9, 1q and ζpxq “ x .

Case 3: The BB9 or Crowder copula in Joe (1997, p. 154) defined for αpxq ě 0 and θpxq ě 1,
as follows

Cpy1, y2|xq “ exp

ˆ

´

”

tαpxq ´ logpy1qu
θpxq

` tαpxq ´ logpy2qu
θpxq

´ αθpxq
ı

1
θpxq

` αpxq

˙

.

Exact independence is obtained for θpxq “ 1 or αpxq Ñ 8, and perfect dependence for

θpxq Ñ 8. We can check that this model has the form of (2) with ηpxq “ 2
´ 1
θpxq , Cpxq “

exp
!

αpxq
”

1´ 2
1

θpxq

ı)

, but τpxq “ 0. That means that this case does not fit our model assump-

tion, but we use it here to show the robustness of our approach in case our main assumption is
violated. We set X „ Up1, 6q, αpxq “ 1 and θpxq “ x.

These copula models are combined with unit Fréchet marginal distributions, leading to

F py1, y2|xq “ expp´1{y1q ` expp´1{y2q ´ 1` Cp1´ expp´1{y1q, 1´ expp´1{y2q|xq.

Contamination will be introduced according to the following mixture model

Fεpy1, y2|xq “ p1´ εqF py1, y2|xq ` εFcpy1, y2|xq,

11



where ε denotes the fraction of contamination, and Fc is the contaminating distribution function.
We take here

Fcpy1, y2|xq “ e´pminty1,y2u´aq´1
, y1, y2 ą a,

i.e., the distribution function of completely dependent unit Fréchet random variables, translated
by a. We take for a quantile 0.999 of the unit Fréchet distribution, and consider ε “ 0, 5% and
10%.

Concerning the kernel function K, we take the bi-quadratic function

Kpxq “
15

16
p1´ x2q21ltxPr´1,1su.

To compute our estimator qηnpxq, two sequences hn and c have to be chosen. Concerning c, we
can use the following cross validation criterion introduced by Yao (1999), and used in an extreme
value context by Daouia et al. (2011, 2013) and Escobar-Bach et al. (2018):

cj :“ arg min
cPCg

n
ÿ

i“1

n
ÿ

k“1

„

1l!
Y
pjq
i ďY

pjq
k

) ´ rFn,´i,jpY
pjq
k |Xiq

2

, j “ 1, 2,

where Cg is a grid of values of c and rFn,´i,jpy|xq :“

řn
k“1,k‰iKcpx´Xkq1ltY pjqk ďyu
řn
k“1,k‰iKcpx´Xkq

. We take

Cg “ RX ˆ t0.05, 0.10, . . . , 0.30u, where RX is the range of the covariate X. The bandwidth
parameter hn is determined from the condition

nhn

c

| log c|q

nc
ÝÑ 0,

by taking hn “ RX
a

c{pn| log c|κq, where κ ą q and c :“ minpc1, c2q. Next to hn and c, our es-
timation procedure also requires the selection of a threshold parameter un. As usual in extreme
value statistics, this parameter will be set at the pk ` 1q-th largest of the qZ for which the X
coordinate is in Bpx, hnq.

As mentioned before, we only estimate ηpxq and δZpun|xq with the MDPD method, while the
parameter ρ is fixed at some value. Here we set ρ “ ´1, which is a mis-specification.

For each of the above distributions we simulate N “ 500 samples of size n “ 1 000. The results
of the simulation experiment are reported in Figures 1 till 6. In Figure 1 we show the mean
of qηnpxq as a function of k for α “ 0 (solid line), α “ 0.5 (dashed line) and α “ 1 (dotted
line) for the BB6 copula. The true value of η is represented by the horizontal reference line.
The columns of the figure represent three different values of x, while the rows correspond with
the contamination percentages, 0%, 5% and 10% from top to bottom. Figure 2 displays the
empirical mean squared error (MSE) as a function of k, but has otherwise a layout that is
similar to Figure 1. Concerning the selection of hn and c, we note the following. In a first step
we compute the optimal hn and c for each dataset using the above mentioned cross-validation

12



criterion. This implies that the range of k varies from one dataset to the other, so means and
MSE’s would be based on a different number of observations when plotted as a function of k.
In order to avoid this we take the median of the hn and c values obtained in the 500 simulations
and use this for all estimations. Figures 3 and 4, and Figures 5 and 6, show the corresponding
results for the Farlie Gumbel Morgenstern and BB9 copula, respectively. From the simulation
we can draw the following conclusions:

• In absence of contamination, the estimators show generally a quite stable pattern for a
wide range of k, close to the true value of η, despite the mis-specification of the parameter
ρ. In terms of MSE we see that, the estimator with α “ 0, which corresponds to maximum
likelihood, performs best, followed by α “ 0.5 and α “ 1. This can be explained as follows:
in terms of bias the estimators with different values of α perform similarly, while for the
variance we have that α “ 0, corresponding to maximum likelihood, performs best. It is
well-known that the efficiency of the MDPDE decreases with increasing α, see, e.g., Basu
et al. (1998).

• When there is contamination, then the non-robust estimator pα “ 0q is clearly affected,
with a sample mean that can be far from the true value, while the robust estimators
generally stay closer to the true value. The estimator with α “ 1, which offers the highest
robustness, performs best in terms of bias. In terms of minimal MSE, using α “ 0.5 gives
the best result. The advantage of α “ 1 in terms of bias is offset by its increased variance
compared to α “ 0.5.

• The performance of the estimators deteriorates under increasing contamination percent-
ages.

• For the BB6 distribution, the effect of the contamination is strongest for the smaller x
values. This could be expected, as the dependence in the data is weakest at the smaller
x. The dependence increases with x, and therefore at x “ 4 the effect of contamination
on the diagonal is least.

• The Farlie Gumbel Morgenstern distribution has η “ 0.5, corresponding to near indepen-
dence. For this distribution, contamination on the diagonal is clearly very severe.

• For the BB9 distribution, which does not satisfy our model assumptions, we still have
very good estimation results, which also illustrates the robustness of our methodology
with respect to violation of the model assumption. Also here we see that the effect of the
contamination is biggest at the x positions where the dependence in the data is weakest.

• Overall, using α “ 0.5 and 1 leads to estimators that are robust with respect to outliers. In
terms of minimal MSE the estimator with α “ 0.5 performs typically best, and is therefore
the recommended value. This is in line with the findings of Dutang et al. (2014) in the
context without covariates.
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Figure 1: BB6 simulation with (shifted) diagonal contamination. Mean of qηnpxq with α “ 0
(solid line), α “ 0.5 (dashed line) and α “ 1 (dotted line), as a function of k at x “ 2 (left),
x “ 3 (middle) and x “ 4 (right). From top to bottom: 0%, 5% and 10% of contamination.

5 A real data analysis

In this section, the proposed methodology is applied to a dataset of air pollution measurements.
In environmental science, one needs to consider simultaneous high levels of several pollutants,
possibly combined with high temperatures, as these may pose a major threat to human health.
Estimation of the extreme dependence is thus of crucial importance in this context. We consider
the data collected by the United States Environmental Protection Agency (EPA), publicly avail-
able at https:{{aqsdr1.epa.gov{aqsweb{aqstmp{airdata{download files.html. The dataset under
consideration contains monthly maxima on, among others, temperature, and ground-level ozone,
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Figure 2: BB6 simulation with (shifted) diagonal contamination. MSE of qηnpxq with α “ 0
(solid line), α “ 0.5 (dashed line) and α “ 1 (dotted line), as a function of k at x “ 2 (left),
x “ 3 (middle) and x “ 4 (right). From top to bottom: 0%, 5% and 10% of contamination.

carbon monoxide and particulate matter concentrations, for the time period 1999 to 2013. These
data are collected at stations spread over the U.S. We will estimate the extreme dependence
between ground-level ozone and particulate matter concentrations, conditional on the covariates
time and location, where the latter is expressed by latitude and longitude. The method is imple-
mented with the same cross-validation criteria as in the simulations, though for convenience we
rescaled each covariate to the interval r0, 1s. As for the kernel function, we used the bi-quadratic
kernel, generalised to the case p “ 3, as follows

Khnpxq “
1

h3n
K

ˆ

}x}

hn

˙

,
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Figure 3: FGM simulation with (shifted) diagonal contamination. Mean of qηnpxq with α “ 0
(solid line), α “ 0.5 (dashed line) and α “ 1 (dotted line), as a function of k at x “ ´0.5 (left),
x “ 0.5 (middle) and x “ 0.8 (right). From top to bottom: 0%, 5% and 10% of contamination.

