
HAL Id: hal-02269430
https://hal.science/hal-02269430v1

Submitted on 22 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Binary Replacement Technique for Application
Programming Interface Level Simulation

Junghee Lee, Denis Paterson, Scott O’Neill, Hongchul Kim, Sangjun Nam,
Jongman Kim

To cite this version:
Junghee Lee, Denis Paterson, Scott O’Neill, Hongchul Kim, Sangjun Nam, et al.. Binary Replacement
Technique for Application Programming Interface Level Simulation. ERTS2 2010, Embedded Real
Time Software & Systems, May 2010, Toulouse, France. �hal-02269430�

https://hal.science/hal-02269430v1
https://hal.archives-ouvertes.fr

 Page 1/7

Binary Replacement Technique for Application Programming
Interface Level Simulation

Junghee Lee1, Denis Paterson2, Scott O'Neill2, Hongchul Kim3, Sangjun Nam3, Jongman Kim1
1: Georgia Institute of Technology, 777 Atlantic Drive NW, Atlanta, GA 30332, USA

2: Synopsys, The Alba Centre, The Alba Campus, Livingston, West Lothian, Scotland, UK
3: Samsung Electronics, Telecommunication R&D Center, Yeongtong-gu, Suwon-si, Gyeonggi-do, Korea

Abstract: Design of complex embedded software
requires ingenious solutions to many architectural
problems. One such solution that would be a crucial
catalyst in designing scalable and customized
embedded software, is developed by API (Application
Programming Interface) level simulator. The use of
API level simulator has been gaining wide
acceptance due to its design and verification
efficiency by enabling parallel development in
multiple software layers. However, there are two
major bottlenecks in realizing practical systems:
source code modification and recompilation of the
target software. The paper proposes a novel
simulation technique to resolve these two critical
issues. The proposed technique makes it possible to
replace any part of the target binary without modifying
its source code and recompiling it.

Keywords: API level simulation, embedded software,
instruction set simulator

1. Introduction

Developing software is becoming a major bottleneck
of developing embedded systems as its complexity
grows. Simulators can shorten time-to-market by
parallelizing development of software into
independent development of layers. The register
accurate level simulator behaves the same as the
target hardware. The software running on the
simulator is compiled by the target compiler. Here,
target means an embedded system to be
implemented, while host means a system, usually a
personal computer or a workstation, where a compiler,
debugger, and simulator are executed [8]. To
simulate not the whole software but only the
upper-layer software such as OS (Operating System),
middleware, and applications, API (Application
Programming Interface) level simulators are used.

API level simulator provides the same set of APIs
that behave the same as the underlying layer of the
target software although their implementation may be
different. The software to be simulated on API level
simulators is required to be compiled by a host
compiler and liked with the library that is a substitute
for the underlying layer. Thus, source code
modification and recompilation of the target software
are inevitable. Examples of API level simulators
include VxSim for simulating VxWorks [5], a simulator

included in Nokia S60 platform SDK [6], and Platform
Builder for Windows Mobile [7].

There have been techniques that redirect OS or
middleware function calls of the target binary to
corresponding OS or middleware function calls of the
host [11-15]. They don’t require source code
modification and recompilation. However, they are
restricted to the given API layer. They don’t allow the
developers of the API level simulator to change the
interface where the function calls are redirected.

To address those issues, a novel simulation
technique is proposed. The main contribution of this
paper is to introduce a binary replacement technique.
We extend semi-hosting [9] for API level simulation to
a modeling concept, interception, and introduce a
new concept, invocation. The proposed technique
makes it possible to replace any part of the target
binary with the host binary without source code
modification and recompilation of the target software.
Since the proposed technique allows designers to
select which part of the target binary should be
replaced, the designers can use this technique for
developing any abstract level simulators.

In section 2, related works are discussed in detail.
Section 3 explains the proposed technique.
Preliminary experimental results are provided in
section 4 and a conclusion is made in section 5.

2. Related Works

Table 1 compares characteristics of the proposed
technique with those of existing simulation techniques
that can be used for general API level simulators, not
restricted to a certain API level.

