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We consider robust and nonparametric estimation of the coefficient of tail dependence in presence of random covariates. The estimator is obtained by fitting the extended Pareto distribution locally to properly transformed bivariate observations using the minimum density power divergence criterion. We establish convergence in probability and asymptotic normality of the proposed estimator under some regularity conditions. The finite sample performance is evaluated with a small simulation experiment, and the practical applicability of the method is illustrated on a real dataset of air pollution measurements.

Introduction

Many problems involving extreme events are inherently multivariate, and hence they should be handled with appropriate multivariate extreme value methods. Of particular interest is the estimation of the extremal dependence between two or more variables. A full characterization of the extremal dependence between variables can be obtained from functions like the spectral distribution function or the Pickands dependence function. We refer to [START_REF] Beirlant | Statistics of Extremes -Theory and Applications[END_REF], and de [START_REF] De Haan | Extreme Value Theory: An Introduction[END_REF], and the references therein, for more details about this approach. Alternatively, similar to classical statistics one can try and summarize the extremal dependency in a number of well-chosen coefficients that give a representative picture of the full dependency structure, like, e.g., the coefficient of tail dependence [START_REF] Ledford | Modelling dependence within joint tail regions[END_REF]. Modelling tail dependence is a critical issue in many scientific disciplines. For instance, in finance and actuarial science an important problem is to estimate very large quantiles of the distribution of the sums of possibly dependent risks [START_REF] Barbe | On the tail behavior of sums of dependent risks[END_REF]. In environmental science, studying dependence in extreme levels of pollutants like ozone, particulate matter, carbon monoxide and temperature is important as combined high levels of these variables may pose a major threat to human health [START_REF] Escobar-Bach | Local robust estimation of the Pickands dependence function[END_REF]. In this paper, we will consider robust and nonparametric estimation of the coefficient of tail dependence when there are random covariates. 1 Let pY p1q , Y p2q q be a bivariate random vector recorded along with a random covariate X P R p . The covariate X has density function f X with support S X Ă R p , having non-empty interior. The continuous conditional marginal distribution functions of Y pjq given X " x are denoted by F j p¨|xq, j " 1, 2, and the joint conditional distribution function of the pair satisfies that for all x P S X and y P r0, 1s P ´1 ´F1 pY p1q |xq ă y, 1 ´F2 pY p2q |xq ă y ˇˇX " x ¯" Cpxq y

1 ηpxq ˆ1 `1 ηpxq δpy|xq ˙,
where ηpxq P p0, 1s is the conditional tail dependence coefficient, and |δp¨|xq| is a regularly varying function in the neighborhood of zero with index τ pxq ą 0. In this paper we focus on the estimation of ηpxq, and introduce a nonparametric estimator, which is obtained from local fits of the above model in a neigborhood of x, a point of interest in the covariate space. In absence of covariates, several estimators for η have been introduced in the extreme value literature. We refer to [START_REF] Ledford | Modelling dependence within joint tail regions[END_REF], [START_REF] Peng | Estimation of the coefficient of tail dependence in bivariate extremes[END_REF], [START_REF] Draisma | Bivariate tail estimation: dependence in asymptotic independence[END_REF], [START_REF] Beirlant | Bias-reduced estimators for bivariate tail modelling[END_REF], and [START_REF] Goegebeur | Asymptotically unbiased estimation of the coefficient of tail dependence[END_REF], to name but a few.

Our aim in this paper is to estimate the conditional tail dependence coefficient in a robust way, in order to ensure that our estimation procedure works in the presence of possible outliers. To achieve this, we will use the idea of the density power divergence introduced by [START_REF] Basu | Robust and efficient estimation by minimizing a density power divergence[END_REF]. In particular, the density power divergence between density functions h and g is given by ∆ α ph, gq :"

# ş R " g 1`α pyq ´`1 `1 α ˘gα pyqhpyq `1 α h 1`α pyq ‰ dy, α ą 0, ş R log hpyq gpyq hpyqdy, α " 0. ( 1 
)
Here h is assumed to be the true (typically unknown) density of the data, whereas g is a parametric model, depending on a parameter vector θ which is determined by minimizing the empirical version of (1). The resulting estimator will be called, in the sequel, minimum density power divergence (MDPD) estimator. In the present paper we will adjust this criterion to the local estimation context with focus on estimating conditional extreme dependence. [START_REF] Dutang | Robust and unbiased estimation of the coefficient of tail dependence[END_REF] used this criterion to obtain a robust estimator for η, but in a context without covariates.

To the best of our knowledge, robust nonparametric estimation of the conditional coefficient of tail dependence has not been considered so far in the extreme value literature.

The remainder of the paper is organized as follows. In Section 2, we simplify the problem to the case where the conditional marginal distributions are known and we prove the existence, convergence in probability and asymptotic normality of the MDPD estimator of the conditional tail dependence coefficient. Then in Section 3, the realistic situation where the margins are unknown is considered and similar results are established. The efficiency and robustness of our MDPD estimator are illustrated in a small simulation study in Section 4 and on a real dataset on air pollution in Section 5. Finally, all the proofs are postponed to the appendix.

F Z pz|xq :" PpZ ą z|X " xq " Cpxqz ´1 ηpxq ˆ1 `1 ηpxq δ Z pz|xq ˙, (2) 
where

δ Z pz|xq :" δ ˆ1 z ˇˇx ˙.
Here |δ Z p¨|xq| is a regularly varying function at infinity with index ´τ pxq, which is additionally assumed to be normalized, i.e., such that

δ Z pz|xq " Apxq exp ˆż z 1 εpu|xq u du ˙, (3) 
with Apxq P R and εpz|xq Ñ ´τ pxq as z Ñ 8.

Note that the conditional distribution of Z, given X " x, satisfies Condition pRq in [START_REF] Dierckx | Local robust and asymptotically unbiased estimation of conditional Pareto type-tails[END_REF] with second order parameter ρpxq :" ´τ pxqηpxq. Thus, one can approximate the conditional distribution of Z{u, given Z ą u, where u denotes a high threshold value, by the extended Pareto distribution given by Gpz; η, δ, ρq "

$ & % 1 ´"z ´1 `δ ´δz ρ η ¯ı´1 η , z ą 1, 0, z ď 1,
and density function gpz; η, δ, ρq "

$ & % z ´1 η ´1 η " 1 `δ ´1 ´z ρ η ¯ı´1 η ´1 " 1 `δ ´1 ´´1 `ρ η ¯z ρ η ¯ı , z ą 1, 0, z ď 1,
where η ą 0, ρ ă 0, and δ ą maxt´1, η{ρu.

Indeed, as shown in [START_REF] Beirlant | Second-order refined peaks-over-threshold modelling for heavy-tailed distributions[END_REF], we have

sup zě1 ˇˇˇF Z puz|xq F Z pu|xq ´Gpz; ηpxq, δ Z pu|xq, ρpxqq ˇˇˇ" opδ Z pu|xqq if u Ñ 8.
Clearly, based on this result, one can obtain an estimator for ηpxq by fitting the extended Pareto distribution to the relative excesses over a high threshold.

