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Abstract: 

In this contribution we present a new type of 
modeling tool taking full advantage of symbolic 
computing. Physical components are described from 
block libraries, built directly from Modelica, now a well 
established consortium, and a fast developing 
physical language (see [1]). Directly from the block 
diagram description the analytical equations of the 
system are automatically generated and simplified 
with a powerful symbolic engine ([2],[3]).  
On a quadrotor helicopter system, we show how the 
system is described and how easy it is to get access 
to the equations. With highly optimized equations, the 
model runs very fast, and shows very interesting 
performances in real time. The automatically 
generated equations are used in a math tool ([2]) to 
analyze the system, and carry out control design 
steps. Besides traditional analyses based on 
numerical computing, several symbolic techniques 
are used. Finally the model is tested on a real time 
experimental setup ([4],[5],[6]), showing good 
comparison. 
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1. Introduction 

Quadrotor helicopters (also called quadricopters) 
have generated an increasing interest in the past 
years as they provide easier stability and have shown 
very interesting performances for drone activities. 
The French DGA and ONERA organize a joint 
challenge on Micro Drones to motivate innovation in 
the area, where Quadricopters show very good 
performances (see [7]). Quadricopters started to be 
used in Autonomous Unmanned Micro Aerial Vehicle 
applications with companies like MicroDrones since 
more than 5 years (see [8]). Also interesting projects 
have been started to share resources on related 
unmanned observation systems (see [9]). Building a 

reliable, easy to use model for such a new technology 
is critical to help better dimension future quadrotor 
helicopters.  
 
The objective of this paper is to demonstrate on a 
quadrotor helicopter model the interest of a new kind 
of simulation tool based on symbolic computing 
technology ([2],[3]). 
In a first step we will show how the model is 
described with MapleSim ([3]), a new physical multi-
domain tool. Directly from Modelica components 
libraries the block diagram of the system is easily 
built. The system’s equations are generated 
automatically from the block diagram description and 
simplified with the Maple symbolic engine ([2]). This 
results in a very efficient formulation, but also allows 
to access to the analytical equations of the system 
directly into Maple. Getting access to the equations 
allows any analysis or design work with all the math 
power of Maple ([2]). To show the benefits of getting 
the equations in a math tool we demonstrate all the 
steps of a control design. In particular we highlight 
the use and interest of the symbolic engine ([2]). One 
of the benefits is that the equations and model 
description are kept in a live, very easy to read 
technical document. This document is linked to the 
model and keeps all the appropriate knowledge on 
the model, the analysis, the design, and even the 
validation steps. 
 
In a second step the model is validated against real 
data. For this the model was given to the LISV 
(Laboratoire d’Ingénierie des Systèmes de 
Versailles), a well respected research lab, with a high 
level background on control and real time 
management of quadrorotor helicopter, and fully 
equipped with a real time experiment. The objective 
was to have the model tested by an independent and 
renown institution, and build relevant real time 
comparison data. 
 



1. Modeling the quadrotor helicopter 

 
As its name says, a quadrotor helicopter is an aircraft 
equipped with 4 rotors.  

 
Fig 1 : Quadrotor helicopter [5] 

 
Two pairs of rotors (see Fig. 1) turn in opposite 
direction in order to balance the moments, and by 
varying the rotation speeds the system can be 
oriented and positioned as needed. For example 
when applying the same rotor speeds altogether with 
the same quantity, the lift forces will change the 
altitude z of the system. The yaw angle ψ is obtained 
by speeding up the clockwise motors or slowing down 
depending on the desired angle direction. The motion 
direction according (x, y) axes depends on the 
direction of tilt angles (pitch angle θ and roll angle φ), 
whether they are positive or negative. 
The dynamical model of the quadrotor helicopter has 
six outputs {x, y, z, φ, θ, ψ} while it has only four 
independent inputs. Therefore the quadrotor is an 
under-actuated system ([4], [6]). It is not possible to 
control all of the states at the same time. 
 