To our best knowledge, all the commercial API
level simulators including [5-7] have been
implemented with the host code execution technique.
The host code execution technique requires the

Table 1: Comparison of simulation techniques

 Abstraction
level

S/W
compile

Source code
modification

Target
binary

execution

Simulation
speed

Host code
execution API Host Required None Fast

Semi-hosting API Target Required Above
API Middle

Proposed
technique API Target No Above

API Middle

Register
accurate Register Target No Full Slow

 Page 2/7

software to be modified and recompiled by the host
compiler as mentioned before. Thus, the target binary
is not executed at all. Instead, it executes the binary
whose source code is modified and compiled by the
host compiler. Its simulation speed is fast because it
doesn’t require interpreting the target binary.

Source code modification makes it difficult to
maintain the source code by the developers who take
charge in implementing the API level simulator.
Usually, the API level simulator enforces modifying
parts of the target software to accommodate the new
implementation for the simulator. It implies that the
source code of both the target software and the
simulator should be maintained concurrently.
Nowadays, maintaining even single source code is
not easy due to its huge size. What makes it more
difficult is that they should be developed by multiple
developers simultaneously.

However, users don’t need to maintain two different
versions of their software because the developers
should have taken care of that. Here, users mean
those who use the API level simulator to develop their
software. The users simply turn on and off a switch
like define pragmas, which are provided by the
developer wherever they may be needed. However,
the users still need to recompile their software, which
also causes practical issues regarding different
results of compilers and third-party libraries whose
source code is not provided.

Ideally, changing compilers must not cause any
problem because the software to be simulated is
independent of the platform on which it is executed. In
reality, differences between the results from different
compilers, which are usually related to data structures,
sometimes cause problems. Users sometimes
assume a certain result from the compiler, which can
be incorrect when the compiler optimizes their
software aggressively. Although this does not happen
frequently, when it does, an in-depth investigation is
required to figure out the root cause.

Embedded software in commercial products often
employs third-party libraries whose source code is not
provided. They cannot be simulated by the host code
execution technique because they cannot be
recompiled. It limits the coverage of the target
software to be developed with the simulator.

The semi-hosting technique of ARM [9] doesn’t
require recompilation but still needs to modify the
source code. An SWI (Software Interrupt) instruction
should be inserted into the source code so that the
ISS (Instruction Set Simulator) can catch the SWI to
redirect to an alternative function that communicates
with the debugger. For the upper layer software
above the API, the target binary is executed, while for
the underlying layer, debugger’s code is executed. Its
simulation speed is in-between that of the host code
execution technique and the register accurate
technique. However, our experimental results show

that when its abstraction level becomes lower, it
becomes as slow as the register accurate technique.

Since the semi-hosting technique is originally not
for the API level simulation, there are limitations on
developing general API level simulators based on the
semi-hosting technique. Most of all, it doesn’t provide
a way to simulate an incoming event from the
underlying layer like a hardware interrupt.

The register accurate technique enables to
simulate the whole target binary without source code
modification and recompilation. This is because
register accurate hardware models are used as
substitutes of the real hardware. However, there are
also practical issues regarding simulation speed and
development time if it is considered to be used for API
level simulation.

Recently, some commercial tools [1-4] are reported
to achieve very high simulation speeds, even faster
than the real target by utilizing the binary translation
technique [8]. The biggest obstacle for them to be
adopted for API level simulation is that they enforce
serialization of development. For example, if one
wants to use the register accurate level simulator for
developing application software, he should wait for
completion of hardware modeling as well as the
porting of all the underlying software such as device
drivers, OS and middleware which also need to be
completed serially.

Emulation [16], virtualization [17], and binary
translation technique [18] can also allow for
interchangeable execution of binaries that are
compiled on different platforms without recompilation.
There have been also techniques that redirect OS or
middleware calls of the target binary to corresponding
OS or middleware calls of the host [11-15]. They are
similar to the proposed technique in that source code
modification and recompilation are not required.
However, they don’t allow for developers to change
the interface where the binaries are interchanged. In
contrast, the proposed technique allows for
developers to replace any function of the target binary
to any function of the host binary.

3. Binary Replacement Technique

This section explains how to replace a part of the
target binary by the host binary. Figure 1 illustrates
the key concepts of the proposed technique. While
the target binary is being simulated, if calling FuncA is
detected, it is intercepted and an alternative function
FuncA’ is executed instead of FuncA. Since the
target binary cannot be executed directly on the host
machine, it is simulated on the ISS. In contrast,
FuncA’ can be executed on the host machine
because it is compiled by the host compiler. From
now on, we call the alternative function like FuncA’
and auxiliary functions making it possible for the
alternative function be executed as a Host eXtension
Module (HXM).