Let pX 1 , Z 1 q, . . . , pX n , Z n q be independent copies of the random vector pX, Zq. We develop a nonparametric, robust and asymptotically unbiased estimator for ηpxq by fitting g locally to the relative excesses Z i {u n , i " 1, . . . , n, by means of the MDPD criterion, adjusted to locally weighted estimation, i.e., we minimize

p ∆ α pη, δ Z ; ρq :" 1 n n ÿ i"1 K hn px ´Xi q "ż 8 1 g 1`α pz; η, δ Z , ρqdz ´ˆ1 `1 α ˙gα ˆZi u n ; η, δ Z , ρ ˙* 1l tZ i ąunu ,
in case α ą 0 and

p ∆ 0 pη, δ Z ; ρq :" ´1 n n ÿ i"1 K hn px ´Xi q ln g ˆZi u n ; η, δ Z , ρ ˙1l tZ i ąunu ,
in case α " 0, where K hn pxq :" Kpx{h n q{h p n , K is a joint density function on R p , h n is a nonrandom sequence of bandwidths with h n Ñ 0 if n Ñ 8, 1l tAu is the indicator function on the event A and u n is a local non-random threshold sequence satisfying u n Ñ 8 if n Ñ 8. Note that in case α " 0, the local empirical density power divergence criterion corresponds with a locally weighted log-likelihood function. The parameter α controls the trade-off between efficiency and robustness of the MDPD criterion: the estimator becomes more efficient but less robust as α gets closer to zero, whereas for increasing α the robustness increases and the efficiency decreases. Note that we only estimate ηpxq and δ Z pu n |xq with the MDPD criterion, while the second order parameter ρpxq will be fixed at some value. Fixing second order parameters like ρpxq here at some value is a common practice in extreme value statistics, and was also proposed in [START_REF] Beirlant | Tail index estimation and an exponential regression model[END_REF], [START_REF] Feuerverger | Estimating a tail exponent by modelling departure from a Pareto distribution[END_REF], and [START_REF] Gomes | Bias reduction and explicit estimation of the extreme value index[END_REF]. Alternatively, one can replace ρpxq by an external consistent estimator. However, the estimation of ρpxq in a robust way is still an open problem, and moreover, using an external consistent estimator rather than a canonical value, does not, in general, improve the performance of the final MDPD estimator in practice. For all these reasons, we only use a canonical value for the parameter ρpxq in the sequel.

The MDPD estimators of pηpxq, δ Z pu n |xqq satisfy the estimating equations

0 " 1 n n ÿ i"1 K hn px ´Xi q1l tZ i ąunu ż 8 1 g α pz; η, δ Z , ρq Bgpz; η, δ Z , ρq Bη dz ´1 n n ÿ i"1 K hn px ´Xi qg α´1 ˆZi u n ; η, δ Z , ρ ˙Bg ´Zi un ; η, δ Z , ρ Bη 
1l tZ i ąunu , (4) 0 " 1 n n ÿ i"1 K hn px ´Xi q1l tZ i ąunu ż 8 1 g α pz; η, δ Z , ρq Bgpz; η, δ Z , ρq Bδ Z dz ´1 n n ÿ i"1 K hn px ´Xi qg α´1 ˆZi u n ; η, δ Z , ρ ˙Bg ´Zi un ; η, δ Z , ρ Bδ Z 1l tZ i ąunu . (5) 
The following statistic is crucial for studying the asymptotic behavior of the estimators. Set ln `x :" ln maxtx, 1u, x ą 0, and

T n pK, s, t|xq :" 1 n n ÿ i"1 K hn px ´Xi q ˆZi u n ˙s ˆln `Zi u n ˙t 1l tZ i ąunu ,
where s ď 0 and t ě 0. The motivation for considering this type of statistic is that the estimating equations ( 4) and ( 5) only depend on statistics of this form. Note that ln `x is introduced to ensure that pln `Zi {u n q t is always well defined (t is nonnegative, not necessary integer).

Due to the regression context, we need the following classical Hölder-type conditions. Here } ¨} denotes some norm on R p .

Assumption pHq There exist positive constants

M f X , M C , M A , M η , M ε , δ f X , δ C , δ A , δ η ,
and δ ε , such that for all px, zq P S X ˆSX :

|f X pxq ´fX pzq| ď M f X }x ´z} δ f X , |Cpxq ´Cpzq| ď M C }x ´z} δ C , |Apxq ´Apzq| ď M A }x ´z} δ A , |ηpxq ´ηpzq| ď M η }x ´z} δη , sup yě1 |εpy|xq ´εpy|zq| ď M ε }x ´z} δε .
Also, the following assumption, standard in the context of local estimation, is required on the kernel function.

Assumption pK 1 q K is a bounded density function on R p , with support S K included in the unit ball of R p .

In order to establish the asymptotic normality of the consistent sequence of solutions pp η n pxq, p δ Z,n pxqq of the estimating equations (4) and (5), we introduce

S pjq n psq :" b nh p n F Z pu n |xqf X pxq « T n pK, s, j|xq F Z pu n |xqf X pxq ´j!η j 0 pxq r1 ´sη 0 pxqs j`1 ff , j P t0, 1, 2, 3u,
where we denote by η 0 pxq, resp. ρ 0 pxq, the true conditional tail dependence coefficient, resp. second order parameter.

Theorem 2.1 Let pX 1 , Z 1 q, . . . , pX n , Z n q be a sample of independent copies of the random vector pX, Zq where the distribution of Z, given X " x, satisfies (2) and (3), X follows a distribution with density function f X , and assume pHq and pK 1 q hold. For all x P IntpS X q with f X pxq ą 0, we assume that u n Ñ 8 and h n Ñ 0 in such a way that

h δε n ln u n Ñ 0, nh p n F Z pu n |xq Ñ 8, b nh p n F Z pu n |xqδ Z pu n |xq Ñ λ P R, b nh p n F Z pu n |xqh δ f X ^δC n Ñ 0, b nh p n F Z pu n |xqh δη n ln u n Ñ 0. Then in C 4 prS, 0sq, S ă 0, pS p0q
n , S p1q n , S p2q n , S p3q n q pS p0q , S p1q , S p2q , S p3q q, for n Ñ 8, a Gaussian process, with, for s P rS, 0s, mean functions

ErS pjq psqs " ´λa f X pxqj!η j´1 0 pxq " 1 r1 ´sη 0 pxqs j`1
´1 ´ρ0 pxq r1 ´ρ0 pxq ´sη 0 pxqs j`1  , j P t0, 1, 2, 3u, and covariance functions given by CovpS pjq ps 1 q, S pkq ps 2 qq " pj `kq!η j`k 0 pxq}K} 2 2 r1 ´ps 1 `s2 qη 0 pxqs 1`j`k , pj, kq P t0, 1, 2, 3u 2 .

Note that [START_REF] Dierckx | Local robust and asymptotically unbiased estimation of conditional Pareto type-tails[END_REF] obtained a similar result, though under their high level assumption called pMq, which is avoided in the present paper.

Based on this theorem, one can now establish the existence, convergence in probability and asymptotic normality of the MDPD estimators of pη 0 pxq, δ Z pu n |xqq, when suitably normalized. This theorem is similar to Theorems 2 and 3 in [START_REF] Dierckx | Local robust and asymptotically unbiased estimation of conditional Pareto type-tails[END_REF] with our new conditions given in our Theorem 2.1, and thus the proof is omitted.

