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Abstract: Design of complex embedded software 
requires ingenious solutions to many architectural 
problems. One such solution that would be a crucial 
catalyst in designing scalable and customized 
embedded software, is developed by API (Application 
Programming Interface) level simulator. The use of 
API level simulator has been gaining wide 
acceptance due to its design and verification 
efficiency by enabling parallel development in 
multiple software layers. However, there are two 
major bottlenecks in realizing practical systems: 
source code modification and recompilation of the 
target software. The paper proposes a novel 
simulation technique to resolve these two critical 
issues. The proposed technique makes it possible to 
replace any part of the target binary without modifying 
its source code and recompiling it. 

Keywords: API level simulation, embedded software, 
instruction set simulator 

1. Introduction 

Developing software is becoming a major bottleneck 
of developing embedded systems as its complexity 
grows. Simulators can shorten time-to-market by 
parallelizing development of software into 
independent development of layers. The register 
accurate level simulator behaves the same as the 
target hardware. The software running on the 
simulator is compiled by the target compiler. Here, 
target means an embedded system to be 
implemented, while host means a system, usually a 
personal computer or a workstation, where a compiler, 
debugger, and simulator are executed [8]. To 
simulate not the whole software but only the 
upper-layer software such as OS (Operating System), 
middleware, and applications, API (Application 
Programming Interface) level simulators are used. 

API level simulator provides the same set of APIs 
that behave the same as the underlying layer of the 
target software although their implementation may be 
different. The software to be simulated on API level 
simulators is required to be compiled by a host 
compiler and liked with the library that is a substitute 
for the underlying layer. Thus, source code 
modification and recompilation of the target software 
are inevitable. Examples of API level simulators 
include VxSim for simulating VxWorks [5], a simulator 

included in Nokia S60 platform SDK [6], and Platform 
Builder for Windows Mobile [7]. 

There have been techniques that redirect OS or 
middleware function calls of the target binary to 
corresponding OS or middleware function calls of the 
host [11-15]. They don’t require source code 
modification and recompilation. However, they are 
restricted to the given API layer. They don’t allow the 
developers of the API level simulator to change the 
interface where the function calls are redirected. 

To address those issues, a novel simulation 
technique is proposed. The main contribution of this 
paper is to introduce a binary replacement technique. 
We extend semi-hosting [9] for API level simulation to 
a modeling concept, interception, and introduce a 
new concept, invocation. The proposed technique 
makes it possible to replace any part of the target 
binary with the host binary without source code 
modification and recompilation of the target software. 
Since the proposed technique allows designers to 
select which part of the target binary should be 
replaced, the designers can use this technique for 
developing any abstract level simulators. 

In section 2, related works are discussed in detail. 
Section 3 explains the proposed technique. 
Preliminary experimental results are provided in 
section 4 and a conclusion is made in section 5. 

2. Related Works 

Table 1 compares characteristics of the proposed 
technique with those of existing simulation techniques 
that can be used for general API level simulators, not 
restricted to a certain API level. 

To our best knowledge, all the commercial API 
level simulators including [5-7] have been 
implemented with the host code execution technique. 
The host code execution technique requires the 

Table 1: Comparison of simulation techniques 

 Abstraction 
level 

S/W 
compile 

Source code 
modification 

Target 
binary 

execution

Simulation 
speed 

Host code 
execution API Host Required None Fast 

Semi-hosting API Target Required Above 
API Middle 

Proposed 
technique API Target No Above 

API Middle 

Register 
accurate Register Target No Full Slow 
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software to be modified and recompiled by the host 
compiler as mentioned before. Thus, the target binary 
is not executed at all. Instead, it executes the binary 
whose source code is modified and compiled by the 
host compiler. Its simulation speed is fast because it 
doesn’t require interpreting the target binary. 

Source code modification makes it difficult to 
maintain the source code by the developers who take 
charge in implementing the API level simulator. 
Usually, the API level simulator enforces modifying 
parts of the target software to accommodate the new 
implementation for the simulator. It implies that the 
source code of both the target software and the 
simulator should be maintained concurrently. 
Nowadays, maintaining even single source code is 
not easy due to its huge size. What makes it more 
difficult is that they should be developed by multiple 
developers simultaneously. 

However, users don’t need to maintain two different 
versions of their software because the developers 
should have taken care of that. Here, users mean 
those who use the API level simulator to develop their 
software. The users simply turn on and off a switch 
like define pragmas, which are provided by the 
developer wherever they may be needed. However, 
the users still need to recompile their software, which 
also causes practical issues regarding different 
results of compilers and third-party libraries whose 
source code is not provided. 

