
HAL Id: hal-02269439
https://hal.science/hal-02269439

Submitted on 22 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Advanced modeling with a Symbolic based approach
Application to the modeling, control design and

real-time control and HIL simulation of a quadrotor
helicopter

N Gachadoit, A El Hadri, A. Benallegue, A Seba, B Vidalie

To cite this version:
N Gachadoit, A El Hadri, A. Benallegue, A Seba, B Vidalie. Advanced modeling with a Symbolic based
approach Application to the modeling, control design and real-time control and HIL simulation of a
quadrotor helicopter. ERTS2 2010, Embedded Real Time Software & Systems, May 2010, Toulouse,
France. �hal-02269439�

https://hal.science/hal-02269439
https://hal.archives-ouvertes.fr

Advanced modeling with a Symbolic based approach
Application to the modeling, control design and

real-time control and HIL simulation of a quadrotor helicopter

N. Gachadoit1, A. El Hadri2, A. Benallegue2, A. Seba3, B.Vidalie1

1. Maplesoft, 32 boulevard Colbert, 92160 Antony France, france@maplesoft.com
2. LISV, 10-12 avenue de l’Europe, 78140 Vélizy France

3. ISEP, 28 Rue Notre Dame des Champs 75006 Paris France

Abstract:

In this contribution we present a new type of
modeling tool taking full advantage of symbolic
computing. Physical components are described from
block libraries, built directly from Modelica, now a well
established consortium, and a fast developing
physical language (see [1]). Directly from the block
diagram description the analytical equations of the
system are automatically generated and simplified
with a powerful symbolic engine ([2],[3]).
On a quadrotor helicopter system, we show how the
system is described and how easy it is to get access
to the equations. With highly optimized equations, the
model runs very fast, and shows very interesting
performances in real time. The automatically
generated equations are used in a math tool ([2]) to
analyze the system, and carry out control design
steps. Besides traditional analyses based on
numerical computing, several symbolic techniques
are used. Finally the model is tested on a real time
experimental setup ([4],[5],[6]), showing good
comparison.

Keywords: modeling, simulation, symbolic
computing, Modelica, control design, real time,
quadrotor, helicopter

1. Introduction

Quadrotor helicopters (also called quadricopters)
have generated an increasing interest in the past
years as they provide easier stability and have shown
very interesting performances for drone activities.
The French DGA and ONERA organize a joint
challenge on Micro Drones to motivate innovation in
the area, where Quadricopters show very good
performances (see [7]). Quadricopters started to be
used in Autonomous Unmanned Micro Aerial Vehicle
applications with companies like MicroDrones since
more than 5 years (see [8]). Also interesting projects
have been started to share resources on related
unmanned observation systems (see [9]). Building a

reliable, easy to use model for such a new technology
is critical to help better dimension future quadrotor
helicopters.

The objective of this paper is to demonstrate on a
quadrotor helicopter model the interest of a new kind
of simulation tool based on symbolic computing
technology ([2],[3]).
In a first step we will show how the model is
described with MapleSim ([3]), a new physical multi-
domain tool. Directly from Modelica components
libraries the block diagram of the system is easily
built. The system’s equations are generated
automatically from the block diagram description and
simplified with the Maple symbolic engine ([2]). This
results in a very efficient formulation, but also allows
to access to the analytical equations of the system
directly into Maple. Getting access to the equations
allows any analysis or design work with all the math
power of Maple ([2]). To show the benefits of getting
the equations in a math tool we demonstrate all the
steps of a control design. In particular we highlight
the use and interest of the symbolic engine ([2]). One
of the benefits is that the equations and model
description are kept in a live, very easy to read
technical document. This document is linked to the
model and keeps all the appropriate knowledge on
the model, the analysis, the design, and even the
validation steps.

In a second step the model is validated against real
data. For this the model was given to the LISV
(Laboratoire d’Ingénierie des Systèmes de
Versailles), a well respected research lab, with a high
level background on control and real time
management of quadrorotor helicopter, and fully
equipped with a real time experiment. The objective
was to have the model tested by an independent and
renown institution, and build relevant real time
comparison data.

1. Modeling the quadrotor helicopter

As its name says, a quadrotor helicopter is an aircraft
equipped with 4 rotors.

Fig 1 : Quadrotor helicopter [5]

Two pairs of rotors (see Fig. 1) turn in opposite
direction in order to balance the moments, and by
varying the rotation speeds the system can be
oriented and positioned as needed. For example
when applying the same rotor speeds altogether with
the same quantity, the lift forces will change the
altitude z of the system. The yaw angle ψ is obtained
by speeding up the clockwise motors or slowing down
depending on the desired angle direction. The motion
direction according (x, y) axes depends on the
direction of tilt angles (pitch angle θ and roll angle φ),
whether they are positive or negative.
The dynamical model of the quadrotor helicopter has
six outputs {x, y, z, φ, θ, ψ} while it has only four
independent inputs. Therefore the quadrotor is an
under-actuated system ([4], [6]). It is not possible to
control all of the states at the same time.