Theorem 2.2 Let pX 1 , Z 1 q, . . . , pX n , Z n q be a sample of independent copies of the random vector pX, Zq where the distribution of Z, given X " x, satisfies (2) and (3), X follows a distribution with density function f X , and assume pHq and pK 1 q hold. For all x P IntpS X q with f X pxq ą 0, let u n Ñ 8 and h n Ñ 0 in such a way that nh p n F Z pu n |xq Ñ 8 and h δη^δε n ln u n Ñ 0. Then with probability tending to 1, there exists sequences of solutions pp η n pxq, p δ Z,n pxqq of the estimating equations ( 4) and ( 5), with ρ fixed at ρ 0 pxq such that

pp η n pxq, p δ Z,n pxqq P ÝÑ pη 0 pxq, 0q. If additionally, b nh p n F Z pu n |xq δ Z pu n |xq ÝÑ λ P R, (6) 
b nh p n F Z pu n |xq h δ f X ^δC n ÝÑ 0, (7) b nh p n F Z pu n |xq h δη n ln u n ÝÑ 0, ( 8 
) then b nh p n F Z pu n |xqf X pxq " p η n pxq ´η0 pxq p δ Z,n pxq ´δZ pu n |xq  N 2 `0, C ´1pρ 0 pxqqBpρ 0 pxqqΣpρ 0 pxqqB 1 pρ 0 pxqqC ´1pρ 0 pxqq ˘,
for n Ñ 8, where the matrix Bpρ 0 pxqq is defined by

Bpρ 0 pxqq :" η ´α´2 0 pxq » - - ´αη 0 pxqp1`η 0 pxqq r1`αp1`η 0 pxqqs 2 η 0 pxq 0 ´1
´αη 0 pxqρ 0 pxqp1`η 0 pxqq r1`αp1`η 0 pxqqsr1´ρ 0 pxq`αp1`η 0 pxqqs η 0 pxq ´η0 pxqp1 ´ρ0 pxqq 0 fi ffi fl , the elements of the symmetric p4 ˆ4q matrix Σpρ 0 pxqq are given by

σ 11 pρ 0 pxqq :" }K} 2 2 σ 21 pρ 0 pxqq :" }K} 2 2 1 `αp1 `η0 pxqq σ 22 pρ 0 pxqq :" }K} 2 2 1 `2αp1 `η0 pxqq σ 31 pρ 0 pxqq :" }K} 2 2 1 ´ρ0 pxq `αp1 `η0 pxqq σ 32 pρ 0 pxqq :" }K} 2 2 1 ´ρ0 pxq `2αp1 `η0 pxqq σ 33 pρ 0 pxqq :" }K} 2 2 1 ´2ρ 0 pxq `2αp1 `η0 pxqq σ 41 pρ 0 pxqq :" η 0 pxq}K} 2 2 r1 `αp1 `η0 pxqqs 2 σ 42 pρ 0 pxqq :" η 0 pxq}K} 2 2 r1 `2αp1 `η0 pxqqs 2 σ 43 pρ 0 pxqq :" η 0 pxq}K} 2 2 r1 ´ρ0 pxq `2αp1 `η0 pxqqs 2 σ 44 pρ 0 pxqq :" 2η 2 0 pxq}K} 2 2 r1 `2αp1 `η0 pxqqs 3
and those of the symmetric p2 ˆ2q matrix Cpρ 0 pxqq by C 11 pρ 0 pxqq :" η ´α´2 0 pxq 1 `α2 p1 `η0 pxqq 2 r1 `αp1 `η0 pxqqs 3

C 21 pρ 0 pxqq :" η ´α´2 0 pxq ρ 0 pxqp1 ´ρ0 pxqqr1 `αp1 `η0 pxqq `α2 p1 `η0 pxqq 2 s `α3 ρ 0 pxqp1 `η0 pxqq 3 r1 `αp1 `η0 pxqqs 2 r1 ´ρ0 pxq `αp1 `η0 pxqqs 2 C 22 pρ 0 pxqq :" η ´α´2 0 pxq p1 ´ρ0 pxqqρ 2 0 pxq `αρ 2 0 pxqp1 `η0 pxqqrαp1 `η0 pxqq ´ρ0 pxqs r1 `αp1 `η0 pxqqsr1 ´ρ0 pxq `αp1 `η0 pxqqsr1 ´2ρ 0 pxq `αp1 `η0 pxqqs .

Note that the expected value of the limiting random vector in Theorem 2.2 is zero, whatever the value of λ. The estimator is therefore said to be asymptotically unbiased.

The following proposition deals with the behavior of the MDPD estimators pp η n pxq, p δ Z,n pxqq when the parameter ρpxq is fixed at some value r ρ ă 0, possibly mis-specified.

Proposition 2.1 Under the assumptions of Theorem 2.2, but now with ρ fixed at r ρ in the estimating equation ( 4) and ( 5), with probability tending to 1, there exists sequences of solutions pp η n pxq, p δ Z,n pxqq of the estimating equations such that pp η n pxq, p δ Z,n pxqq P ÝÑ pη 0 pxq, 0q.

If additionally ( 6), ( 7) and ( 8) hold, then

b nh p n F Z pu n |xqf X pxq " p η n pxq ´η0 pxq p δ Z,n pxq  N 2 ´´λ a f X pxqC ´1pr ρqBpr ρqD, C ´1pr ρqBpr ρqΣpr ρqB 1 pr ρqC ´1pr ρq ¯,
for n Ñ 8, where the elements of the vector D are the following D 1 :" 0 D 2 :" ´αρ 0 pxqp1 `η0 pxqq η 0 pxqr1 `αp1 `η0 pxqqsr1 ´ρ0 pxq `αp1 `η0 pxqqs D 3 :" ´rαp1 `η0 pxqq ´r ρsρ 0 pxq η 0 pxqr1 ´r ρ `αp1 `η0 pxqqsr1 ´ρ0 pxq ´r ρ `αp1 `η0 pxqqs D 4 :" ρ 0 pxqp1 ´ρ0 pxqq ´α2 ρ 0 pxqp1 `η0 pxqq 2 r1 `αp1 `η0 pxqqs 2 r1 ´ρ0 pxq `αp1 `η0 pxqqs 2 .

Again the proof of Proposition 2.1 is similar to the one of Proposition 1 in [START_REF] Dierckx | Local robust and asymptotically unbiased estimation of conditional Pareto type-tails[END_REF] and thus is omitted. Note that in case r ρ is mis-specified, then the mean of the limiting normal distribution is not necessarily zero, and hence one possible loses the asymptotic unbiasedness. However, as will be clear from the simulations, even though r ρ is mis-specified, the proposed MDPD estimator performs well with respect to bias. Also note that the asymptotic variance expression in Proposition 2.1 is the same as that in Theorem 2.2, though with ρ 0 pxq replaced by r ρ.

Case of unknown margins

In this section, we consider the general framework where both F 1 p¨|xq and F 2 p¨|xq are unknown conditional distribution functions. We want to mimic what has been done in the previous section.

