
HAL Id: hal-02269433
https://hal.science/hal-02269433

Submitted on 22 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integrating the AUTOSAR tool chain with Eclipse
based model transformations

Andreas Graf, Markus Völter

To cite this version:
Andreas Graf, Markus Völter. Integrating the AUTOSAR tool chain with Eclipse based model trans-
formations. ERTS2 2010, Embedded Real Time Software & Systems, May 2010, Toulouse, France.
�hal-02269433�

https://hal.science/hal-02269433
https://hal.archives-ouvertes.fr

 Page 1/6

Integrating the AUTOSAR tool chain with Eclipse based model
transformations

Andreas Graf1,Markus Völter2

1: itemis GmbH, Blücherstr. 32, 75177 Pforzheim, Germany
2: independent/itemis GmbH, Hohnerstr. 25, 70469 Stuttgart, Germany

Extended Abstract for Application:

Keywords: AUTOSAR, Eclipse, Open Source,
model transformation, Artop, Model Driven
Engineering, AUTOSAR tool chain, software
development process, AUTOSAR migration,
automotive software, standardization, Engineering
tools integration and interoperability, Open source,
open systems.

1. Introduction

AUTOSAR is establishing itself as a prominent
standard in automotive systems and is expected to
significantly improve software architecture and the
software development processes. However, the
introduction of AUTOSAR also poses some
challenges.

AUTOSAR only defines part of the development
process, it does not specify how to interface tools in
preceding process steps (such as functional design
or requirements engineering) and to subsequent
steps (such as testing or the actual implementation
of the software).

In addition, AUTOSAR currently does not cover all
aspects of automotive software. AUTOSAR software
needs to communicate with non-AUTOSAR
software, for example in the infotainment domain or
even with off-board software.

In addition to these conceptual challenges, the
availability of tools can be a challenge, too. Similar to
the early phase of UML, AUTOSAR tools are rather
new and immature, and experience with those tools
is not widespread. Tool features might be lacking
and the integration of AUTOSAR tools into a
company’s overall tool chain will definitely not be
provided out of the box by an off-the-shelf tool. It
needs customization.

The different steps in the AUTOSAR methodology
might be addressed by different AUTOSAR tools
from different vendors. Those tools need to interact
with each other, increasing increases the need for an

open approach that allows for customization and
extension.

2. Scope of the paper

In this paper, we discuss a number of examples of
the challenges above. The paper shows how these
challenges can be alleviated by Eclipse based tools.

Eclipse has established itself as an industrial
strength development tool in industries that develop
complex systems, such as aerospace and
automotive. OEMs, first-tiers and suppliers already
successfully use it for software development and as
a rich and mature tooling platform. It can be seen as
a platform for domain specific extensions that can be
used out-of-the box (e.g. the C programming IDE
“CDT”) as well as a platform for additional tools.

The open nature of the Eclipse platform allows for
the integration of applications and project specific
extensions.

With Eclipse’s latest Galileo release, several mature
tools for model-driven software development
(MDSD) have become available. These provide a
flexible and low-cost set of tools for bridging the
gaps in existing AUTOSAR tool chains.

The paper is structured as follows: We first introduce
the AUTOSAR tool platform Artop and a number of
open source Eclipse Modeling tools and explain their
role in model driven development. We then show
example challenges in the integration of an
AUTOSAR tool chain and sketch solutions for these
challenges based on the Eclipse based tools
introduced.

Gap
Requirements Autosar Tools Implementation

/ Testing

Gap

Eclipse

Rich and mature tooling / application platform

Domain specific extensions

ARTOP, EAWG, Pulsar, Cosad

CDT
Project specific
functionalities

IntegrationApplications

 Page 2/6

3. Tools

In this paper, we look at Eclipse-based tools for
model-driven software development. Eclipse is an
open source project started by IBM a couple of years
ago. Initially Eclipse was a Java development
environment. However, from the start, Eclipse has
been architected to be extendable in significant
ways. Over time, a number of additional projects
have been initiated as part of the Eclipse platform;
among them the Eclipse Modeling project.

The Eclipse Modeling project is a collection of
frameworks and tools for model driven development.
In sum, they provide a wide range of solutions for
various aspects of model driven development, from
language definition to editor construction to code
generation as well as model verification and
validation.

This section introduces some of the tools from
Eclipse Modeling. Specifically, we suggest those
tools as a basis for integrating an AUTOSAR tool
chain.

EMF
EMF, the Eclipse Modeling Framework, forms the
basis for all Eclipse Modeling tools. At its core, it
provides the Ecore meta meta model, a formalism
for defining the abstract syntax of modeling
languages. EMF comes with a set of related
frameworks and tools for validation, query,
persistence, and model transactions.