In the system we studied, each rotor is driven by a
DC motor. The body of the system is supposed to be
rigid.
In MapleSim, the body of the quadrotor is
represented via a single 3D rigid body, taken from the
multibody library. The position of each rotor is
materialized via a local frame, defined with respect to
the frame of the quadricopter rigid body (Figure 2).
The DC engines are built from the electrical and
mechanical libraries in MapleSim. The components
available in MapleSim libraries are based on
Modelica. The modeling principle for the physical
parts of the system is based on an acausal modeling
paradigm. For each component MapleSim is able to
get the equations from the related Modelica code.
When a link is drawn between two components,
MapleSim, is aware of the through and across
variables related to the components, and generates
the equivalent of equilibrium equations.

Fig 2 : Rigid body and rotor positions

As MapleSim uses the full power of symbolic
computing available in Maple, it is also unit aware,
meaning that it is able to know the physical
dimensions of a quantity. The result is that it checks
for the physical dimensions and guaranties the
consistency of the model. The same comment
applies to the units applied to a typical model, where
MapleSim takes care of any conversion as
appropriate.

Fig 3 : Electrical drive

As we can see in Figure 3, the electrical drive is
modeled with a LR electrical circuit and a mechanical
part including a gear, an inertia and damping. Thanks
to the acausal modeling paradigm, the model
description is very close to the real system.

Once the DC drive has been defined, it is put in a
hierarchy. The base mount of the rotor is represented
by a 3D rigid body. The blade is also represented by
a rigid body. They are linked with a cylindrical joint.
To represent the lift force, a signal driven force driver
is connected to the base mount component. The
force is computed with respects to the rotation speed
of the DC drive (See Figure 4).
The base itself is connected to the relevant local
frame on the quadricopter body. The resistance of the
rotor to the air is modeled as a torque function of the
rotor speed.

Fig. 4 Rotor mechanics

The overall rotor model is put into a hierarchy and
duplicated three times, so that each rotor be
represented and connected to the related local frame
on the quadrotor helicopter body.

The remainder of the model,consists in describing the
control layers. We will show later how they were
designed from the dynamical equations of the
quadrotor helicopter.

To get an overview of the overall modeling process,
let us assume we completed the control design step
and start running the simulation.

Fig. 5 3D animation

Before we start the simulation, we set its duration and
select a numerical solver. MapleSim uses the
numerical power of Maple combined with its very
powerful symbolic engine. More precisely physical
multi-domain system models often result in high index
Differential Algebraic Equations (DAE). To cope with
this type of equations MapleSim takes advantage of
symbolic computing to reduce the index order.

When the simulation is launched, MapleSim starts by
generating automatically the equations of the system.
At the simulation stage the equations do not need to
be displayed. The user is still provided with general
data on the number of generated equations before
simplification and after simplification. It is also
possible to ask a compiled version of the model, so
that it may be run faster. For the quadrotor helicopter
the number of equations generated is of 955. After
symbolic simplification it is of 99, and after index
reduction the resulting number of equations is of 23.
The benefit is that those equations represent exactly
the same behavior as the “unsimplified” formulation.
To have an idea of what kind of symbolic techniques
are used to simplify equations, it is interesting to look
at what MapleSim does to get access to the exact,
highly optimized set of equations, for multi-body
mechanical systems. For this, MapleSim parses the
multi-body model, and uses advanced simplification
techniques, using graph theory. A good explanation
on these simplification techniques can be found in
[10], [11]. At the end of the simulation, besides rich
plot facilities, the user gets also access to a 3D
animation of the simulation (Fig. 5).
At this stage the benefit of symbolic computing
resides in the size of the simplified formulation, and
on the index reduction for Differential Algebraic
Equations (DAE).
The other very important benefit is that the equations
can be accessed from Maple, a powerful mathematic
tool. We will illustrate this added value in next step,
on the design of a controller on the quadrotor
helicopter.

 2. Designing a LQG controller

We will not describe Maple in detail here (see [2]). It
is just necessary to know that Maple has both a very
powerful symbolic engine, and provides state of the
art numerics. It also provides a technical document
interface, which allows to “play” in a very interactive
way with the equations, and read the equations in a
natural format (eg the way mathematics appear in a
scientific book). This provides a way to both read the
analytical equations of a given system, manipulate
them, and then apply any needed calculus as
appropriate.
The equations of the quadrotor helicopter are
recovered in Maple via a simple template. In Figure
6 we show a screen shot of the equations recovered
in Maple.