To this aim, we define

q Z :" min ˆ1 1 ´Fn,1 pY p1q |Xq , 1 1 ´Fn,2 pY p2q |Xq ˙,
for suitable estimators F n,j of F j , j " 1, 2. Then similarly as in the previous section, the statistic

q T n pK, s, t|xq :" 1 n n ÿ i"1 K hn px ´Xi q ˜q Z i u n ¸s ˜ln `q Z i u n ¸t 1l t q Z i ąunu ,
is the cornerstone for the MDPD estimator, denoted q η n pxq. In particular, the main result relies essentially on the asymptotic properties of this statistic, and so the idea will be to decompose

b nh p n F Z pu n |xqf X pxq « q T n pK, s, j|xq F Z pu n |xqf X pxq ´j!η j 0 pxq r1 ´sη 0 pxqs j`1 ff into the two terms b nh p n F Z pu n |xqf X pxq « T n pK, s, j|xq F Z pu n |xqf X pxq ´j!η j 0 pxq r1 ´sη 0 pxqs j`1 ff `bnh p n F Z pu n |xqf X pxq « q T n pK, s, j|xq F Z pu n |xqf X pxq ´Tn pK, s, j|xq F Z pu n |xqf X pxq ff . (9) 
The first term can be dealt with using the results from the previous section, whereas we have to show that the second term is negligible for all s ă 0 with j P t0, 1, 2, 3u or ps, jq " p0, 0q.

In the sequel, we will use the empirical kernel estimator of the unknown distribution functions F n,j py|xq :"

ř n i"1 K c px ´Xi q1l tY pjq i ďyu ř n i"1 K c px ´Xi q , j " 1, 2,
where the bandwidth c :" c n is a positive non-random sequence satisfying c n Ñ 0 as n Ñ 8.

Here we kept the same kernel K as in the divergence objective function, but of course any other kernel function can be used.

Before stating our main results, we need to impose again some assumptions, in particular a Hölder-type condition on each conditional marginal distribution function F j similar to those imposed in Section 2.

Assumption pFq. There exist M F j ą 0 and δ F j ą 0 such that |F j py|xq ´Fj py|zq| ď M F j }x ź} δ F j , for all y P R and all px, zq P S X ˆSX , and j " 1, 2.

Concerning the kernel K a stronger assumption than pK 1 q is needed. Denote by B z prq the closed ball with center z and radius r with respect to }.}.

Assumption pK 2 q. K satisfies Assumption pK 1 q, there exists δ, m ą 0 such that B 0 pδq Ă S K and Kpuq ě m for all u P B 0 pδq, and K belongs to the linear span (the set of finite linear combinations) of functions k ě 0 satisfying the following property: the subgraph of k, tps, uq : kpsq ě uu, can be represented as a finite number of Boolean operations among sets of the form tps, uq : qps, uq ě ϕpuqu, where q is a polynomial on R p ˆR and ϕ is an arbitrary real function.

The latter assumption has already been used in [START_REF] Giné | Rates of strong uniform consistency for multivariate kernel density estimators[END_REF] or [START_REF] Giné | Weighted uniform consistency of kernel density estimators[END_REF]. In particular, it allows us to measure the discrepancy between the conditional distribution function F j and its empirical kernel version F n,j , as stated in the following lemma established by [START_REF] Escobar-Bach | Local robust estimation of the Pickands dependence function[END_REF].

Lemma 3.1 Assume that there exists b ą 0 such that f pxq ě b, @x P S X Ă R p , f is bounded, and pK 2 q and pFq hold. Consider a sequence c tending to 0 as n Ñ 8 such that for some q ą 1 | log c| q nc p ÝÑ 0.

Also assume that there exists an ε ą 0 such that for n sufficiently large inf xPS X λ ptu P B 0 p1q : x ´cu P S X uq ą ε, where λ denotes the Lebesgue measure. Then, for any 0 ă δ ă minpδ F 1 , δ F 2 q, we have sup py,xqPRˆS X

|F n,j py|xq ´Fj py|xq| " o P ˜max ˜c | log c| q nc p , c δ ¸¸, for j " 1, 2.

We are now able to study the second term in (9).

Theorem 3.1 Let pX 1 , Z 1 q, . . . , pX n , Z n q be a sample of independent copies of the random vector pX, Zq where the distribution of Z, given X " x, satisfies (2) and ( 3), X follows a distribution with a bounded density function f X , and such that there exists b ą 0 satisfying f pxq ě b, @x P S X Ă R p . Assume also Assumptions pHq, pK 2 q and pFq.

Consider now a sequence c tending to 0 as n Ñ 8 such that for some q ą 1 | log c| q nc p ÝÑ 0. Also assume that there exists an ε ą 0 such that for n sufficiently large inf xPS X λ ptu P B 0 p1q : x ´cu P S X uq ą ε, where λ denotes the Lebesgue measure. Let u n Ñ 8 and h n Ñ 0 in such a way that for any δ P p0, minpδ F 1 , δ F 2 qq nh p n r n :" nh p n max ˜c | log c| q nc p , c δ ¸ÝÑ 0 (10)

nh p n F Z pu n |xq ÝÑ 8, (11) 
then for any s ă 0 with j P t0, 1, 2, 3u or ps, jq " p0, 0q, we have

d nh p n F Z pu n |xqf X pxq " q
T n pK, s, j|xq ´Tn pK, s, j|xq ı " o P p1q.

Using Theorem 3.1 we can now establish the main theorem of this paper, stating consistency and asymptotic normality of the conditional η estimator, in case of general conditional marginal distribution functions, which are estimated with kernel estimators.

Theorem 3.2 Under the same assumptions as in Theorem 3.1, let x P IntpS X q and suppose that h δη^δε n ln u n Ñ 0. Then with probability tending to 1, there exists sequences of solutions pq η n pxq, q δ Z,n pxqq of the estimating equations ( 4) and ( 5) such that pq η n pxq, q δ Z,n pxqq P ÝÑ pη 0 pxq, 0q. If additionally ( 6), ( 7) and ( 8) hold, then

b nh p n F Z pu n |xqf X pxq " q η n pxq ´η0 pxq q δ Z,n pxq  N 2 ´´λ a f X pxqC ´1pr ρqBpr ρqD, C ´1pr ρqBpr ρqΣpr ρqB 1 pr ρqC ´1pr ρq ¯.
The result of Theorem 3.2 follows directly from the decomposition (9) and Theorem 3.1, and therefore we omit the proof of it from the paper.

A simulation study

Our aim in this section is to illustrate the performance of our robust conditional tail dependence coefficient estimator with a small simulation study in case p " 1. The joint conditional distribution function of the pair has the following form:

P ´1 ´F1 pY p1q |xq ă y 1 , 1 ´F2 pY p2q |xq ă y 2 ˇˇX " x ¯" Cpy 1 , y 2 |xq,
where Cp., .|xq is one of the three copulas:

Case 1: The BB6 copula in Joe (1997, p. 152) defined for θpxq ě 1 and ζpxq ě 1, as follows

Cpy 1 , y 2 |xq " 1 ´«1 ´exp # ´ˆ" ´log ! 1 ´p1 ´y1 q θpxq )ı ζpxq `"´log ! 1 ´p1 ´y2 q θpxq )ı ζpxq ˙1 ζpxq +ff 1 θpxq .
For this model exact independence is obtained for θpxq " 1 with ζpxq " 1, and perfect dependence is achieved if either θpxq Ñ 8 or ζpxq Ñ 8. We can easily see that in case θpxq ą 1, this model satisfies our model assumption (2) with ηpxq " 2 ´1 ζpxq , Cpxq " rθpxqs 2 1 ζpxq ´1 and τ pxq " 1. We take X " U p1, 6q, θpxq " 2 and ζpxq " x.

Case 2: The Farlie Gumbel Morgenstern copula defined for ζpxq P p´1, 1s, as follows Cpy 1 , y 2 |xq " y 1 y 2 r1 `ζpxqp1 ´y1 qp1 ´y2 qs .