 Page 3/7

Invocation is also necessary to model incoming
events. Invocation makes the ISS branch forcefully to
a certain function. This functionality cannot be
implemented with the semi-hosting technique [9].
Suppose that a function above API should be called if
a key is pressed. Most middleware provides an API
for registering an event handler. Once an event ID for
the key press event and its event handler are
registered, the function would be called if the event
occurs. Without invocation, there is no way to
simulate such a case. In addition, common libraries in
the target software can be reused in an HXM by
invoking them. Without invocation, the libraries
should be also implemented identically in an HXM.

The ISS should provide interfaces to make it
possible for an HXM to access the target memory by
the target address. The HXM needs to access the
target memory to communicate with the target
software.

Table 2 summarizes communication interfaces that
are provided by the ISS for an HXM to communicate
with the target software running on the ISS. By using
these interfaces any part of the target binary can be
replaced.

3.1 Procedure Definition

Figure 2 shows the procedure of the interception and
the invocation. Each interface in table 2 is explained
following the procedure.

During initialization the ISS calls an initialization
function in the HXM, which calls
RegisterInterceptionFunc to register a
function to be intercepted. The start address of the
function and the pointer of the alternative function in
the HXM should be provided. Here, the address is of
the simulated target while the pointer is of the host.

The ISS calls the alternative function when the PC
becomes equal to one of the registered start
addresses. In order to avoid deteriorating the
simulation speed, the ISS doesn’t actually monitor the
PC every cycle in our implementation. Instead, we
exploit the simulation mechanism of the ISS. The ISS
[1] employs dynamic compilation-based approach
[10]. The technique is that it doesn’t emulate each
instruction of the target binary but instead translates a
block of target instructions into corresponding
instructions of the host. In the case of intercepted
functions, it generates instructions to call the
alternative function instead of calling the
corresponding instructions.

The alternative function in the HXM gets
parameters according to the calling convention of the
target code. For an example of the ARM compiler,
first four parameters are stored in R0, R1, R2, and R3
registers and others are stored in the stack.
GetRegisterValue and ReadISSMemory are
used to read registers and contents in the memory.
Contents of the stack can also be read by
ReadISSMemory since the value of the stack pointer
can be obtained by GetRegisterValue. When
calling GetRegisterValue, the index of the register
to be read and a pointer where the value is to be
stored should be provided. ReadISSMemory reads
data from the simulated memory.

The HXM then executes the host implementation of
the function, which the user wishes to run to replace
the function of the target binary. The host function
may need to access global variables or to
de-reference pointers, both of which would be
resident in simulated memory. ReadISSMemory and
WriteISSMemory are used for those purposes.
WriteISSMemory writes data to the simulated
memory.

Figure 1: Key concepts of the binary replacement
technique

Table 2: Summary of communication interfaces
Category Name Parameters Description

Interception RegisterInterceptionFunc Start address of the intercepted function
Pointer of the alternative function Register functions to be intercepted

Invocation
GetControlOfISS None Make the ISS switch context to the special mode

ExecuteFunctionCall Start address of the invoked function Execute the invoked function
ReleaseControlOfISS None Make the ISS restore the context

Register
access

GetRegisterValue Index of the register
Pointer where the value is to be stored Read register value

SetRegisterValue Index of the register
Pointer where the value is stored Write register value

Memory
access

ReadISSMemory
Address of the data to be read
Size of the data to be read
Pointer where the data is to be stored

Read data from the simulated memory

WriteISSMemory
Address of the data to be written
Size of the data to be written
Pointer where the data is stored

Write data to the simulated memory

 Page 4/7

The return value of the intercepted function is set
according to the calling convention by calling
SetRegisterValue or WriteISSMemory, if
necessary. SetRegisterValue writes a value to a
register.

Finally, the value of the PC should be set to the
return address. For an example of the ARM, the
return address is stored in the link register. Thus, the
value of the PC should be set to that of the link
register. GetRegisterValue and
SetRegisterValue are used to read the link
register and to write to the PC. This allows the ISS to
continue executing the target binary from the return
address of the intercepted function.