Even if they were simplified, they are very large. To
achieve the same optimized formulation by hand it
would have taken a lot of time and errors. When they
are in Maple the equations can be manipulated with a
comprehensive set of symbolic commands. As an
example, model can be differentiated per any of the
parameters. Knowing the analytical form of the

differentiate per a parameter is very useful to know if
the model is sensitive to changes on this parameter.
This technique, also called sensitivity analysis, is very
useful to define efficient plans of experiment.

Fig. 6 : Screenshot of model equations in Maple

To start let us define an equilibrium point, we will use
to linearize our system. We consider the stationary
state as the equilibrium, that is when the applied
propeller speeds, maintain a given altitude. To get
this equilibrium point we compute the command
needed to equilibrate the lift force and gravity.

Fig. 7 : Solve directly on system’s equations

Figure 7 displays the command used in Maple for this
task. The important point is that no formulation by
hand is needed for this first calculus. We will not
recall this fact for all subsequent steps, but it is critical
to reduce the design cycle time and the number of
possible errors. If it brings a huge added value during
the first design, it is even easier when needing to
modify the model and replay an overall design
automatically. This is achieved through the access to
symbolic equations of the system, but also with the
document interface (see Figure 6), and a full Math
language (more than 4000 math and graphics
commands, see [2]).
The calculated setting point (see Figure 8) is then
used to linearize the system.
Maple provides a standard format and a
comprehensive set of tools to work on dynamical
systems representations and produce analyses. This
includes representation through Differential
Equations, State Space, Transfer Function, Zero
Poles. Taking advantage of symbolic computing, it is

possible to start by simply describing a system
through its differential algebraic equations.

Fig. 8 Computed equilibrium point

Assuming it has the relevant form (eg to be displayed
as a transfer function, system has to be linear), the
system’s representation can be switched from one
another representation using directly the symbolic
equations. This means that physical parameters used
in one form (usually the starting point is a differential
equation set), will show accordingly in other forms.
This also applies when switching from continuous to
discrete representations. For our design we take the
linearized system in the State Space representation
form. The resulting dynamical system has 19 outputs,
4 inputs and 20 states.

Fig. 9 : Controller structure

To control the system, we first build a standard state
feedback gain, assuming that we are able to measure
all states. As the number of possible measures is less
than the number of actual states in the system, we
use an observer to estimate the lacking values. The
design is then done in two parts :

• Design of an LQR controller
• Design of a Kalman filter

To design the LQR controller, we just need to call a
command in Maple, directly on the automatically
obtained linearized state space representation (see
Figure 10).

Fig . 10 : LQR control design

When the control law has been computed it is stored
in a state space representation. Directly in Maple it is
then possible to analyse the closed loop response of

Pre-Filtering
Kr Plant Model

Observer
(Kalman Filter)

Kf
State Feedback

Gain Block

+

-

Yref(t) u(t) y(t)

x(t)

LQR Controller

the system with a single command, taking the plant
and the gain control.

Fig. 11 Closed loop step response of the LQR

The further steps of the design, consist in designing a
Kalman filter in Maple, and check the overall closed
loop system. One of the math challenges of control
design is to solve the Riccati equations. The precision
used for this calculus may be critical. Symbolic
computing allows to adjust the numerical calculus
precision at any arbitrary level. The actual solving
process is done using numerical techniques relying
on arbitrary numerical precision. The end result is
that the precision can be set to the needed level and
better solutions may be achieved.
The overall controller (including a Kalman Filter) is
defined in a state space representation. When it has
been analyzed in Maple (eg with a closed loop step
response), it is automatically sent to MapleSim.
When it has been imported in MapleSim, the
controller is then tested in simulation on the full
model.
Assuming that the controller design is completed, the
next step in the process is to test the model or the
controller in a real configuration.
For this MapleSim is able to generate automatically C
code. It also provides links to Real time platforms,
from providers like dSPACE or National Instruments.
In our next step, we will get the model used on a real
system.

3. Testing the model on a real system

The model was provided to the LISV team, with all
means to test and analyze it through numerical

simulations, but also through analyses of the
equations of the system in Maple and MapleSim.

The LISV already produced important contributions
on quadrotor helicopters and their control ([4],[5],[6]).
They used their fully equipped real time platform with
a quadricopter to carry out the hereafter comparison
tests.