Exact independence is obtained for ζpxq " 0, and perfect dependence is not attainable under this model. Clearly, for ζpxq ‰ 0, our model assumption (2) is also satisfied, with ηpxq " 1{2, Cpxq " 1 `ζpxq and τ pxq " 1. We take X " U p´0.9, 1q and ζpxq " x .

Case 3: The BB9 or Crowder copula in Joe (1997, p. 154) defined for αpxq ě 0 and θpxq ě 1, as follows

Cpy 1 , y 2 |xq " exp ˆ´" tαpxq ´logpy 1 qu θpxq `tαpxq ´logpy 2 qu θpxq ´αθpxq

ı 1 θpxq `αpxq ˙.
Exact independence is obtained for θpxq " 1 or αpxq Ñ 8, and perfect dependence for θpxq Ñ 8. We can check that this model has the form of (2) with ηpxq " 2 ´1 θpxq , Cpxq "

exp ! αpxq " 1 ´2 1 θpxq ı)
, but τ pxq " 0. That means that this case does not fit our model assumption, but we use it here to show the robustness of our approach in case our main assumption is violated. We set X " U p1, 6q, αpxq " 1 and θpxq " x.

These copula models are combined with unit Fréchet marginal distributions, leading to F py 1 , y 2 |xq " expp´1{y 1 q `expp´1{y 2 q ´1 `Cp1 ´expp´1{y 1 q, 1 ´expp´1{y 2 q|xq.

Contamination will be introduced according to the following mixture model F ε py 1 , y 2 |xq " p1 ´εqF py 1 , y 2 |xq `εF c py 1 , y 2 |xq, where ε denotes the fraction of contamination, and F c is the contaminating distribution function. We take here F c py 1 , y 2 |xq " e ´pminty 1 ,y 2 u´aq ´1 , y 1 , y 2 ą a, i.e., the distribution function of completely dependent unit Fréchet random variables, translated by a. We take for a quantile 0.999 of the unit Fréchet distribution, and consider ε " 0, 5% and 10%.

Concerning the kernel function K, we take the bi-quadratic function Kpxq " 15 16 p1 ´x2 q 2 1l txPr´1,1su .

To compute our estimator q η n pxq, two sequences h n and c have to be chosen. Concerning c, we can use the following cross validation criterion introduced by Yao (1999), and used in an extreme value context by [START_REF] Daouia | Kernel estimators of extreme level curves[END_REF][START_REF] Daouia | On kernel smoothing for extremal quantile regression[END_REF] and [START_REF] Escobar-Bach | Local robust estimation of the Pickands dependence function[END_REF]:

c j :" arg min cPCg n ÿ i"1 n ÿ k"1 " 1l ! Y pjq i ďY pjq k ) ´r F n,´i,j pY pjq k |X i q  2 , j " 1, 2,
where C g is a grid of values of c and r F n,´i,j py|xq :"

ř n k"1,k‰i K c px ´Xk q1l tY pjq k ďyu ř n k"1,k‰i K c px ´Xk q
. We take C g " R X ˆt0.05, 0.10, . . . , 0.30u, where R X is the range of the covariate X. The bandwidth parameter h n is determined from the condition

nh n c | log c| q nc ÝÑ 0,
by taking h n " R X a c{pn| log c| κ q, where κ ą q and c :" minpc 1 , c 2 q. Next to h n and c, our estimation procedure also requires the selection of a threshold parameter u n . As usual in extreme value statistics, this parameter will be set at the pk `1q-th largest of the q Z for which the X coordinate is in Bpx, h n q.

As mentioned before, we only estimate ηpxq and δ Z pu n |xq with the MDPD method, while the parameter ρ is fixed at some value. Here we set ρ " ´1, which is a mis-specification.

For each of the above distributions we simulate N " 500 samples of size n " 1 000. The results of the simulation experiment are reported in Figures 1 till 6. In Figure 1 we show the mean of q η n pxq as a function of k for α " 0 (solid line), α " 0.5 (dashed line) and α " 1 (dotted line) for the BB6 copula. The true value of η is represented by the horizontal reference line. The columns of the figure represent three different values of x, while the rows correspond with the contamination percentages, 0%, 5% and 10% from top to bottom. Figure 2 displays the empirical mean squared error (MSE) as a function of k, but has otherwise a layout that is similar to Figure 1. Concerning the selection of h n and c, we note the following. In a first step we compute the optimal h n and c for each dataset using the above mentioned cross-validation criterion. This implies that the range of k varies from one dataset to the other, so means and MSE's would be based on a different number of observations when plotted as a function of k. In order to avoid this we take the median of the h n and c values obtained in the 500 simulations and use this for all estimations. Figures 3 and4, and Figures 5 and6, show the corresponding results for the Farlie Gumbel Morgenstern and BB9 copula, respectively. From the simulation we can draw the following conclusions:

• In absence of contamination, the estimators show generally a quite stable pattern for a wide range of k, close to the true value of η, despite the mis-specification of the parameter ρ. In terms of MSE we see that, the estimator with α " 0, which corresponds to maximum likelihood, performs best, followed by α " 0.5 and α " 1. This can be explained as follows: in terms of bias the estimators with different values of α perform similarly, while for the variance we have that α " 0, corresponding to maximum likelihood, performs best. It is well-known that the efficiency of the MDPDE decreases with increasing α, see, e.g., [START_REF] Basu | Robust and efficient estimation by minimizing a density power divergence[END_REF].

• When there is contamination, then the non-robust estimator pα " 0q is clearly affected, with a sample mean that can be far from the true value, while the robust estimators generally stay closer to the true value. The estimator with α " 1, which offers the highest robustness, performs best in terms of bias. In terms of minimal MSE, using α " 0.5 gives the best result. The advantage of α " 1 in terms of bias is offset by its increased variance compared to α " 0.5.

• The performance of the estimators deteriorates under increasing contamination percentages.

• For the BB6 distribution, the effect of the contamination is strongest for the smaller x values. This could be expected, as the dependence in the data is weakest at the smaller x. The dependence increases with x, and therefore at x " 4 the effect of contamination on the diagonal is least.

• The Farlie Gumbel Morgenstern distribution has η " 0.5, corresponding to near independence. For this distribution, contamination on the diagonal is clearly very severe.

• For the BB9 distribution, which does not satisfy our model assumptions, we still have very good estimation results, which also illustrates the robustness of our methodology with respect to violation of the model assumption. Also here we see that the effect of the contamination is biggest at the x positions where the dependence in the data is weakest.

• Overall, using α " 0.5 and 1 leads to estimators that are robust with respect to outliers. In terms of minimal MSE the estimator with α " 0.5 performs typically best, and is therefore the recommended value. This is in line with the findings of [START_REF] Dutang | Robust and unbiased estimation of the coefficient of tail dependence[END_REF] in the context without covariates. Mean of q η n pxq with α " 0 (solid line), α " 0.5 (dashed line) and α " 1 (dotted line), as a function of k at x " 2 (left), x " 3 (middle) and x " 4 (right). From top to bottom: 0%, 5% and 10% of contamination.