Xpand
Xpand is a framework for code generation (in fact,
you can generate any kind of textual artifact such as
configuration files or documentation as well). It
processes models based on languages defined with
EMF. The Xpand language itself is quite
sophisticated in the sense that it contains a powerful
expression language for querying and traversing
models. It also supports polymorphism and aspects
for code generation templates, making sure that
nontrivial code generators remain maintainable.

Xtend
Xtend is used for transforming models into other
models, for modifying existing models before they
are fed into a code generator, as well as for
implementing simple helper functions that are used
as part of code generation templates.

Check
Check is used for validating models. Constraints are
expressed in the constraints Check language (which
embeds the same OCL-like expression language
used in Xpand and Xtend). The constraints are then
evaluated either in real time in the editors when

creating models or as part of model transformation
and code generation workflows.

Xtext

Xtext is a framework for defining textual domain
specific languages. Based on a grammar definition,
the Xtext tooling generates a parser, an EMF meta-
model, as well as an editor for the language defined
by the grammar. The editor provides all the features
known from current IDE's: code completion, syntax
highlighting, folding, customizable outline views, go-
to definition and find references, etc. Using Xtext, the
effort of defining languages and providing editor
support on a level that makes using that language
productive and comfortable becomes significantly
simpler.

GMF
GMF supports the construction of graphical editors
(box and line style) for existing EMF meta-models.
Using this framework, you can define graphical
notations for your own languages.

Integration of the tools
Using the above mentioned tools together results in
a complete toolset for model driven development.
You define your meta-models using EMF, then you
add a graphical or textual notation using GMF or
Xtext, you use check for validating models, and
finally, you can use Xtend and Xpand to transform
the models created with your graphical or textual
editors into other models or text.

An additional project, the modeling workflow engine,
is used to orchestrate the processing of models. It
provides facilities for loading models from files and
supplying them to validation, transformation, and
code generation components.

Artop

One of the fundamental motivations of AUTOSAR is
to increase the reuse of software within the car.
Transferring this motivation to the AUTOSAR
authoring tools is a logical step. This motivation
drives the Artop initiative.

The AUTOSAR Tool Platform (Artop) is an
implementation of common base functionality for
AUTOSAR development tools. Artop uses many of
the above mentioned frameworks to provide specific
base functionalities for creating AUTOSAR tools.
This includes a complete implementation of the
AUTOSAR meta-model in the form of an Ecore
model, an extensible validation engine for checking
AUTOSAR specific and even project-specific
constraints, a sophisticated workspace management

 Page 3/6

that takes into account AUTOSAR’s way of storing
models and lots more.

Artop is developed by the Artop User Group, a group
of AUTOSAR members and partners and uses
Eclipse not only as its technical platform but also
uses a similar community approach to develop the
software. Artop is open to any AUTOSAR member or
partner.

Sphinx
The Sphinx project proposal [Sph2010] is a proposal
for a new Eclipse Model Development Tools (MDT)
subproject.
While developing Artop a lot of functionalities were
developed, that had their origins in the use of
AUTOSAR, but were not specific to AUTOSAR at all.
Similar functionalities were also required in other
industries than the automotive domain, like avionics.
The goal of the Sphinx proposal is to remove these
features from the Artop platform and rather develop
them in a larger community within the Sphinx project.

4. Bridging the gaps

Based on these tools, there are two basic types of
tool integration: A tight integration on the Eclipse
platform and a looser coupling through data
exchange formats.

The tight integration allows tools that conform to the
Eclipse architecture to be integrated within one
application. The user does not have to switch
between different applications, because he sees an
integrated development environment.

However, existing tools used by projects might not
be based on Eclipse. By making use of the Eclipse
modeling tools, a loose integration is still possible
through data import and export.

5. Challenges and Solutions

In this section we show how to use the
aforementioned tools to address a number of
challenges in the integration of an AUTOSAR tool
chain.

To describe the relevant AUTOSAR models, we will
introduce a textual description of AUTOSAR models
called ARText. ARText is based on Xtext and an
early implementation is available through the Artop
distribution. This language is used to illustrate
AUTOSAR models used in the examples, since it is
much more concise than a graphical notation. Here
is an example of a definition of a sensor component
with an interface in ARText format:

interface senderReceiver cardata {

 data int32 speed

}

component atomic Sensor {

 ports {

 sender X provides cardata

 }

}

Model-to-Model-Transformations and Model-to-Text-
Transformations are shown as examples in the
solutions to the challenges. The code fragments of
the transformation are for illustration only. Real
transformations might include additional code.

Adding AUTOSAR Import / Export to existing
tools

Challenge: All tools within the AUTOSAR tool chain
have to be able to read / write data in the AUTOSAR
XML format. The AUTOSAR XML-format is a
complex data exchange format. Adding reading /
writing functionality to an existing application
requires significant effort. If every tool re-implements
the XML functionality, the end user basically pays
several times for the development of a non-
differentiating feature. The cost and time can be
significantly reused by making use of Artop and the
Eclipse modeling tools.