In the system we studied, each rotor is driven by a 
DC motor. The body of the system is supposed to be 
rigid.  
In MapleSim, the body of the quadrotor is 
represented via a single 3D rigid body, taken from the 
multibody library. The position of each rotor is 
materialized via a local frame, defined with respect to 
the frame of the quadricopter rigid body (Figure 2). 
The DC engines are built from the electrical and 
mechanical libraries in MapleSim. The components 
available in MapleSim libraries are based on 
Modelica. The modeling principle for the physical 
parts of the system is based on an acausal modeling 
paradigm. For each component MapleSim is able to 
get the equations from the related Modelica code. 
When a link is drawn between two components, 
MapleSim, is aware of the through and across 
variables related to the components, and generates 
the equivalent of equilibrium equations. 

 
Fig 2 : Rigid body and rotor positions 

 
As MapleSim uses the full power of symbolic 
computing available in Maple, it is also unit aware, 
meaning that it is able to know the physical 
dimensions of a quantity. The result is that it checks 
for the physical dimensions and guaranties the 
consistency of the model. The same comment 
applies to the units applied to a typical model, where 
MapleSim takes care of any conversion as 
appropriate. 

 
Fig 3 : Electrical drive 

 
As we can see in Figure 3, the electrical drive is 
modeled with a LR electrical circuit and a mechanical 
part including a gear, an inertia and damping. Thanks 
to the acausal modeling paradigm, the model 
description is very close to the real system. 
 
Once the DC drive has been defined, it is put in a 
hierarchy. The base mount of the rotor is represented 
by a 3D rigid body. The blade is also represented by 
a rigid body. They are linked with a cylindrical joint. 
To represent the lift force, a signal driven force driver 
is connected to the base mount component. The 
force is computed with respects to the rotation speed 
of the DC drive (See Figure 4).  
The base itself is connected to the relevant local 
frame on the quadricopter body. The resistance of the 
rotor to the air is modeled as a torque function of the 
rotor speed. 



 
 

Fig. 4 Rotor mechanics 
 
 
 
The overall rotor model is put into a hierarchy and 
duplicated three times, so that each rotor be 
represented and connected to the related local frame 
on the quadrotor helicopter body. 
 
The remainder of the model,consists in describing the 
control layers. We will show later how they were 
designed from the dynamical equations of the 
quadrotor helicopter.  
 
To get an overview of the overall modeling process, 
let us assume we completed the control design step 
and start running the simulation.  
 
 

 
 
 

Fig. 5 3D animation 
 

Before we start the simulation, we set its duration and 
select a numerical solver. MapleSim uses the 
numerical power of Maple combined with its very 
powerful symbolic engine. More precisely physical 
multi-domain system models often result in high index 
Differential Algebraic Equations (DAE). To cope with 
this type of equations MapleSim takes advantage of 
symbolic computing to reduce the index order.  

When the simulation is launched, MapleSim starts by 
generating automatically the equations of the system. 
At the simulation stage the equations do not need to 
be displayed. The user is still provided with general 
data on the number of generated equations before 
simplification and after simplification.  It is also 
possible to ask a compiled version of the model, so 
that it may be run faster. For the quadrotor helicopter 
the number of equations generated is of 955. After 
symbolic simplification it is of 99, and after index 
reduction the resulting number of equations is of 23. 
The benefit is that those equations represent exactly 
the same behavior as the “unsimplified” formulation.  
To have an idea of what kind of symbolic techniques 
are used to simplify equations, it is interesting to look 
at what MapleSim does to get access to the exact, 
highly optimized set of equations, for multi-body 
mechanical systems. For this, MapleSim parses the 
multi-body model, and uses advanced simplification 
techniques, using graph theory. A good explanation 
on these simplification techniques can be found in 
[10], [11]. At the end of the simulation, besides rich 
plot facilities, the user gets also access to a 3D 
animation of the simulation (Fig. 5). 
At this stage the benefit of symbolic computing 
resides in the size of the simplified formulation, and 
on the index reduction for Differential Algebraic 
Equations (DAE).  
The other very important benefit is that the equations 
can be accessed from Maple, a powerful mathematic 
tool. We will illustrate this added value in next step, 
on the design of a controller on the quadrotor 
helicopter. 
 