where x P R3, and }.} denotes the Euclidean norm. In Figure 7, we show the estimate of ηpxq
with α “ 0 (solid line), α “ 0.5 (dashed line) and α “ 1 (dotted line) for the city of Los Angeles
at different points in time. The reported estimate is medianpqηnpxq; k “ n˚{2, . . . , n˚´ 1q, where
n˚ denotes the number of observations in Bpx, hnq. Overall, the extreme dependence between
ground-level ozone and particulate matter concentrations shows a seasonal pattern, where the
dependence is stronger in summer than winter. For some months the estimate with α “ 0
differs noticeably from those obtained with α “ 0.5 and α “ 1, which indicates the presence of
observations that are disturbing for the estimation of the dependence structure. In Figure 8, we
show the estimate qηnpxq with α “ 0 (solid line), α “ 0.5 (dashed line) and α “ 1 (dotted line)
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Figure 4: FGM simulation with (shifted) diagonal contamination. MSE of qηnpxq with α “ 0
(solid line), α “ 0.5 (dashed line) and α “ 1 (dotted line), as a function of k at x “ ´0.5 (left),
x “ 0.5 (middle) and x “ 0.8 (right). From top to bottom: 0%, 5% and 10% of contamination.

for months 59 and 100 as a function of k. For month 59, the robust estimates show a stable
pattern around ηpxq “ 1 for the second half of the k range, while the non-robust estimate shows
nearly no stability as a function of k. On the contrary, for month 100, the robust estimates are
below the non-robust estimate. Again the robust estimates show a stable horizontal pattern for
the second half of the k range, which is not present for the non-robust estimate.
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Figure 5: BB9 simulation with (shifted) diagonal contamination. Mean of qηnpxq with α “ 0
(solid line), α “ 0.5 (dashed line) and α “ 1 (dotted line), as a function of k at x “ 2 (left),
x “ 3 (middle) and x “ 4 (right). From top to bottom: 0%, 5% and 10% of contamination.

6 Appendix

6.1 Proof of Theorem 2.1

The first step consists to show that, under our assumptions,

ErTnpK, s, j|xqs “ fXpxqFZpun|xqη
j
0pxqj!

ˆ

"

1

p1´ sη0pxqqj`1
´
δZpun|xq

η0pxq

„

1

p1´ sη0pxqqj`1
´

1´ ρ0pxq

p1´ ρ0pxq ´ sη0pxqqj`1



` opδZpun|xqq

`O
´

h
δfX^δC
n

¯

`O
´

h
δη
n lnun

¯)

,
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Figure 6: BB9 simulation with (shifted) diagonal contamination. MSE of qηnpxq with α “ 0
(solid line), α “ 0.5 (dashed line) and α “ 1 (dotted line), as a function of k at x “ 2 (left),
x “ 3 (middle) and x “ 4 (right). From top to bottom: 0%, 5% and 10% of contamination.

where the opδZpun|xqq and Op.q terms are uniform in s P rS, 0s.
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Figure 7: Air pollution data. Time plot of qηnpxq with α “ 0 (solid line), α “ 0.5 (dashed line)
and α “ 1 (dotted line) for the city of Los Angeles.

To obtain this result for the case j ą 0, use the following decomposition

ErTnpK, s, j|xqs “ fXpxq

ż 8

1
ppzqFZpunz|xqdz

`

ż

SK

Kpvq

ż 8

1
ppzqFZpunz|xqdzrfXpx´ hnvq ´ fXpxqsdv

`fXpxq

ż

SK

Kpvq

ż 8

1
ppzqrFZpunz|x´ hnvq ´ FZpunz|xqsdz dv

`

ż

SK

Kpvq

ż 8

1
ppzqrFZpunz|x´ hnvq ´ FZpunz|xqsdz rfXpx´ hnvq ´ fXpxqsdv,

where ppzq :“ szs´1pln zqj ` jzs´1pln zqj´1. Each term can be treated using our Hölder-type
conditions, which imply in particular that, for n large enough, z ě un, and some constants
M1,M2,M3