Eclipse

Rich and mature tooling / application platform

Domain specific extensions

ARTOP, EAWG, Pulsar, Cosad

Application A
Project specific
functionalities

IntegrationApp B

Eclipse

Artop

Application A
Unused

functionali
ty

Repository
(e.g. data bases)

C++ / C++ Framework

Application B
Unused

functionali
ty

Xtext

EMF

XPand

Check

Xtend

 Page 4/6

Figure 1 – XML Readers and Writers are a
redundant functionality in the tool chain.

Solution: Artop provides capabilities to read and
write the AUTOSAR XML formats to and from the
Eclipse EMF. Using model transformations,
AUTOSAR models can be converted to the native
format of existing tools.

Figure 2 – Integrating non-AUTOSAR tools by
model transformation

For the example, a transformation of the AUTOSAR
model into a CSV (Comma-Separated-Value)-file is
given. CSV is a common file format that can be read
by various spread sheet and database tools. Each
line of the output should contain a software
component name and information about the ports of
that software component. A Xpand template could
be similar to the template shown in Fragment 1.

Code Fragment 1 – M2T of AUTOSAR into .csv

Code Fragment 2 – CSV Result

The first line of the output file contains the
component of the short example given in the
introduction with the specification of the provided
part. The second line shows an additional software
component to illustrate the structure of the output
file. Any output file in a textual format can be
generated by Xpand.

Integration of Behavioral Models

Challenge: AUTOSAR explicitly provides no means
for the specification of the behavior (program logic)
of software. In model bases software development, a
number of modeling approaches are well established
(such as state machines or dataflow modeling).
However, AUTOSAR does not specify a mapping to
behavioral modeling paradigms. The linking and
synchronization between with artifacts in other
modeling tools is not defined.

Solution: Use model transformations to synchronize
the AUTOSAR model with a behavioral model. This
helps to avoid redundant modeling of elements in
more than one tool and manual synchronization. The
exemplary solution links AUTOSAR models with
UML state machines.

The meta-model elements of AUTOSAR and the
state machine have to be mapped. A state machine
needs to react to data being received. For this
solution, we map AUTOSAR data elements to state
machine triggers. Based on this mapping, a model-
to-model-transformation generates the skeleton of a
state machine and infers the required events /
triggers from the AUTOSAR specification.

Code Fragment 3 – M2M of AUTOSAR into UML
state machines

The code fragment generates a state machine for
every software component and to keep the models
synchronized, adds a trigger for each data element
of required interfaces (i.e. incoming data).

Generation
with XpandArtop Tool Format Legacy Tool

«DEFINE Start FOR infrastructure::autosar::AUTOSAR»

«FILE "specific"+counterInc("arpackage")+".csv"»

«FOREACH this.eAllContents.typeSelect(

components::ApplicationSoftwareComponentType) AS

swc»

«swc.shortName»;«FOREACH swc.ports AS

p»«p.shortName»;

«EXPAND portInfo FOR p»;«ENDFOREACH-»

«ENDFOREACH»

«ENDFILE»

«ENDDEFINE»

«DEFINE portInfo FOR components::PPortPrototype»

provided;«providedInterface.shortName»;

«ENDDEFINE»

«DEFINE portInfo FOR components::RPortPrototype»

required;«requiredInterface.shortName»;

«ENDDEFINE»

Sensor;X;provided;cardata;

swc2;in;required;cardata;

create uml::StateMachine

transform(components::ApplicationSoftwareComponentT

ype m) :

 this.ownedTrigger.addAll(m.ports.typeSelect

(components::PPortPrototype).eContents.typeSelect(p

ortinterface::DataElementPrototype).de2trigger())

;

create uml::Trigger

de2trigger(portinterface::DataElementPrototype d) :

 this.name = d.shortName

 ;

 Page 5/6

Figure 3 - AUTOSAR Data Element as triggers in
state machines

Comfortable Editing of Large models

Challenge: Creating complex models with graphical
modeling tools often is a time-consuming task, since
the creation of new model elements involve a lot of
mouse movements and switching between keyboard
and mouse.

Solution: Textual domain specific languages are an
established approach to create a user-friendly
modeling environment. A comfortable environment
with syntax highlighting, code completion and
navigation functionality allows the user to quickly
create models without the need for time-consuming
context switches between mouse and keyboard
[ARText2009]. Additionally, textual formats
successfully scale to large projects and are also
suited to distributed development environments. This
is due to the format taking advantage of the well
established textual tools and infrastructure
supporting this environment. For example,
configuration, source, change and version control.
Support for these functions is integral for an effective
distributed development environment.
With ARText the Artop community provides an
environment for textual languages based on
AUTOSAR. It defines and implements a textual
language to describe AUTOSAR models. The
framework is based upon Xtext which gives access
to rich features for textual languages like syntax-
highlighting and code-completion. The textual
notation used in this document is the ARText
notation.