 2. Designing a LQG controller 

 
We will not describe Maple in detail here (see [2]). It 
is just necessary to know that Maple has both a very 
powerful symbolic engine, and provides state of the 
art numerics. It also provides a technical document 
interface, which allows to “play” in a very interactive 
way with the equations, and read the equations in a  
natural format (eg the way mathematics appear in a 
scientific book). This provides a way to both read the 
analytical equations of a given system, manipulate 
them, and then apply any needed calculus as 
appropriate.  
The equations of the quadrotor helicopter are 
recovered in Maple via a simple template.  In Figure 
6 we show a screen shot of the equations recovered 
in Maple.  
 
Even if they were simplified, they are very large. To 
achieve the same optimized formulation by hand it 
would have taken a lot of time and errors. When they 
are in Maple the equations can be manipulated with a 
comprehensive set of symbolic commands.  As an 
example, model can be differentiated per any of the 
parameters. Knowing the analytical form of the 



differentiate per a parameter is very useful to know if 
the model is sensitive to changes on this parameter. 
This technique, also called sensitivity analysis, is very 
useful to define efficient plans of experiment.  
 

 
 

Fig. 6 : Screenshot of model equations in Maple 
 
 
To start let us define an equilibrium point, we will use 
to linearize our system. We consider the stationary 
state as the equilibrium, that is when the applied 
propeller speeds, maintain a given altitude.  To get 
this equilibrium point we compute the command 
needed to equilibrate the lift force and gravity.  
  

Fig. 7 : Solve directly on system’s equations 
 
Figure 7 displays the command used in Maple for this 
task. The important point is that no formulation by 
hand is needed for this first calculus. We will not 
recall this fact for all subsequent steps, but it is critical 
to reduce the design cycle time and the number of 
possible errors. If it brings a huge added value during 
the first design, it is even easier when needing to 
modify the model and replay an overall design 
automatically. This is achieved through the access to 
symbolic equations of the system, but also with the 
document interface (see Figure 6), and a full Math 
language (more than 4000 math and graphics 
commands, see [2]). 
The calculated setting point (see Figure 8) is then 
used to linearize the system. 
Maple provides a standard format and a 
comprehensive set of tools to work on dynamical 
systems representations and produce analyses. This 
includes representation through Differential 
Equations, State Space, Transfer Function, Zero 
Poles. Taking advantage of symbolic computing, it is 

possible to start by simply describing a system 
through its differential algebraic equations.  
 

 
Fig. 8 Computed equilibrium point 
 
Assuming it has the relevant form (eg to be displayed 
as a transfer function, system has to be linear), the 
system’s representation can be switched from one 
another representation using directly the symbolic 
equations. This means that physical parameters used 
in one form (usually the starting point is a differential 
equation set), will show accordingly in other forms. 
This also applies when switching from continuous to 
discrete representations.  For our design we take the 
linearized system in the State Space representation 
form. The resulting dynamical system has 19 outputs, 
4 inputs and 20 states.   
 
 
 
 
 
 
 
 
 

 
Fig. 9 : Controller structure 

 
To control the system, we first build a standard state 
feedback gain, assuming that we are able to measure 
all states. As the number of possible measures is less 
than the number of actual states in the system, we 
use an observer to estimate the lacking values. The 
design is then  done in two parts : 

• Design of an LQR controller 
• Design of a Kalman filter 

 
To design the LQR controller, we just need to call a 
command in Maple, directly on the automatically 
obtained linearized state space representation (see 
Figure 10). 
 

 

Fig . 10 : LQR control design 
 
When the control law has been computed it is stored 
in a state space representation. Directly in Maple it is 
then possible to analyse the closed loop response of 
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the system with a single command, taking the plant 
and the gain control. 
  