A real data analysis

In this section, the proposed methodology is applied to a dataset of air pollution measurements. In environmental science, one needs to consider simultaneous high levels of several pollutants, possibly combined with high temperatures, as these may pose a major threat to human health. Estimation of the extreme dependence is thus of crucial importance in this context. We consider the data collected by the United States Environmental Protection Agency (EPA), publicly available at https:{{aqsdr1.epa.gov{aqsweb{aqstmp{airdata{download files.html. The dataset under consideration contains monthly maxima on, among others, temperature, and ground-level ozone, η n pxq with α " 0 (solid line), α " 0.5 (dashed line) and α " 1 (dotted line), as a function of k at x " 2 (left), x " 3 (middle) and x " 4 (right). From top to bottom: 0%, 5% and 10% of contamination. carbon monoxide and particulate matter concentrations, for the time period 1999 to 2013. These data are collected at stations spread over the U.S. We will estimate the extreme dependence between ground-level ozone and particulate matter concentrations, conditional on the covariates time and location, where the latter is expressed by latitude and longitude. The method is implemented with the same cross-validation criteria as in the simulations, though for convenience we rescaled each covariate to the interval r0, 1s. As for the kernel function, we used the bi-quadratic kernel, generalised to the case p " 3, as follows Mean of q η n pxq with α " 0 (solid line), α " 0.5 (dashed line) and α " 1 (dotted line), as a function of k at x " ´0.5 (left), x " 0.5 (middle) and x " 0.8 (right). From top to bottom: 0%, 5% and 10% of contamination.

K hn pxq " 1 h 3 n K ˆ}x} h n ˙, 0 
where x P R 3 , and }.} denotes the Euclidean norm. In Figure 7, we show the estimate of ηpxq with α " 0 (solid line), α " 0.5 (dashed line) and α " 1 (dotted line) for the city of Los Angeles at different points in time. The reported estimate is medianpq η n pxq; k " n ˚{2, . . . , n ˚´1q, where n ˚denotes the number of observations in Bpx, h n q. Overall, the extreme dependence between ground-level ozone and particulate matter concentrations shows a seasonal pattern, where the dependence is stronger in summer than winter. For some months the estimate with α " 0 differs noticeably from those obtained with α " 0.5 and α " 1, which indicates the presence of observations that are disturbing for the estimation of the dependence structure. In Figure 8, we show the estimate q η n pxq with α " 0 (solid line), α " 0.5 (dashed line) and α " 1 (dotted line) : FGM simulation with (shifted) diagonal contamination. MSE of q η n pxq with α " 0 (solid line), α " 0.5 (dashed line) and α " 1 (dotted line), as a function of k at x " ´0.5 (left), x " 0.5 (middle) and x " 0.8 (right). From top to bottom: 0%, 5% and 10% of contamination.

for months 59 and 100 as a function of k. For month 59, the robust estimates show a stable pattern around ηpxq " 1 for the second half of the k range, while the non-robust estimate shows nearly no stability as a function of k. On the contrary, for month 100, the robust estimates are below the non-robust estimate. Again the robust estimates show a stable horizontal pattern for the second half of the k range, which is not present for the non-robust estimate. Mean of q η pxq with α " 0 (solid line), α " 0.5 (dashed line) and α " 1 (dotted line), as a function of k at x " 2 (left), x " 3 (middle) and x " 4 (right). From top to bottom: 0%, 5% and 10% of contamination.

Appendix

Proof of Theorem 2.1

The first step consists to show that, under our assumptions, ErT n pK, s, j|xqs " f X pxqF Z pu n |xqη j 0 pxqj! ˆ" 1 p1 ´sη 0 pxqq j`1 ´δZ pu n |xq η 0 pxq " 1 p1 ´sη 0 pxqq j`1 ´1 ´ρ0 pxq p1 ´ρ0 pxq ´sη 0 pxqq j`1 η n pxq with α " 0 (solid line), α " 0.5 (dashed line) and α " 1 (dotted line), as a function of k at x " 2 (left), x " 3 (middle) and x " 4 (right). From top to bottom: 0%, 5% and 10% of contamination.

 `opδ Z pu n |xqq `O ´hδ f X ^δC n ¯`O ´hδη n ln u n ¯) ,
where the opδ Z pu n |xqq and Op.q terms are uniform in s P rS, 0s. Figure 7: Air pollution data. Time plot of q η n pxq with α " 0 (solid line), α " 0.5 (dashed line) and α " 1 (dotted line) for the city of Los Angeles.

To obtain this result for the case j ą 0, use the following decomposition

ErT n pK, s, j|xqs " f X pxq where ppzq :" sz s´1 pln zq j `jz s´1 pln zq j´1 . Each term can be treated using our Hölder-type conditions, which imply in particular that, for n large enough, z ě u n , and some constants

ż 8 1 ppzqF Z pu n z|xqdz `żS K Kpvq ż 8 1 ppzqF Z pu n z|xqdzrf X px
M 1 , M 2 , M 3 ˇˇˇF Z pz|x ´hn vq F Z pz|xq ´1ˇˇˇˇď M 1 ´hδ C n `zM 2 h δη n h δη n ln z `|δ Z pz|xq|h δ A n `|δ Z pz|xq|z M 3 h δε n h δε n ln z ¯(12)
combined with a slight modification of Proposition 2.3 in [START_REF] Beirlant | Second-order refined peaks-over-threshold modelling for heavy-tailed distributions[END_REF] which ensures In case j " 0 we obtain

ErT n pK, s, 0|xqs "

ż S K Kpvq ż 8 1 ppzqF Z pu n z|x ´hn vqdzf X px ´hn vqdv `żS K KpvqF Z pu n |x ´hn vqf X px ´hn vqdv,
where ppzq " sz s´1 . Both terms can be analysed with decompositions similar to the ones used for the case j ą 0.

Then we can follow the lines of proofs of Theorem 1 and Corollary 1 in [START_REF] Dierckx | Local robust and asymptotically unbiased estimation of conditional Pareto type-tails[END_REF] in order to achieve the proof of Theorem 2.1. and measurable ξ P H :" tξ " pξ 1 , ξ 2 q; ξ : R ˆR ˆSX Ñ R 2 u.

For convenience, denote ξ n " pF n,1 , F n,2 q and ξ 0 " pF 1 , F 2 q. According to Lemma 3. (2017). To reach this goal, we need to introduce some notations. Let P denote the law of the vector pY p1q , Y p2q , Xq and define the expectation of any real-valued measurable function f under P by P f " ş f dP .

We have now to show the two following results: Assertion 1: For any s ă 0 with j P J or ps, jq " p0, 0q, we have ? nP G ps,jq n pb n q ÝÑ 0 for all b n Ñ 0, and Assertion 2: For any s ă 0 with j P J or ps, jq " p0, 0q, we have P ´pG ps,jq n pbqq 2 ¯ÝÑ 0.

Proof of Assertion 1

We start to consider the case where s ă 0 with j P J. As a first step we derive an envelope function for E ps,jq n pb n q. We have |ppaq| 1l tunăunaăZ ξ 0 `rnξ u 1l tminpZ ξ 0 ,Z ξ 0 `rnξ qďunďmaxpZ ξ 0 ,Z ξ 0 `rnξ qu da `1l tj"0u 1l tminpZ ξ 0 ,Z ξ 0 `rnξ qďunďmaxpZ ξ 0 ,Z ξ 0 `rnξ qu .