ˇ

ˇ

ˇ

ˇ

FZpz|x´ hnvq

FZpz|xq
´ 1

ˇ

ˇ

ˇ

ˇ

ďM1

´

hδCn ` zM2 h
δη
n h

δη
n ln z ` |δZpz|xq|h

δA
n ` |δZpz|xq|z

M3 h
δε
n hδεn ln z

¯

(12)

combined with a slight modification of Proposition 2.3 in Beirlant et al. (2009) which ensures
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Figure 8: Air pollution data. qηnpxq with α “ 0 (solid line), α “ 0.5 (dashed line) and α “ 1
(dotted line) as a function of k for months 59 (left) and 100 (right).

that

sup
zě1

z
1

ηpxq

ˇ

ˇ

ˇ

ˇ

FZpunz|xq

FZpun|xq
´Gpz; ηpxq, δZpun|xq, ρpxqq

ˇ

ˇ

ˇ

ˇ

“ op|δZpun|xq|q as un Ñ8.

In case j “ 0 we obtain

ErTnpK, s, 0|xqs “

ż

SK

Kpvq

ż 8

1
ppzqFZpunz|x´ hnvqdzfXpx´ hnvqdv

`

ż

SK

KpvqFZpun|x´ hnvqfXpx´ hnvqdv,

where ppzq “ szs´1. Both terms can be analysed with decompositions similar to the ones used
for the case j ą 0.

Then we can follow the lines of proofs of Theorem 1 and Corollary 1 in Dierckx et al. (2014) in
order to achieve the proof of Theorem 2.1.

6.2 Proof of Theorem 3.1

First remark that
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d

nhpn

FZpun|xqfXpxq

”

qTnpK, s, j|xq ´ TnpK, s, j|xq
ı

“

d

nhpn

FZpun|xqfXpxq

”

qTnpK, s, j|xq ´ TnpK, s, j|xq ´ E
´

qTnpK, s, j|xq ´ TnpK, s, j|xq
¯ı

`

d

nhpn

FZpun|xqfXpxq
E
´

qTnpK, s, j|xq ´ TnpK, s, j|xq
¯

“: Rn,1 `Rn,2.

We will study the two terms Rn,1 and Rn,2 separately. First, we start with the term Rn,1. Define
for any s ă 0 with j P J :“ t0, 1, 2, 3u or ps, jq “ p0, 0q

g
ps,jq
ξ,n py1, y2, vq :“

d

hpn

FZpun|xqfXpxq
Khnpx´ vqq

ps,jq
ξ,n py1, y2, vq

with

q
ps,jq
ξ,n py1, y2, vq :“

ˆ

Zξpy1, y2, vq

un

˙sˆ

ln
Zξpy1, y2, vq

un

˙j

1ltZξpy1,y2,vqąunu,

Zξpy1, y2, vq :“ min

ˆ

1

|1´ ξ1py1, y2, vq|
,

1

|1´ ξ2py1, y2, vq|

˙

,

and measurable ξ P H :“ tξ “ pξ1, ξ2q; ξ : Rˆ Rˆ SX Ñ R2u.

For convenience, denote ξn “ pFn,1, Fn,2q and ξ0 “ pF1, F2q. According to Lemma 3.1, r´1n |ξn´ξ0|
converges in probability towards the null function H0 “ t0u in H, endowed with the norm
}ξ}H :“ }ξ1}8 ` }ξ2}8 for any ξ P H. Consider now the class

Eps,jqn pbq :“ tg
ps,jq
ξ0`rnξ,n

´ g
ps,jq
ξ0,n

: ξ P H, }ξ}H ď bu,

with envelope function G
ps,jq
n pbq. Our aim is to apply Theorem 2.3 in van der Vaart and Wellner

(2017). To reach this goal, we need to introduce some notations. Let P denote the law of the
vector pY p1q, Y p2q, Xq and define the expectation of any real-valued measurable function f under
P by Pf “

ş

fdP .

We have now to show the two following results:
Assertion 1: For any s ă 0 with j P J or ps, jq “ p0, 0q, we have

?
nPGps,jqn pbnq ÝÑ 0 for all bn Ñ 0,

and
Assertion 2: For any s ă 0 with j P J or ps, jq “ p0, 0q, we have

P
´

pGps,jqn pbqq2
¯

ÝÑ 0.
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6.2.1 Proof of Assertion 1