In order to perform invocation, the ISS is required to
conserve its context before and after the invocation.
For this purpose, the special mode is introduced. Like
the IRQ mode of the ARM, the ISS stores and
restores all the registers to and from the memory
when switching the context. The HXM should first call
GetControlOfISS to make the ISS switch context
to the special mode before invoking a function. Then,
the HXM sets parameters according to the calling

convention by SetRegisterValue and
WriteISSMemory.

ExecuteFunctionCall is called to execute the
invoked function on the ISS. The start address of the
invoked function should be provided so that the ISS
branches there.

Then, we need to determine when the invocation is
over. Since the invoked function may call another
function, it cannot be determined by simply detecting
return instructions. The way we resolve this issues is
as follows. When the ISS branches to the invoked
function, it sets the return address to an address
which is not a valid code address. By detecting a
branch to that address, it can determine when the
invocation finishes.

After the HXM gets the return value, it calls
ReleaseControlOfISS to let the ISS restore the
context, and continue executing from the point where
it was when the invocation began.

3.2 Iterative Interception and Invocation

Interception and invocation need to be managed as a
stack respectively to deal with iterative interception
and invocation. Suppose that an invoked function
FuncA calls FuncB which is supposed to be
intercepted so that its alternative function FuncB’ is
to be executed. If FuncB’ invokes FuncC, FuncC
should be executed while the invoked function FuncA
is not yet finished. To deal with this situation,
invocation needs to be managed as a stack and so
does interception.

However, invocation sometimes needs to be
managed as a queue. Suppose that if a user pushes
buttons on the simulator’s GUI (Graphic User
Interface), a certain function in the target binary
should be invoked. If the user pushes buttons A and B
in quick succession, pushing B before the invoked
function for pushing A has completed, invoking the
function to handle B needs to wait. If this case were to
be implemented as a stack, pushing B would be
processed first, which would be incorrect behavior.
This case happens only when invocation is triggered
by an asynchronous event from outside the simulator.
This case is not an issue between the ISS and the
HXM but between the HXM and the external source of
the event. Thus, the HXM takes charge of
implementing a queue for asynchronous events.
When an asynchronous event is received, it is pushed
onto the queue and processed when the HXM is
scheduled by the simulation kernel. When the HXM is
scheduled, it pops an event from the queue and
invokes the corresponding function. The return value
is passed via a callback function.

The intercepted function may need to be invoked
again. This case happens typically if the developer
wants to add a behavior to the function instead of
replacing it. To deal with this case, the ISS needs to

(a) Procedure of interception

(b) Procedure of invocation

Figure 2 : Procedure of interception and invocation

 Page 5/7

keep track of which functions are being intercepted. If
the invoked function is on the list, it should not be
intercepted again.

3.3 Virtual Addressing

There are two cases where virtual addressing is
engaged. One is demand paging and the other is
assignment of independent virtual address spaces to
individual processes. They are often used together.

Demand paging is generally used for embedded
systems that have a smaller RAM (Random Access
Memory) than a NVM (Non-Volatile Memory). If the
software attempts to access a region that doesn’t
reside in RAM but in NVM, a page fault occurs. The
page fault handler copies that region from NVM to
RAM and changes the mapping information between
virtual and physical addresses accordingly. Demand
paging can be simulated by the proposed technique
as long as all the addresses used for interfaces are
virtual and the ISS generates a page fault whenever it
occurs even in the special mode.

Assignment of independent virtual address spaces
to individual processes imposes a limitation on
interception. Only functions with fixed virtual and
physical addresses can be intercepted. This is
because the function which is actually intercepted
depends on which process is scheduled at that time
even though the same virtual address is used.

The same limitation is also imposed on invocation
by an asynchronous event. Only functions with fixed
virtual and physical addresses can be invoked by an
asynchronous event. The developer may implement
the HXM to check which process is scheduled before
invoking a function. However, it is not a safe way
because the atomic operation of updating the
mapping information between virtual and physical
addresses and updating the scheduling information
may not be guaranteed by the simulation kernel. The
OS running on the ISS can guarantee the atomic
operation but the simulation kernel cannot. The
simulation kernel may switch the scheduled model
from the ISS to another model such as a HXM, while
the ISS is simulating somewhere in the middle of the
atomic operation. On the other hand, there is no
problem with normal invocation. Since normal
invocation is triggered from within intercepted
functions, the developer can know which process is
being scheduled at that time.