 
Fig. 11 Closed loop step response of the LQR 

 
The further steps of the design, consist in designing a 
Kalman filter in Maple, and check the overall closed 
loop system. One of the math challenges of control 
design is to solve the Riccati equations. The precision 
used for this calculus may be critical. Symbolic 
computing allows to adjust the numerical calculus 
precision at any arbitrary level. The actual solving 
process is done using numerical techniques relying 
on arbitrary numerical precision. The end result is 
that the precision can be set to the needed level and 
better solutions may be achieved.  
The overall controller (including a Kalman Filter) is 
defined in a state space representation. When it has 
been analyzed in Maple (eg with a closed loop step 
response), it is automatically sent to MapleSim. 
When it has been imported in MapleSim, the 
controller is then tested in simulation on the full 
model. 
Assuming that the controller design is completed, the 
next step in the process is to test the model or the 
controller in a real configuration.  
For this MapleSim is able to generate automatically C 
code. It also provides links to Real   time platforms, 
from providers like dSPACE or National Instruments. 
In our next step, we will get the model used on a real 
system. 

3. Testing the model on a real system 

The model was provided to the LISV team, with all 
means to test and analyze it through numerical 

simulations, but also through analyses of the 
equations of the system in Maple and MapleSim.  
 
The LISV already produced important contributions 
on quadrotor helicopters and their control ([4],[5],[6]). 
They used their fully equipped real time platform with 
a quadricopter to carry out the hereafter comparison 
tests. 
 

 
  

Fig. 12 : Quadricopter real time platform 
 
The real time system used is based essentially on a 
dSPACE DS1103 card being used to generate the 
control signals and the sensor data acquisition used 
in the control loop. The flying machine used is a mini 
rotorcraft with four rotors (Draganflyer IV without the 
electronics control) manufactured by Draganfly 
Innovations, Inc.(http://www.rctoys.com). (Physical 
characteristics in table 1). 
 
Weight (including the 
support) 

400g 

Blade diameter 29cm 
Blade step 11cm 
Drive to C.G. distance  20.5cm 
Drive reduction rate 1 : 6 
 

Table 1 
 
The objective of this experiment is to safely test the 
proposed attitude controller. For this a stationary ball 
joint base is used (Figure 12). This base gives the 
aircraft unrestricted yaw movement, and around ±40° 
of pitch and roll, while restricting the aircraft to a fixed 
point in the three-dimensional space ([6]). To 
measure the aircraft angles and the angular velocity 
an Inertial Measurement Unit was connected to the 
dSPACE DS1103 serial communication port. The four 
DC permanent-magnet mini motors are current 
amplified with intelligent microcomputer speed 
controllers of type IMCS 25 and driven by PWM 
signals. 
 
First step consisted in entering the physical 
parameters on the actual system in the MapleSim 
model. When this was done, the model was tested 



with a control strategy developed by LISV ([6]), first in 
simulation, and second in real time. 
 
The comparison is done based on real time 
measurements imported in MapleSim and compared 
to the closed loop simulated response. 
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Fig. 13 Pitch Angle comparison 

 

 
Fig 14 Pitch Angular Speed comparison 

 
In Figures 13 and 14, the measured (in green), and 
simulated (in red) values on pitch angle are 
compared. The model shows a close behavior to the 
actual real time system. 
 

4. Conclusion 

 
Directly from a graphical and natural representation 
of the system, the analytical equations of the a 
quadrotor helicopter have been automatically 
generated and simplified with one of the most 
powerful symbolic engine available today (see [2]). 
The result is a very clean and fast simulation. Using 
advanced symbolic computing to produce the 
formulation, enables to build the exact representation 
with an optimized set of state variables and number 

of operations. This brings a direct advantage on the 
simulation time, but also helps to provide very fast 
and efficient real time models for HIL (Hardware In 
the Loop) simulations. Getting access to the 
equations of the system from a strong math engine, 
with both symbolic and numeric capabilities, allows 
carrying out advanced analyses and designs very 
fast.  
 
All the steps of the design were not only saved in a 
Maple document, but were also commented in order 
to keep all the knowledge on the model, and on the 
design steps, in a very readable and interactive 
format. In the end we hope this project will provide to 
the many and very active quadricopter projects, a 
new set of methodologies and tools for their designs, 
and also new simulation and analysis technologies, 
which will enable more innovations in future projects. 
 
This project has also provided a very challenging and 
interesting system, to illustrate the added value of a 
new modeling technique, based on symbolic 
computing; showing advances in modeling, analysis, 
design and knowledge capture. 
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