We start to consider the case where s ă 0 with j P J . As a first step we derive an envelope

function for Eps,jqn pbnq. We have

ˇ

ˇ

ˇ
q
ps,jq
ξ0`rnξ,n

´ q
ps,jq
ξ0,n

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż 8

1
ppaq1ltunăunaăZξ0`rnξu1ltZξ0`rnξąunuda´

ż 8

1
ppaq1ltunăunaăZξ0u1ltZξ0ąunuda

`1ltj“0u1ltZξ0`rnξąunu ´ 1ltj“0u1ltZξ0ąunu

ˇ

ˇ

ˇ

ď

ż 8

1
|ppaq|

ˇ

ˇ

ˇ
1ltunăunaăZξ0`rnξu1ltZξ0`rnξąunu ´ 1ltunăunaăZξ0u1ltZξ0ąunu

ˇ

ˇ

ˇ
da

`1ltj“0u

ˇ

ˇ

ˇ
1ltZξ0`rnξąunu ´ 1ltZξ0ąunu

ˇ

ˇ

ˇ

ď

ż 8

1
|ppaq|

ˇ

ˇ

ˇ
1ltunăunaăZξ0u ´ 1ltunăunaăZξ0`rnξu

ˇ

ˇ

ˇ
1ltZξ0ąunuda

`

ż 8

1
|ppaq| 1ltunăunaăZξ0`rnξu

ˇ

ˇ

ˇ
1ltZξ0`rnξąunu ´ 1ltZξ0ąunu

ˇ

ˇ

ˇ
da

`1ltj“0u

ˇ

ˇ

ˇ
1ltZξ0`rnξąunu ´ 1ltZξ0ąunu

ˇ

ˇ

ˇ

ď

ż 8

1
|ppaq| 1ltminpZξ0 ,Zξ0`rnξqďunaďmaxpZξ0 ,Zξ0`rnξqu

1ltZξ0ąunu da

`

ż 8

1
|ppaq| 1ltunăunaăZξ0`rnξu1ltminpZξ0 ,Zξ0`rnξqďunďmaxpZξ0 ,Zξ0`rnξqu

da

`1ltj“0u1ltminpZξ0 ,Zξ0`rnξqďunďmaxpZξ0 ,Zξ0`rnξqu
. (13)

Remark now that
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tun a P rminpZξ0 , Zξ0`rnξq; maxpZξ0 , Zξ0`rnξqsu

“

"

un a P

„

min

ˆ

min

ˆ

1

|1´ F1 ´ rnξ1|
,

1

|1´ F2 ´ rnξ2|

˙

,min

ˆ

1

1´ F1
,

1

1´ F2

˙˙

;

max

ˆ

min

ˆ

1

|1´ F1 ´ rnξ1|
,

1

|1´ F2 ´ rnξ2|

˙

,min

ˆ

1

1´ F1
,

1

1´ F2

˙˙*

“

"

1

un a
P rmin pmax p|1´ F1 ´ rnξ1|, |1´ F2 ´ rnξ2|q ,max p1´ F1, 1´ F2qq ;

max pmax p|1´ F1 ´ rnξ1|, |1´ F2 ´ rnξ2|q ,max p1´ F1, 1´ F2qqsu

Ă

"

1

un a
P rmin p|1´ F1 ´ rnξ1|, 1´ F1q ,max p|1´ F1 ´ rnξ1|, 1´ F1qs

*

Y

"

1

un a
P rmin p|1´ F2 ´ rnξ2|, 1´ F2q ,max p|1´ F2 ´ rnξ2|, 1´ F2qs

*

Ă

"

1

un a
P r1´ F1 ´ rn bn, 1´ F1 ` rn bns

*

Y

"

1

un a
P r1´ F2 ´ rn bn, 1´ F2 ` rn bns

*

“: An,1paq YAn,2paq. (14)

Also,

1ltZξ0`rnξąunau “ 1lt|1´F1´rnξ1|ă
1

una
,|1´F2´rnξ2|ă

1
una

u

ď 1lt´ 1
una

´rnbnă1´F1ă
1

una
`rnbn,´

1
una

´rnbnă1´F2ă
1

una
`rnbnu

“ 1lt1´F1ă
1

una
`rnbn,1´F2ă

1
una

`rnbnu
,

and, taking into account that

1ltZξ0ąunu “ 1lt1´F1ă
1
un
,1´F2ă

1
un
u,

we obtain

1ltZξ0`rnξąunau ď 1l
t1´F1ă

1
un
p 1a`rnunbnq,1´F2ă

1
un
p 1a`rnunbnqu

“ 1ltZξ0ą
un

1
a`rnunbn

u. (15)