4. Hiding Housekeeping Tasks

Housekeeping tasks mean auxiliary behaviors to
make interception and invocation work such as
registering functions to be intercepted, getting and
setting parameters and return values, and getting and
releasing control of the ISS. Communication
interfaces are mostly called by housekeeping tasks.

This section describes HXCreator, which is used to
hide housekeeping tasks from developers so that
they can develop HXMs as if they developed a part of
the target binary, without requiring an in-depth
knowledge of the simulation technique and the calling
convention.

Figure 3 shows an example work flow of
interception. HXCreator reads the map file and
generates the housekeeping tasks, skeleton code
and compilation environment such as makefile.
Grey boxes in the figure are to be provided by the
developer and the user. The developer should
provide the prototype of a function to be intercepted in
the map file. Once HXCreator generates the skeleton
code, the developer implements its body. The symbol
table should be provided by the user at run-time.

The map file should contain the name, return type,
calling convention, number of parameters and type of
each parameter of the function to be intercepted. The
prototype of the function in C or C++ contains all the
necessary information. In this example, HXCreator
generates WrapFuncA which takes charge of
housekeeping tasks for FuncA. HXCreator also
makes WrapFuncA registered in the init function so
that WrapFuncA is called when FuncA is intercepted.
The address of FuncA is read from the symbol table
at run-time. WrapFuncA is generated to read
parameters according to the calling convention and
their type, to call the alternative FuncA in HXM whose
body is implemented by the developer, and finally to
set the return value.

Similarly, the housekeeping tasks for invocation
can be hidden. The developer provides the prototype
of a function to be invoked in the map file, too. The
map file should be able to distinguish which function
is to be intercepted or invoked. Suppose that FuncB
is to be invoked. The developer just calls FuncB as if
he calls FuncB in the target binary directly. FuncB

Figure 3: Generating housekeeping tasks for
interception

 Page 6/7

was actually generated by HXCreator as a member of
HXM and takes charge of housekeeping tasks for
invoking FuncB such as getting control of the ISS,
setting parameters, requesting execution, getting
return value and releasing control of the ISS.

As for global variables and pointers, wrapper
classes are introduced. Instead of accessing them by
their address, the developer can access them by
calling member methods or using overloaded
operators of their wrapper class. HXCreator
generates housekeeping tasks and initialing code for
the wrapper classes.

For example, a global variable GlobA is to be
accessed. The developer inserts GlobA into the map
file with its type. It also looks like a variable
declaration in C or C++. HXCreator generates
declaration of GlobA as an instance of the wrapper
class. HXCreator also generates its initialing code
that reads the address of variable GlobA from the
symbol table and stores the address in the class
GlobA. If the developer wants to write to the variable
GlobA, he can do so by simply using assignment
since the assignment operator is overloaded. To read,
he may use implicit or explicit type casting operators.

5. Experiment

The proposed technique was successfully
incorporated with the Innovator [1]. To compare all
the simulation techniques mentioned in section 2, we
had to use a very simple test case. This was because
we could not implement complicated simulation
models using the semi-hosting technique. The test
case was to display messages repeatedly on the
debugging console via UART. Table 3 shows the
simulation results. All the test cases are implemented
with the Innovator [1].

When the test case is implemented with the host
code execution technique, 4 loc (Lines of Code)
needed to be modified. The modification is mostly
removal of hardware initialization such as UART and
an interrupt controller. The value of 4 loc only counts
the removal of lines of code which call the initialization
functions. If the removal of their body is also counted
as modification, the amount of the modification is 566
loc. As mentioned in section 2, the target binary is not
executed at all. Instead, the binary executed is that
whose source code had been modified and
recompiled by the host compiler. The simulation
speed is the fastest among the simulation techniques.

To implement with semi-hosting technique, 3 loc of
the source code are modified. The target binary has
also been changed to be linked with the libraries that
support the semi-hosting technique. Only the target
binary above the API, which displays messages in
this test case, is executed. The ratio is measured by
loc. Its simulation speed is expected to be in-between
that of the host code execution technique and the
register accurate technique. In this test case, its

simulation speed is as slow as the register accurate
technique. Since this test case is quite simple, the
overhead of communicating with the debugger is
significant.