Ideally, changing compilers must not cause any 
problem because the software to be simulated is 
independent of the platform on which it is executed. In 
reality, differences between the results from different 
compilers, which are usually related to data structures, 
sometimes cause problems. Users sometimes 
assume a certain result from the compiler, which can 
be incorrect when the compiler optimizes their 
software aggressively. Although this does not happen 
frequently, when it does, an in-depth investigation is 
required to figure out the root cause. 

Embedded software in commercial products often 
employs third-party libraries whose source code is not 
provided. They cannot be simulated by the host code 
execution technique because they cannot be 
recompiled. It limits the coverage of the target 
software to be developed with the simulator. 

The semi-hosting technique of ARM [9] doesn’t 
require recompilation but still needs to modify the 
source code. An SWI (Software Interrupt) instruction 
should be inserted into the source code so that the 
ISS (Instruction Set Simulator) can catch the SWI to 
redirect to an alternative function that communicates 
with the debugger. For the upper layer software 
above the API, the target binary is executed, while for 
the underlying layer, debugger’s code is executed. Its 
simulation speed is in-between that of the host code 
execution technique and the register accurate 
technique. However, our experimental results show 

that when its abstraction level becomes lower, it 
becomes as slow as the register accurate technique. 

Since the semi-hosting technique is originally not 
for the API level simulation, there are limitations on 
developing general API level simulators based on the 
semi-hosting technique. Most of all, it doesn’t provide 
a way to simulate an incoming event from the 
underlying layer like a hardware interrupt. 

The register accurate technique enables to 
simulate the whole target binary without source code 
modification and recompilation. This is because 
register accurate hardware models are used as 
substitutes of the real hardware. However, there are 
also practical issues regarding simulation speed and 
development time if it is considered to be used for API 
level simulation. 

Recently, some commercial tools [1-4] are reported 
to achieve very high simulation speeds, even faster 
than the real target by utilizing the binary translation 
technique [8]. The biggest obstacle for them to be 
adopted for API level simulation is that they enforce 
serialization of development. For example, if one 
wants to use the register accurate level simulator for 
developing application software, he should wait for 
completion of hardware modeling as well as the 
porting of all the underlying software such as device 
drivers, OS and middleware which also need to be 
completed serially. 

Emulation [16], virtualization [17], and binary 
translation technique [18] can also allow for 
interchangeable execution of binaries that are 
compiled on different platforms without recompilation. 
There have been also techniques that redirect OS or 
middleware calls of the target binary to corresponding 
OS or middleware calls of the host [11-15]. They are 
similar to the proposed technique in that source code 
modification and recompilation are not required. 
However, they don’t allow for developers to change 
the interface where the binaries are interchanged. In 
contrast, the proposed technique allows for 
developers to replace any function of the target binary 
to any function of the host binary. 

3. Binary Replacement Technique 

This section explains how to replace a part of the 
target binary by the host binary. Figure 1 illustrates 
the key concepts of the proposed technique. While 
the target binary is being simulated, if calling FuncA is 
detected, it is intercepted and an alternative function 
FuncA’ is executed instead of FuncA. Since the 
target binary cannot be executed directly on the host 
machine, it is simulated on the ISS. In contrast, 
FuncA’ can be executed on the host machine 
because it is compiled by the host compiler. From 
now on, we call the alternative function like FuncA’ 
and auxiliary functions making it possible for the 
alternative function be executed as a Host eXtension 
Module (HXM). 
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Invocation is also necessary to model incoming 
events. Invocation makes the ISS branch forcefully to 
a certain function. This functionality cannot be 
implemented with the semi-hosting technique [9]. 
Suppose that a function above API should be called if 
a key is pressed. Most middleware provides an API 
for registering an event handler. Once an event ID for 
the key press event and its event handler are 
registered, the function would be called if the event 
occurs. Without invocation, there is no way to 
simulate such a case. In addition, common libraries in 
the target software can be reused in an HXM by 
invoking them. Without invocation, the libraries 
should be also implemented identically in an HXM. 

The ISS should provide interfaces to make it 
possible for an HXM to access the target memory by 
the target address. The HXM needs to access the 
target memory to communicate with the target 
software. 

Table 2 summarizes communication interfaces that 
are provided by the ISS for an HXM to communicate 
with the target software running on the ISS. By using 
these interfaces any part of the target binary can be 
replaced. 

 
3.1 Procedure Definition 

 
Figure 2 shows the procedure of the interception and 
the invocation. Each interface in table 2 is explained 
following the procedure. 