Thus, combining (13), (14) and (15), we obtain the following envelope for Eps,jqn pbnq:

Gps,jqn pbnq :“

d

hpn

FZpun|xqfXpxq
Khnpx´ .q

„
ż 8

1
|ppaq| 1ltAn,1paqYAn,2paqu1ltZξ0ąunu da

`

ż 8

1
|ppaq| 1l"

Zξ0ą
un

1
a`rnunbn

*1ltAn,1p1qYAn,2p1qu da

`1ltj“0u1ltAn,1p1qYAn,2p1qu
‰

, (16)
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with

?
nPGps,jqn pbnq “

d

nhpn

FZpun|xqfXpxq
ˆ

"

E
„

Khnpx´Xq

ż 8

1
|ppaq|E

´

1ltAn,1paqYAn,2paqu1ltZξ0ąunu

ˇ

ˇ

ˇ
X
¯

da



`E

«

Khnpx´Xq

ż 8

1
|ppaq|E

˜

1l"
Zξ0ą

un
1
a`rnunbn

*1ltAn,1p1qYAn,2p1qu

ˇ

ˇ

ˇ

ˇ

ˇ

X

¸

da

ff

`1ltj“0uE

«

Khnpx´XqE

˜

1ltAn,1p1qYAn,2p1qu

ˇ

ˇ

ˇ

ˇ

ˇ

X

¸ff+

“

d

nhpn

FZpun|xqfXpxq
ˆ

"
ż

SK

Kpvq

ż 8

1
|ppaq|E

´

1ltAn,1paqYAn,2paqu1ltZξ0ąunu

ˇ

ˇ

ˇ
X “ x´ hnv

¯

dafXpx´ hnvqdv

`

ż

SK

Kpvq

ż 8

1
|ppaq|E

˜

1l"
Zξ0ą

un
1
a`rnunbn

*1ltAn,1p1qYAn,2p1qu

ˇ

ˇ

ˇ

ˇ

ˇ

X “ x´ hnv

¸

dafXpx´ hnvqdv

`1ltj“0u

ż

SK

KpvqE
´

1ltAn,1p1qYAn,2p1qu

ˇ

ˇ

ˇ
X “ x´ hnv

¯

fXpx´ hnvqdv

*

“:

d

nhpn

FZpun|xqfXpxq
tT1 ` T2 ` T3u .

Consider T1. By the Cauchy-Schwarz inequality

T1 ď

ż

SK

Kpvq

ż 8

1
|ppaq|

b

PpAn,1paq YAn,2paq|X “ x´ hnvqFZpun|x´ hnvqdafXpx´ hnvqdv.

The sub-additivity of probability measures and some straightforward calculations give then

PpAn,1paq YAn,2paq|X “ x´ hnvq ď PpAn,1paq|X “ x´ hnvq ` PpAn,2paq|X “ x´ hnvq

“

ż 1

0
1lt 1

un a
Prz´rnbn,z`rnbnsu

dz `

ż 1

0
1lt 1

un a
Prz´rnbn,z`rnbnsu

dz

ď 2rnbn ` 2rnbn “ 4rnbn. (17)

Thus

T1 ď 2

b

rnbnFZpun|xq

ż 8

1
|ppaq| da

ż

SK

Kpvq

d

FZpun|x´ hnvq

FZpun|xq
fXpx´ hnvqdv,

and hence, by (12) and the Hölder continuity of fX , we have T1 “ O

ˆ

b

rnFZpun|xq

˙

.
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As for T2 use again the Cauchy-Schwarz inequality and (17) to obtain

T2 ď 2
a

rnbn

ż 8

1
|ppaq| da

ż

SK

Kpvq

d

FZ

ˆ

un
1` rnunbn

ˇ

ˇ

ˇ
x´ hnv

˙

fXpx´ hnvqdv

“ 2

d

rnbnFZ

ˆ

un
1` rnunbn

ˇ

ˇ

ˇ
x

˙
ż 8

1
|ppaq| da

ż

SK

Kpvq

g

f

f

f

e

FZ

´

un
1`rnunbn

ˇ

ˇ

ˇ
x´ hnv

¯

FZ

´

un
1`rnunbn

ˇ

ˇ

ˇ
x
¯ fXpx´ hnvqdv.