With the proposed technique, the source code
doesn’t need to be modified. However, it still requires
efforts to develop HXMs. The difference is that the
source code of the HXM can be maintained
completely separately from that of the target software.
The ratio of the executed target binary is the same
with that of the semi-hosting technique. Its simulation
speed is faster than that of the register accurate
technique but slower than that of the host code
execution technique. If the abstraction level of API
goes up higher, the gap between the simulation
speed from that of the register accurate technique
would become larger.

With the register accurate technique, the target
binary can be used without any modification and the
whole target binary was executed. However, 49.4% of
the target binary is below the API and out of our
interest. Its simulation speed is slowest among the
simulation techniques.

6. Conclusions

In this paper, a novel simulation technique is
proposed to address practical issues of conventional
API level simulators. Interception and invocation are
introduced and their procedure and interfaces are
defined. The proposed technique makes it possible to
replace any part of the target binary by the host binary
without source code modification and recompilation of
the target software. The proposed technique is
successfully incorporated with the Innovator [1]. As a
result, we are able to remove obstacles for the
simulators to be adopted by developers and users.
With the proposed technique, developers don’t need
to manage two versions of the source code
concurrently. Users don’t need to make efforts to port
their software with a different compiler and become
able to simulate their software with third-party
libraries whose source code has not been provided.

7. References

[1] Innovator. Available: http://www.synopsys.com
[2] System Generator. Available: http://www.arm.com
[3] P.Magnusson et al., “Simics: A full system

simulation platform,” IEEE Transactions on
Computers, Volume 35, Issue 2, pp.50-58, February,
2002

Table 3: Experimental results

 Source code
modification

Target binary
execution

Simulation
speed

Host code execution 4 loc
(566 loc) 0 % 2 sec

Semi-hosting 3 loc 50.6 % 39 sec
Proposed technique No 50.6 % 28 sec
Register accurate No 100 % 39 sec

 Page 7/7

[4] CoMET. Avaiable: http://www.vastsystems.com
[5] VxWorks. Available: http://www.windriver.com
[6] S60 Platform. Available:

http://www.forum.nokia.com/main/platforms/s60/
[7] Windows CE, Available: http://www.microsoft.com
[8] J. Zhu and D. Gajski, “An ultra-fast instruction set

simulator,” IEEE Transactions on VLSI, Volume 10,
Issue 3, pp. 363-373, June, 2002

[9] Angel Debug Protocol Messages. Available:
http://www.arm.com

[10] R. Cmelik and D. Keppel, “Shade: A fast
instruction-set simulator for execution profiling,” in
Proc. of ACM SIGMETRICS Conference on
Measurement Modeling Computer Systems, 1994,
pp.128-137

[11] M. Krause et al., “Combination of instruction set
simulation and abstract RTOS model execution for
fast and accurate target software evaluation,” in
Proc. of International Conference on
Hardware/Software Codesign and System
Synthesis, 2008, pp.143-148

[12] M. Hassan et al., “Enabling RTOS simulation
modeling in a system level design language,” in Proc.
of Asia and South Pacific Design Automation
Conference, 2005, pp.936-939

[13] A. Bouchhima, S. Yoo, and A. Jerraya, “Fast and
accurate timed execution of high level embedded
software using HW/SW interface simulation model,”
in Proc. of Asia and South Pacific Design
Automation Conference, 2004, pp.469-474

[14] A. Gerstlauer, H. Yu and D. Gajski, “RTOS modeling
for system-level design,” in Proc. of Design,
Automation and Test in Europe, 2003, pp.130-135

[15] S. Yoo, I. Bacivarov, A. Bouchhima, Y. Paviot, and A.
Jerraya, “Building fast and accurate SW simulation
models based on hardware abstraction layer and
simulation environment abstraction layer,” in Proc.
of Design, Automation and Test in Europe, 2003,
pp.1530-135

[16] QEMU, Available: http://www.qemu.org
[17] VMware, Available: http://www.vmware.com
[18] Anton Chernoff et al., "FX!32: A Profile-Directed

Binary Translator," IEEE Micro, vol. 18, no. 2, 1998,
pp. 56-64