During initialization the ISS calls an initialization 
function in the HXM, which calls 
RegisterInterceptionFunc to register a 
function to be intercepted. The start address of the 
function and the pointer of the alternative function in 
the HXM should be provided. Here, the address is of 
the simulated target while the pointer is of the host. 

The ISS calls the alternative function when the PC 
becomes equal to one of the registered start 
addresses. In order to avoid deteriorating the 
simulation speed, the ISS doesn’t actually monitor the 
PC every cycle in our implementation. Instead, we 
exploit the simulation mechanism of the ISS. The ISS 
[1] employs dynamic compilation-based approach 
[10]. The technique is that it doesn’t emulate each 
instruction of the target binary but instead translates a 
block of target instructions into corresponding 
instructions of the host. In the case of intercepted 
functions, it generates instructions to call the 
alternative function instead of calling the 
corresponding instructions. 

The alternative function in the HXM gets 
parameters according to the calling convention of the 
target code. For an example of the ARM compiler, 
first four parameters are stored in R0, R1, R2, and R3 
registers and others are stored in the stack. 
GetRegisterValue and ReadISSMemory are 
used to read registers and contents in the memory. 
Contents of the stack can also be read by 
ReadISSMemory since the value of the stack pointer 
can be obtained by GetRegisterValue. When 
calling GetRegisterValue, the index of the register 
to be read and a pointer where the value is to be 
stored should be provided. ReadISSMemory reads 
data from the simulated memory. 

The HXM then executes the host implementation of 
the function, which the user wishes to run to replace 
the function of the target binary. The host function 
may need to access global variables or to 
de-reference pointers, both of which would be 
resident in simulated memory. ReadISSMemory and 
WriteISSMemory are used for those purposes. 
WriteISSMemory writes data to the simulated 
memory. 

 
Figure 1: Key concepts of the binary replacement 
technique 

Table 2: Summary of communication interfaces 
Category Name Parameters Description 

Interception RegisterInterceptionFunc Start address of the intercepted function 
Pointer of the alternative function Register functions to be intercepted 

Invocation 
GetControlOfISS None Make the ISS switch context to the special mode 

ExecuteFunctionCall Start address of the invoked function Execute the invoked function 
ReleaseControlOfISS None Make the ISS restore the context 

Register 
access 

GetRegisterValue Index of the register 
Pointer where the value is to be stored Read register value 

SetRegisterValue Index of the register 
Pointer where the value is stored Write register value 

Memory 
access 

ReadISSMemory 
Address of the data to be read 
Size of the data to be read 
Pointer where the data is to be stored 

Read data from the simulated memory 

WriteISSMemory 
Address of the data to be written 
Size of the data to be written 
Pointer where the data is stored 

Write data to the simulated memory 
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The return value of the intercepted function is set 
according to the calling convention by calling 
SetRegisterValue or WriteISSMemory, if 
necessary. SetRegisterValue writes a value to a 
register. 

Finally, the value of the PC should be set to the 
return address. For an example of the ARM, the 
return address is stored in the link register. Thus, the 
value of the PC should be set to that of the link 
register. GetRegisterValue and 
SetRegisterValue are used to read the link 
register and to write to the PC.  This allows the ISS to 
continue executing the target binary from the return 
address of the intercepted function. 

In order to perform invocation, the ISS is required to 
conserve its context before and after the invocation. 
For this purpose, the special mode is introduced. Like 
the IRQ mode of the ARM, the ISS stores and 
restores all the registers to and from the memory 
when switching the context. The HXM should first call 
GetControlOfISS to make the ISS switch context 
to the special mode before invoking a function. Then, 
the HXM sets parameters according to the calling 

convention by SetRegisterValue and 
WriteISSMemory. 

ExecuteFunctionCall is called to execute the 
invoked function on the ISS. The start address of the 
invoked function should be provided so that the ISS 
branches there. 

Then, we need to determine when the invocation is 
over. Since the invoked function may call another 
function, it cannot be determined by simply detecting 
return instructions. The way we resolve this issues is 
as follows. When the ISS branches to the invoked 
function, it sets the return address to an address 
which is not a valid code address. By detecting a 
branch to that address, it can determine when the 
invocation finishes. 

After the HXM gets the return value, it calls 
ReleaseControlOfISS to let the ISS restore the 
context, and continue executing from the point where 
it was when the invocation began. 

 
3.2 Iterative Interception and Invocation 

 
Interception and invocation need to be managed as a 
stack respectively to deal with iterative interception 
and invocation. Suppose that an invoked function 
FuncA calls FuncB which is supposed to be 
intercepted so that its alternative function FuncB’ is 
to be executed. If FuncB’ invokes FuncC, FuncC 
should be executed while the invoked function FuncA 
is not yet finished. To deal with this situation, 
invocation needs to be managed as a stack and so 
does interception. 