Remark now that tu n a P rminpZ ξ 0 , Z ξ 0 `rnξ q; maxpZ ξ 0 , Z ξ 0 `rnξ qsu "

" u n a P " min ˆmin ˆ1 |1 ´F1 ´rn ξ 1 | , 1 |1 ´F2 ´rn ξ 2 | ˙, min ˆ1 1 ´F1 , 1 1 ´F2 ˙˙; max ˆmin ˆ1 |1 ´F1 ´rn ξ 1 | , 1 |1 ´F2 ´rn ξ 2 | ˙, min ˆ1 1 ´F1 , 1 1 ´F2 ˙˙* " " 1 u n a P rmin pmax p|1 ´F1 ´rn ξ 1 |, |1 ´F2 ´rn ξ 2 |q , max p1 ´F1 , 1 ´F2 qq ; max pmax p|1 ´F1 ´rn ξ 1 |, |1 ´F2 ´rn ξ 2 |q , max p1 ´F1 , 1 ´F2 qqsu Ă " 1 u n a P rmin p|1 ´F1 ´rn ξ 1 |, 1 ´F1 q , max p|1 ´F1 ´rn ξ 1 |, 1 ´F1 qs * Y " 1 u n a P rmin p|1 ´F2 ´rn ξ 2 |, 1 ´F2 q , max p|1 ´F2 ´rn ξ 2 |, 1 ´F2 qs * Ă " 1 u n a P r1 ´F1 ´rn b n , 1 ´F1 `rn b n s * Y " 1 u n a P r1 ´F2 ´rn b n , 1 ´F2 `rn b n s * ": A n,1 paq Y A n,2 paq. (14) Also, 1l tZ ξ 0 `rnξ ąunau " 1l t|1´F 1 ´rnξ1|ă 1 una ,|1´F 2 ´rnξ2|ă 1 una u ď 1l t´1 una ´rnbnă1´F1ă 1 una `rnbn,´1 una ´rnbnă1´F2ă 1 una `rnbnu " 1l t1´F 1 ă 1 una `rnbn,1´F2ă 1 una `rnbnu ,
and, taking into account that

1l tZ ξ 0 ąunu " 1l t1´F 1 ă 1 un ,1´F 2 ă 1 un u , we obtain 1l tZ ξ 0 `rnξ ąunau ď 1l t1´F 1 ă 1 un p 1 a `rnunbnq,1´F2ă 1 un p 1 a `rnunbnqu " 1l tZ ξ 0 ą un 1 a `rnunbn u . (15) 
Thus, combining ( 13), ( 14) and ( 15), we obtain the following envelope for E ps,jq n pb n q:

G ps,jq n pb n q :" Note that under our assumptions, r n u n Ñ 0, as n Ñ 8. Thus using ( 12) and the fact that

d h p n F Z pu n |xqf X pxq K hn px ´.q "ż 8 1 |ppaq| 1l tA n,1 paqYA n,2 paqu 1l tZ ξ 0 ąunu da `ż 8 1 |ppaq| 1l " Z ξ 0 ą un 1 a `rnunbn * 1l tA n,1 p1qYA n,2 p1qu da `1l tj"0u 1l tA n,1 p1qYA n,2 p1qu ‰ , (16) 
F Z ´un 1`rnunbn ˇˇx F Z pu n |xq Ñ 1, (18) 
we have that T 2 " O ˆbr n F Z pu n |xq ˙.

By similar arguments, we get T 3 " Opr n q " o ˆbr n F Z pu n |xq ˙under our assumptions ( 10) and ( 11).

Combining the above ? nP G ps,jq n pb n q " O ´anh p n r n ¯.

Now, we move to the case ps, jq " p0, 0q and use a similar proof. In that case, using ( 17 This achieves the proof of Assertion 2.

Combining Assertions 1 and 2 with Theorem 2.3 in van der Vaart and Wellner (2017) yields that R n,1 " o P p1q.

Figure 1 :

 1 Figure1: BB6 simulation with (shifted) diagonal contamination. Mean of q η n pxq with α " 0 (solid line), α " 0.5 (dashed line) and α " 1 (dotted line), as a function of k at x " 2 (left), x " 3 (middle) and x " 4 (right). From top to bottom: 0%, 5% and 10% of contamination.

Figure 2 :

 2 Figure2: BB6 simulation with (shifted) diagonal contamination. MSE of q η n pxq with α " 0 (solid line), α " 0.5 (dashed line) and α " 1 (dotted line), as a function of k at x " 2 (left), x " 3 (middle) and x " 4 (right). From top to bottom: 0%, 5% and 10% of contamination.

Figure 3 :

 3 Figure3: FGM simulation with (shifted) diagonal contamination. Mean of q η n pxq with α " 0 (solid line), α " 0.5 (dashed line) and α " 1 (dotted line), as a function of k at x " ´0.5 (left), x " 0.5 (middle) and x " 0.8 (right). From top to bottom: 0%, 5% and 10% of contamination.

  Figure4: FGM simulation with (shifted) diagonal contamination. MSE of q η n pxq with α " 0 (solid line), α " 0.5 (dashed line) and α " 1 (dotted line), as a function of k at x " ´0.5 (left), x " 0.5 (middle) and x " 0.8 (right). From top to bottom: 0%, 5% and 10% of contamination.

Figure 5 :

 5 Figure 5: BB9 simulation with (shifted) diagonal contamination. Mean of qη pxq with α " 0 (solid line), α " 0.5 (dashed line) and α " 1 (dotted line), as a function of k at x " 2 (left), x " 3 (middle) and x " 4 (right). From top to bottom: 0%, 5% and 10% of contamination.

Figure 6 :

 6 Figure6: BB9 simulation with (shifted) diagonal contamination. MSE of q η n pxq with α " 0 (solid line), α " 0.5 (dashed line) and α " 1 (dotted line), as a function of k at x " 2 (left), x " 3 (middle) and x " 4 (right). From top to bottom: 0%, 5% and 10% of contamination.

Figure 8 :

 8 Figure 8: Air pollution data. qη n pxq with α " 0 (solid line), α " 0.5 (dashed line) and α " 1 (dotted line) as a function of k for months 59 (left) and 100 (right).

Fb

  KpvqE ´1l tA n,1 p1qYA n,2 p1qu ˇˇX " x ´hn v ¯fX px ´hn vqdv Z pu n |xqf X pxq tT 1 `T2 `T3 u .Consider T 1 . By the Cauchy-Schwarz inequality PpA n,1 paq Y A n,2 paq|X " x ´hn vqF Z pu n |x ´hn vqdaf X px ´hn vqdv.The sub-additivity of probability measures and some straightforward calculations give thenPpA n,1 paq Y A n,2 paq|X " x ´hn vq ď PpA n,1 paq|X " x ´hn vq `PpA n,2 paq|X " x ´hn vq" Prz´rnbn,z`rnbnsu dz ď 2r n b n `2r n b n " 4r n b n . n |x ´hn vq F Z pu n |xq f X px ´hn vqdv,and hence, by (12) and the Hölder continuity of f X , we have T1 " O ˆbr n F Z pu n |xq ˙.As for T 2 use again the Cauchy-Schwarz inequality and (17) to obtain T

  u n b ˇˇˇˇx ´hn v ¸da f X px ´hn vq dv `C? r n F Z pu n |xqf X pxq ż n |x ´hn vq da f X px ´hn vq dv `Cr n F Z pu n |xqf X pxq ż S K K 2 pvq f X px ´hn vq dv,where C is a constant which can change from one line to each other.Finally, combining (12) with (18), we deduce thatP ˆ´G ps,jqThe case ps, jq " p0, 0q can be dealt with similarly and leads to P ˆ´G p0,0q

  ppzqrF Z pu n z|x ´hn vq ´F Z pu n z|xqsdz dv ppzqrF Z pu n z|x ´hn vq ´F Z pu n z|xqsdz rf X px ´hn vq ´fX pxqsdv,