Note that under our assumptions, rnun Ñ 0, as nÑ8. Thus using (12) and the fact that

FZ

´

un
1`rnunbn

ˇ

ˇ

ˇ
x
¯

FZpun|xq
Ñ 1, (18)

we have that T2 “ O

ˆ

b

rnFZpun|xq

˙

.

By similar arguments, we get T3 “ Oprnq “ o

ˆ

b

rnFZpun|xq

˙

under our assumptions (10)

and (11).

Combining the above

?
nPGps,jqn pbnq “ O

´

a

nhpnrn

¯

.

Now, we move to the case ps, jq “ p0, 0q and use a similar proof. In that case, using (17), we
have

?
nPGp0,0qn pbnq

“

d

nhpn

FZpun|xqfXpxq

ż

SK

KpvqP
´

An,1p1q YAn,2p1q
ˇ

ˇ

ˇ
X “ x´ hnv

¯

fXpx´ hnvqdv

ď 4rnbn

d

nhpn

FZpun|xqfXpxq

ż

SK

KpvqfXpx´ hnvqdv

“ O

˜
d

nhpn

FZpun|xq
rn bn

¸

“ o
´

a

nhpnrn

¯

which achieves the proof of Assertion 1 in case ps, jq “ p0, 0q.
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6.2.2 Proof of Assertion 2

Again, we start to look at the case s ă 0 and j P J . From (16) and straightforward bounds, we
deduce that

´

Gps,jqn pbq
¯2

ď
hpn

FZpun|xqfXpxq
K2
hnpx´ ¨q

ˆ

#

ˆ
ż 8

1
|ppaq|da

˙
ż 8

1
|ppaq|1l"

Zξ0ą
un

1
a`rnunb

*1ltAn,1p1qYAn,2p1quda

`3

ˆ
ż 8

1
|ppaq|da

˙
ż 8

1
|ppaq|1ltAn,1paqYAn,2paqu1ltZξ0ąunuda

`

ˆ

1` 4

ż 8

1
|ppaq|da

˙

1ltAn,1p1qYAn,2p1qu

*

.

Since
ş8

1 |ppaq|da ă 8, using again the Cauchy-Schwarz inequality combined with (17), we
deduce that

P

ˆ

´

Gps,jqn pbq
¯2
˙

ď
C
?
rn

FZpun|xqfXpxq

ż

SK

K2pvq

ż 8

1
|ppaq|

g

f

f

eFZ

˜

un
1
a ` rnunb

ˇ

ˇ

ˇ

ˇ

ˇ

x´ hnv

¸

da fXpx´ hnvq dv

`
C
?
rn

FZpun|xqfXpxq

ż

SK

K2pvq

ż 8

1
|ppaq|

b

FZpun|x´ hnvq da fXpx´ hnvq dv

`
Crn

FZpun|xqfXpxq

ż

SK

K2pvq fXpx´ hnvq dv,

where C is a constant which can change from one line to each other.

Finally, combining (12) with (18), we deduce that

P

ˆ

´

Gps,jqn pbq
¯2
˙

“ O

ˆ

c

rn

FZpun|xq

˙

.

The case ps, jq “ p0, 0q can be dealt with similarly and leads to

P

ˆ

´

Gp0,0qn pbq
¯2
˙

“ O

ˆ

rn

FZpun|xq

˙

.

This achieves the proof of Assertion 2.

Combining Assertions 1 and 2 with Theorem 2.3 in van der Vaart and Wellner (2017) yields
that Rn,1 “ oPp1q.
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Now, it remains to study the term Rn,2. To this aim, note that, for n large,

|Rn,2| ď

d

nhpn

FZpun|xqfXpxq
E
ˇ

ˇ

ˇ

qTnpK, s, j|xq ´ TnpK, s, j|xq
ˇ

ˇ

ˇ

ď
?
nE

ˇ

ˇ

ˇ
g
ps,jq
ξn,n

pY p1q, Y p2q, Xq ´ g
ps,jq
ξ0,n

pY p1q, Y p2q, Xq
ˇ

ˇ

ˇ

ď
?
nPGps,jqn pbq,

since ξn P ξ0 ` rnBp0, bq where Bp0, bq :“ tξ : }ξ}H ď bu (where we use the Skorohod represen-
tation). According to the proof of Assertion 1, since bn Ñ 0 can be replaced by any fixed value
b without changing the conclusion, we have Rn,2 “ op1q.

Combining the results for Rn,1 and Rn,2 achieves the proof of Theorem 3.1.
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