However, invocation sometimes needs to be 
managed as a queue. Suppose that if a user pushes 
buttons on the simulator’s GUI (Graphic User 
Interface), a certain function in the target binary 
should be invoked. If the user pushes buttons A and B 
in quick succession, pushing B before the invoked 
function for pushing A has completed, invoking the 
function to handle B needs to wait. If this case were to 
be implemented as a stack, pushing B would be 
processed first, which would be incorrect behavior. 
This case happens only when invocation is triggered 
by an asynchronous event from outside the simulator. 
This case is not an issue between the ISS and the 
HXM but between the HXM and the external source of 
the event. Thus, the HXM takes charge of 
implementing a queue for asynchronous events. 
When an asynchronous event is received, it is pushed 
onto the queue and processed when the HXM is 
scheduled by the simulation kernel. When the HXM is 
scheduled, it pops an event from the queue and 
invokes the corresponding function. The return value 
is passed via a callback function. 

The intercepted function may need to be invoked 
again. This case happens typically if the developer 
wants to add a behavior to the function instead of 
replacing it. To deal with this case, the ISS needs to 

  

(a) Procedure of interception 

 

(b) Procedure of invocation 

Figure 2 : Procedure of interception and invocation
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keep track of which functions are being intercepted. If 
the invoked function is on the list, it should not be 
intercepted again. 

 
3.3 Virtual Addressing 

 
There are two cases where virtual addressing is 
engaged. One is demand paging and the other is 
assignment of independent virtual address spaces to 
individual processes. They are often used together.  

Demand paging is generally used for embedded 
systems that have a smaller RAM (Random Access 
Memory) than a NVM (Non-Volatile Memory). If the 
software attempts to access a region that doesn’t 
reside in RAM but in NVM, a page fault occurs. The 
page fault handler copies that region from NVM to 
RAM and changes the mapping information between 
virtual and physical addresses accordingly. Demand 
paging can be simulated by the proposed technique 
as long as all the addresses used for interfaces are 
virtual and the ISS generates a page fault whenever it 
occurs even in the special mode. 

Assignment of independent virtual address spaces 
to individual processes imposes a limitation on 
interception. Only functions with fixed virtual and 
physical addresses can be intercepted. This is 
because the function which is actually intercepted 
depends on which process is scheduled at that time 
even though the same virtual address is used. 

The same limitation is also imposed on invocation 
by an asynchronous event. Only functions with fixed 
virtual and physical addresses can be invoked by an 
asynchronous event. The developer may implement 
the HXM to check which process is scheduled before 
invoking a function. However, it is not a safe way 
because the atomic operation of updating the 
mapping information between virtual and physical 
addresses and updating the scheduling information 
may not be guaranteed by the simulation kernel. The 
OS running on the ISS can guarantee the atomic 
operation but the simulation kernel cannot. The 
simulation kernel may switch the scheduled model 
from the ISS to another model such as a HXM, while 
the ISS is simulating somewhere in the middle of the 
atomic operation. On the other hand, there is no 
problem with normal invocation. Since normal 
invocation is triggered from within intercepted 
functions, the developer can know which process is 
being scheduled at that time. 

4. Hiding Housekeeping Tasks 

Housekeeping tasks mean auxiliary behaviors to 
make interception and invocation work such as 
registering functions to be intercepted, getting and 
setting parameters and return values, and getting and 
releasing control of the ISS. Communication 
interfaces are mostly called by housekeeping tasks. 

This section describes HXCreator, which is used to 
hide housekeeping tasks from developers so that 
they can develop HXMs as if they developed a part of 
the target binary, without requiring an in-depth 
knowledge of the simulation technique and the calling 
convention. 

Figure 3 shows an example work flow of 
interception. HXCreator reads the map file and 
generates the housekeeping tasks, skeleton code 
and compilation environment such as makefile. 
Grey boxes in the figure are to be provided by the 
developer and the user. The developer should 
provide the prototype of a function to be intercepted in 
the map file. Once HXCreator generates the skeleton 
code, the developer implements its body. The symbol 
table should be provided by the user at run-time. 

The map file should contain the name, return type, 
calling convention, number of parameters and type of 
each parameter of the function to be intercepted. The 
prototype of the function in C or C++ contains all the 
necessary information. In this example, HXCreator 
generates WrapFuncA which takes charge of 
housekeeping tasks for FuncA. HXCreator also 
makes WrapFuncA registered in the init function so 
that WrapFuncA is called when FuncA is intercepted. 
The address of FuncA is read from the symbol table 
at run-time. WrapFuncA is generated to read 
parameters according to the calling convention and 
their type, to call the alternative FuncA in HXM whose 
body is implemented by the developer, and finally to 
set the return value. 