Developers who are more inclined to textual formats
will benefit from a less steep learning curve when
developing AUTOSAR models with ARText.

Project Specific Code generation
Challenge: Existing tools might not be prepared for
AUTOSAR-conforming code generation. Manual
post processing of the code is necessary.

Solution: Create AUTOSAR conforming code by
using customized generation templates based on
Xpand.

For the exemplary integration of open-source state
machine modeling / simulation, the Yakindu tool
generation has been made AUTOSAR conforming.

The state machine for terminal control

Figure 4 - State Machine as input to the
generation.

can be transformed into AUTOSAR compliant code
that uses the RTE as an interface to get notified of
incoming transition triggers and reacts by sending
data through the RTE.

Migrating Legacy Models to AUTOSAR

Challenge: Migrate existing component models to
AUTOSAR. Before the introduction of AUTOSAR,
projects often modeled the software architecture with
other notations (e.g. UML). These models have to be
migrated to AUTOSAR.

Solution: Load the models into Eclipse and transform
them to AUTOSAR. Most UML2 should have a XMI-
conforming export. These models are loaded into a
UML2-EMF model and subsequently transformed to
Artop models directly by Xtend or to textual
representations like ARText.

Suppose that every class in a UML model should be
transformed into an AUTOSAR software component.
The following Xtend transformation will perform this
transformation.

 Page 6/6

Code Fragment 4 – M2M of UML to AUTOSAR

The second create function will create an AUTOSAR
package in the destination model and call the
transformation for every class in the UML model.
The semantics of the class to component
transformation is specified in the third create
statement. Here it is a simply copying of the name.

Generating RTE for non-AUTOSAR Basic SW
Challenge: Implement an AUTOSAR RTE on
platforms that have no AUTOSAR Basic Software
available. One of the suggested migration strategies
to AUTOSAR ECUs is the use of legacy BSW with
AUTOSAR conforming application layer as a first
step [AR2010]. However, COTS RTE generators
cannot be used, since they usually do not support
project specific legacy basic software.

Solution: Use Xpand to generate a RTE that
conforms the API for the application software and
interfaces to the platform specific basic software.
Supposing, that a communication call in the legacy
software would have the signature “void
Legacy_SendCall(…)”, a RTE that makes use of this
generation can be generated by a code fragment
like:

Code Fragment 5 – M2M of UML to AUTOSAR

6. Conclusion

In the paper we showed some of today’s recurrent
challenges in tools and described the need for more
integrated tool chains. Challenges in the integration
of an AUTOSAR tool chain can be solved by the use
of inexpensive Eclipse based tooling. An open
platform is the precondition for an integrated tool
chain. The solutions shown in this paper have been
applied in various projects.

4. References:

[Sph2010] Sphinx project proposal,
http://www.eclipse.org/proposals/sphinx/

[ARText2009] S. Benz, D. Wong. “ARText - Driving
Developments with Xtext“,
http://www.slideshare.net/sebastianbenz/artext-driving-
developments-with-xtext

[AR2010] S. Fürst et al., “AUTOSAR – Migration and
Advantages of an Industry-Wide Standard“. Proceedings
of the VDA technical Congress 2010

create infrastructure::autosar::AUTOSAR

transform(uml::Model x) :

 this.topLevelPackages.add(p(x))

 ;

create infrastructure::autosar::ARPackage

p(uml::Model x) :

 this.elements.addAll(x.eAllContents.typeSel

ect(uml::Class).transform())

;

create components::ApplicationSoftwareComponentType

transform(uml::Class x) :

 this.setShortName(x.name)

 ;

«DEFINE Rte FOR infrastructure::autosar::AUTOSAR»

«FILE "rte"+counterInc("arpackage")+".c"»

«FOREACH

this.eAllContents.typeSelect(components::Applicatio

nSoftwareComponentType) AS swc»

«FOREACH

swc.ports.typeSelect(components::PPortPrototype) AS

p»

«FOREACH

p.providedInterface.eContents.typeSelect(portinterf

ace::DataElementPrototype) AS di»

void

Rte_Send_«swc.shortName»_«p.shortName»_«di.shortNam

e»(«di.type» «di.shortName»)

{

 Legacy_SendCall(«di.shortName»);

}

«ENDFOREACH»

«ENDFOREACH-»

«ENDFOREACH»

«ENDFILE»

«ENDDEFINE»

http://www.eclipse.org/proposals/sphinx/