Fig. 12 : Quadricopter real time platform

The real time system used is based essentially on a
dSPACE DS1103 card being used to generate the
control signals and the sensor data acquisition used
in the control loop. The flying machine used is a mini
rotorcraft with four rotors (Draganflyer IV without the
electronics control) manufactured by Draganfly
Innovations, Inc.(http://www.rctoys.com). (Physical
characteristics in table 1).

Weight (including the
support)

400g

Blade diameter 29cm
Blade step 11cm
Drive to C.G. distance 20.5cm
Drive reduction rate 1 : 6

Table 1

The objective of this experiment is to safely test the
proposed attitude controller. For this a stationary ball
joint base is used (Figure 12). This base gives the
aircraft unrestricted yaw movement, and around ±40°
of pitch and roll, while restricting the aircraft to a fixed
point in the three-dimensional space ([6]). To
measure the aircraft angles and the angular velocity
an Inertial Measurement Unit was connected to the
dSPACE DS1103 serial communication port. The four
DC permanent-magnet mini motors are current
amplified with intelligent microcomputer speed
controllers of type IMCS 25 and driven by PWM
signals.

First step consisted in entering the physical
parameters on the actual system in the MapleSim
model. When this was done, the model was tested

with a control strategy developed by LISV ([6]), first in
simulation, and second in real time.

The comparison is done based on real time
measurements imported in MapleSim and compared
to the closed loop simulated response.

ThetaModel.value
ThetaReel.value

t
1 2 3 4 5 6

0.4

0.3

0.2

0.1

0

0.1

0.2

0.3

Fig. 13 Pitch Angle comparison

Fig 14 Pitch Angular Speed comparison

In Figures 13 and 14, the measured (in green), and
simulated (in red) values on pitch angle are
compared. The model shows a close behavior to the
actual real time system.

4. Conclusion

Directly from a graphical and natural representation
of the system, the analytical equations of the a
quadrotor helicopter have been automatically
generated and simplified with one of the most
powerful symbolic engine available today (see [2]).
The result is a very clean and fast simulation. Using
advanced symbolic computing to produce the
formulation, enables to build the exact representation
with an optimized set of state variables and number

of operations. This brings a direct advantage on the
simulation time, but also helps to provide very fast
and efficient real time models for HIL (Hardware In
the Loop) simulations. Getting access to the
equations of the system from a strong math engine,
with both symbolic and numeric capabilities, allows
carrying out advanced analyses and designs very
fast.

All the steps of the design were not only saved in a
Maple document, but were also commented in order
to keep all the knowledge on the model, and on the
design steps, in a very readable and interactive
format. In the end we hope this project will provide to
the many and very active quadricopter projects, a
new set of methodologies and tools for their designs,
and also new simulation and analysis technologies,
which will enable more innovations in future projects.

This project has also provided a very challenging and
interesting system, to illustrate the added value of a
new modeling technique, based on symbolic
computing; showing advances in modeling, analysis,
design and knowledge capture.

5. References

[1] http://www.modelica.org/
[2] Maple user documentation
(http://www.maplesoft.com/documentation_center)
[3] MapleSim user documentation
(http://www.maplesoft.com/documentation_center)
[4] T. Madani and A. Benallegue “Control of a
Quadrotor Mini-Helicopter
via Full State Backstepping Technique” Proc. of IEEE
Conference on Decision and Control (CDC’2006),
San Diego, California, USA, December 13-15, 2006.
[5] L. Derafa, T. Madani and A. Benallegue “Dynamic
Modelling and Experimental Identification of Four
Rotors Helicopter Parameters” Proc. of IEEE Conf.
on Industrial Technology (ICIT’06), Mumbai, India,
December 15-17, 2006.
[6] L. Derafa, L. Fridman, A. Benallegue and A.
Ouldali “Super Twisting Control Algorithm for the
Attitude Tracking of a Four Rotors UAV” Accepted in
the 11th International Workshop on Variable
Structure Systems (VSS’10), Mexico City from June
26th till June 28th, 2010.
[7]-http://www.onera.fr/actualites/concours-
drones/index.php
[8] http://www.microdrones.com
[9] http://uavp.ch/moin
[10] Kevin Morency, John McPhee, and Chad
Schmitke “Symbolic Modelling of Vehicle Dynamics:
A Maple Implementation”, University of Waterloo,
Systems Design Engineering, May 18 2005
[11] John McPHEE, C. SCHMITKE and S.
REDMOND: “Dynamic modelling of Mechatronic
Multibody Systems with Symbolic Computing and
Linear Graph Theory” Math. Computer Modelling
Dynam. Syst., Vol. 10,no. 1,pp.1-23, 2004
[11] Control Toolbox For Maple,
(http://www.control-toolbox.com/)