Similarly, the housekeeping tasks for invocation 
can be hidden. The developer provides the prototype 
of a function to be invoked in the map file, too. The 
map file should be able to distinguish which function 
is to be intercepted or invoked. Suppose that FuncB 
is to be invoked. The developer just calls FuncB as if 
he calls FuncB in the target binary directly. FuncB 

Figure 3: Generating housekeeping tasks for 
interception 



 Page 6/7 

was actually generated by HXCreator as a member of 
HXM and takes charge of housekeeping tasks for 
invoking FuncB such as getting control of the ISS, 
setting parameters, requesting execution, getting 
return value and releasing control of the ISS. 

As for global variables and pointers, wrapper 
classes are introduced. Instead of accessing them by 
their address, the developer can access them by 
calling member methods or using overloaded 
operators of their wrapper class. HXCreator 
generates housekeeping tasks and initialing code for 
the wrapper classes. 

For example, a global variable GlobA is to be 
accessed. The developer inserts GlobA into the map 
file with its type. It also looks like a variable 
declaration in C or C++. HXCreator generates 
declaration of GlobA as an instance of the wrapper 
class. HXCreator also generates its initialing code 
that reads the address of variable GlobA from the 
symbol table and stores the address in the class 
GlobA. If the developer wants to write to the variable 
GlobA, he can do so by simply using assignment 
since the assignment operator is overloaded. To read, 
he may use implicit or explicit type casting operators. 

5. Experiment 

The proposed technique was successfully 
incorporated with the Innovator [1]. To compare all 
the simulation techniques mentioned in section 2, we 
had to use a very simple test case. This was because 
we could not implement complicated simulation 
models using the semi-hosting technique. The test 
case was to display messages repeatedly on the 
debugging console via UART. Table 3 shows the 
simulation results. All the test cases are implemented 
with the Innovator [1]. 

When the test case is implemented with the host 
code execution technique, 4 loc (Lines of Code) 
needed to be modified. The modification is mostly 
removal of hardware initialization such as UART and 
an interrupt controller. The value of 4 loc only counts 
the removal of lines of code which call the initialization 
functions. If the removal of their body is also counted 
as modification, the amount of the modification is 566 
loc. As mentioned in section 2, the target binary is not 
executed at all. Instead, the binary executed is that 
whose source code had been modified and 
recompiled by the host compiler. The simulation 
speed is the fastest among the simulation techniques. 

To implement with semi-hosting technique, 3 loc of 
the source code are modified. The target binary has 
also been changed to be linked with the libraries that 
support the semi-hosting technique. Only the target 
binary above the API, which displays messages in 
this test case, is executed. The ratio is measured by 
loc. Its simulation speed is expected to be in-between 
that of the host code execution technique and the 
register accurate technique. In this test case, its 

simulation speed is as slow as the register accurate 
technique. Since this test case is quite simple, the 
overhead of communicating with the debugger is 
significant. 

With the proposed technique, the source code 
doesn’t need to be modified. However, it still requires 
efforts to develop HXMs. The difference is that the 
source code of the HXM can be maintained 
completely separately from that of the target software. 
The ratio of the executed target binary is the same 
with that of the semi-hosting technique. Its simulation 
speed is faster than that of the register accurate 
technique but slower than that of the host code 
execution technique. If the abstraction level of API 
goes up higher, the gap between the simulation 
speed from that of the register accurate technique 
would become larger. 

With the register accurate technique, the target 
binary can be used without any modification and the 
whole target binary was executed. However, 49.4% of 
the target binary is below the API and out of our 
interest. Its simulation speed is slowest among the 
simulation techniques. 

6. Conclusions 

In this paper, a novel simulation technique is 
proposed to address practical issues of conventional 
API level simulators. Interception and invocation are 
introduced and their procedure and interfaces are 
defined. The proposed technique makes it possible to 
replace any part of the target binary by the host binary 
without source code modification and recompilation of 
the target software. The proposed technique is 
successfully incorporated with the Innovator [1]. As a 
result, we are able to remove obstacles for the 
simulators to be adopted by developers and users. 
With the proposed technique, developers don’t need 
to manage two versions of the source code 
concurrently. Users don’t need to make efforts to port 
their software with a different compiler and become 
able to simulate their software with third-party 
libraries whose source code has not been provided. 
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