			´hn vq ´fX pxqsdv
		ż	ż 8
	`fX pxq	Kpvq
		S K	1
			ż 8
	`żS K	Kpvq	1

  We will study the two terms R n,1 and R n,2 separately. First, we start with the term R n,1 . Define for any s ă 0 with j P J :" t0, 1, 2, 3u or ps, jq " p0, 0q

	d	nh p F Z pu n |xqf X pxq n	q T n pK, s, j|xq ´Tn pK, s, j|xq "	ı
		"	d	nh p n F Z pu n |xqf X pxq	" T n pK, s, j|xq ´Tn pK, s, j|xq q	´E ´q T n pK, s, j|xq ´Tn pK, s, j|xq	¯ı
			`d	nh p n F Z pu n |xqf X pxq	E ´q T n pK, s, j|xq ´Tn pK, s, j|xq	":
			R n,1 `Rn,2 .
						g ξ,n py 1 , y 2 , vq :" ps,jq	d	h p n F Z pu n |xqf X pxq	K hn px ´vqq	ps,jq ξ,n py 1 , y 2 , vq
	with				
					q	ps,jq ξ,n py 1 , y 2 , vq :"	ˆZξ py 1 , y 2 , vq u n	˙s ˆln	Z ξ py 1 , y 2 , vq u n	˙j 1l tZ ξ py 1 ,y 2 ,vqąunu ,
						Z ξ py 1 , y 2 , vq :" min	ˆ1 |1 ´ξ1 py 1 , y 2 , vq|	,	|1 ´ξ2 py 1 , y 2 , vq| 1	˙,
	6.2 Proof of Theorem 3.1
	First remark that

  1, r ´1 n |ξ n ´ξ0 | converges in probability towards the null function H 0 " t0u in H, endowed with the norm }ξ} H :" }ξ 1 } 8 `}ξ 2 } 8 for any ξ P H. Consider now the class

	E ps,jq n	pbq :" tg ξ 0 `rnξ,n ps,jq	´gps,jq

ξ 0 ,n : ξ P H, }ξ} H ď bu, with envelope function G ps,jq n pbq. Our aim is to apply Theorem 2.3 in van der Vaart and Wellner

  ppaq1l tunăunaăZ ξ 0 u 1l tZ ξ 0 ąunu da `1l tj"0u 1l tZ ξ 0 `rnξ ąunu ´1l tj"0u 1l tZ ξ 0 ąunu ˇď ż 8 1 |ppaq| ˇˇ1l tunăunaăZ ξ 0 `rnξ u 1l tZ ξ 0 `rnξ ąunu ´1l tunăunaăZ ξ 0 u 1l tZ ξ 0 ąunu ˇˇda `1l tj"0u ˇˇ1l tZ ξ 0 `rnξ ąunu ´1l tZ ξ 0 ąunu ˇď ż 8 1 |ppaq| ˇˇ1l tunăunaăZ ξ 0 u ´1l tunăunaăZ ξ 0 `rnξ u ˇˇ1l tZ ξ 0 ąunu da

	ˇˇq	ps,jq ξ 0 `rnξ,n	´qps,jq ξ 0 ,n ˇ"
			ˇˇˇż 1 8	ppaq1l tunăunaăZ ξ 0 `rnξ u 1l tZ ξ 0 `rnξ ąunu da	´ż 8 1
			`ż 8

1 |ppaq| 1l tunăunaăZ ξ 0 `rnξ u ˇˇ1l tZ ξ 0 `rnξ ąunu ´1l tZ ξ 0 ąunu ˇˇda `1l tj"0u ˇˇ1l tZ ξ 0 `rnξ ąunu ´1l tZ ξ 0 ąunu ˇď ż 8 1 |ppaq| 1l tminpZ ξ 0 ,Z ξ 0 `rnξ qďunaďmaxpZ ξ 0 ,Z ξ 0 `rnξ qu 1l tZ ξ 0 ąunu da `ż 8 1

  |ppaq| E ´1l tA n,1 paqYA n,2 paqu 1l tZ ξ 0 ąunu ˇˇX ¯da 1l tA n,1 p1qYA n,2 p1qu |ppaq| E ´1l tA n,1 paqYA n,2 paqu 1l tZ ξ 0 ąunu ˇˇX " x ´hn v ¯daf X px ´hn vqdv 1l tA n,1 p1qYA n,2 p1quˇˇˇˇX " x ´hn v ¸daf X px ´hn vqdv `1l tj"0u

	with					
	?	nP G ps,jq n	pb n q "	d	nh p n F Z pu n |xqf X pxq	"E
			"					ż 8	
			K hn px ´Xq
								1
			`E « K hn px ´Xq	ż 8 1	|ppaq| E ˜1l "	Z ξ 0 ą	1 a `rnunbn un	ˇˇˇˇX	¸da ff
			`1l tj"0u E	« K hn px ´XqE ˜1l tA n,1 p1qYA n,2 p1qu	ˇˇˇˇX	¸ff+
			"	d	nh p n F Z pu n |xqf X pxq	"ż
						ż 8
				Kpvq	
			S K				1
			`żS K	Kpvq	ż 8 1	|ppaq| E ˜1l " Z ξ 0 ą	un a `rnunbn 1

* *

  Again, we start to look at the case s ă 0 and j P J. From (16) and straightforward bounds, we deduce that 1l tA n,1 p1qYA n,2 p1qu da |ppaq|1l tA n,1 paqYA n,2 paqu 1l tZ ξ 0 ąunu da

	6.2.2 Proof of Assertion 2
			´Gps,jq n	pbq ¯2 ď	h p n F Z pu n |xqf X pxq	K 2 hn px ´¨q
						ˆ#ˆż 8 1	˙ż 8 |ppaq|da 1	|ppaq|1l " Z ξ 0 ą	un a `rnunb 1
						`3 ˆż 8	|ppaq|da	˙ż 8
						1	1
						`ˆ1	`4 ż 8 1	|ppaq|da ˙1l tA n,1 p1qYA n,2 p1qu	*	.
	Since	ş 8 1 |ppaq|da ă 8, using again the Cauchy-Schwarz inequality combined with (17), we
	deduce that	
	n P ˆ´G ps,jq	pbq ¯2ď
						C	? r n
			F	
						), we
	have			
	?	nP G p0,0q n	pb n q
			"	d	nh p
						d	nh p n F Z pu n |xqf X pxq	ż S K	Kpvqf X px ´hn vqdv
			" O	n F Z pu n |xq ˜d nh p	r n b n	"
				n r n o ´anh p	which
			achieves the proof of Assertion 1 in case ps, jq " p0, 0q.

n F Z pu n |xqf X pxq ż S K KpvqP ´An,1 p1q Y A n,2 p1q ˇˇX " x ´hn v ¯fX px ´hn vqdv ď 4r n b n * Z pu n |xqf X pxq

Now, it remains to study the term R n,2 . To this aim, note that, for n large, Combining the results for R n,1 and R n,2 achieves the proof of Theorem 3.1.