Finally, a representative end-to-end experiment was performed to evaluate the benefit of such technologies.

Model driven Engineering

To deal with the increasing complexity of space systems while maintaining flight software high validation level, software engineering techniques must evolve accordingly. Model-based engineering aims at making complexity management easier by constructing virtual representations that enable early prediction of behaviour and performance of a system, as well as documentation and code generation.

Among the various modelling techniques, UML is the one that fits best the onboard software domain. The additional modelling effort required during the specification and design phases is recovered during validation phases through automatic code and test generation. Maintenance effort and in particular regression testing are significantly reduced.

Test generator prototype implementation

During Acceleo generator is an EPL open source "model to code" generator which is user configurable threw templates. OCL and Activity generators make used of a java Platform Specific Model developed by Astrium. The Generated java code is target independent, the target code interface, relative to observability and commandability is hand coded in the bench interface instance specified in <BENCH_IF> stereotype. Today's ECSS standard is focussed on documents and it is quite difficult to produce and easy to read documentation from models. Using direct access to models offers the possibility to navigate and follow the links between model entities but modelling tools do not support and formalized model review process to ensure completeness of the review. Using modelling also puts strong requirements on the people involved in the review: mastering UML and OCL language requires some specific training compared to natural language documents.

Conclusion

The

1. 1 Figure 1 :

 11 Figure 1: Model-drive engineering in the V-cycle

Figure 2 :

 2 Figure 2: Impact of automatic test generation on the software development cycle

Stereotypes

 Stereotypes are used to clarify the model with label information added in the graphical description and tag useful information on UML elements (class, attributes, and operations) for code generation. Two profiles have been defined for the study:• Testing profile allow tagging model classes to identify design and test models and to specify test bench interface. • Tmtc profile allow tagging model class properties and operations to specify observability and commandability attributes.

Figure 4 :

 4 Figure 4: Testing profile stereotypes

Figure 6 :

 6 Figure 6: Test experiment configuration

UML for Validation: Experimenting automatic test generation for flight software validation

	A. Philippe HYOUNET 1 , B. Jérémie POULY 2
	1: ASTRIUM SAS, 31 rue des cosmonautes 31402 Toulouse Cedex 4
	philippe.hyounet@astrium.eads.net
	Phone : +33 (0)5 62 19 5125
	Fax : +33 (0)5 62 19 71 58
	2: CNES, 18 avenue Edouard Belin 31401 Toulouse Cedex 9
	jeremie.pouly@cnes.fr
	Phone : +33 (0)5 61 28 23 67
	Fax : +33 (0)5 61 27 45 5

Abstract:

UML for validation is a CNES study that aims at prototyping and experimenting automatic test generation technologies in the context of a modelbased approach applied to on-board software development and tests. Starting from real test cases and test procedures taken from state-of-the-art onboard software, we first applied a reverse engineering methodology to obtain an augmented software specification model, i.e. ready to support automated test generation. In parallel, we defined and prototyped a test generation tool using innovative model-based technologies based on EMF (Eclipse Modeling Framework).

 the UML for validation study, we have implemented a model-based process at architectural design phase level. Whenever it was possible we used innovative open source model-based technologies, such as model transformation and code generation. Thus we managed to reduce time and cost for the development of the test generator prototype, while ensuring reuse capability.

	2.1 Actors and relationships
	Implementing model-based engineering
	methodology involves different actors due to the
	numerous skills required. Relationships between
	actors has been identified and illustrated on the
	figure below for integration test phase relative to
	architectural design validation. Similar process
	should be applicable for validation tests phase.
	Analysis model Analysis model Analysis model Analysis model Analysis model Analysis model			Functional Functional Functional
	SPECIFICATION SPECIFICATION SPECIFICATION SPECIFICATION SPECIFICATION SPECIFICATION					Test Test Test	VALIDATION VALIDATION VALIDATION VALIDATION VALIDATION VALIDATION
						TESTS TESTS TESTS TESTS TESTS TESTS
	ARCHITECTURAL DESIGN ARCHITECTURAL DESIGN ARCHITECTURAL DESIGN ARCHITECTURAL DESIGN ARCHITECTURAL DESIGN ARCHITECTURAL DESIGN	Design model Design model Design model	Integration Test Integration Test Integration Test	INTEGRATION TESTS INTEGRATION TESTS INTEGRATION TESTS INTEGRATION TESTS INTEGRATION INTEGRATION TESTS TESTS
		DETAILLED DESIGN DETAILLED DESIGN DETAILLED DESIGN DETAILLED DESIGN DETAILLED DESIGN DETAILLED DESIGN	Implementation model Implementation model Implementation model	Component Test Component Test Component Test	COMPONENT TEST COMPONENT TEST COMPONENT TEST COMPONENT TEST COMPONENT TEST COMPONENT TEST
				CODING CODING CODING CODING CODING CODING	
	Software development team Software development team	Software validation team Software validation team
	Design model Design model Design model			inheritance inheritance	Test model Test model Test model	Expand model Expand model
						For test definition For test definition
				Test Code Generator Test Code Generator Test Code Generator	Integration Tests Integration Integration Integration Tests Tests Tests
						Bench Bench Bench Bench
						IF IF IF IF
	Generator development team Generator development team		Test bench team Test bench team
	Figure 3: Actors involved in UML validation process
	UML validation process involves the following actors:
	• The software development team which
	provides UML design models to test
	(corresponding to Architectural Design
	document) to validation team.
	• The software validation team which
	implements UML test models corresponding
	to test specification document and specifies
	test	code	generator	to	generator
	development team. Then the validation team
	gets the environment to automatically
	generate test procedures and performs them
	on the test bench. • The generator development team which
	implements the test code generator tool
	according validation team specifications.

• The test bench team which implements test bench interface specific code. Note: specifications documents, such as Architectural Design and test Specification, are part of the UML model and will be automatically generated by the UML modeller tool. For the study use case, this part is out of scope and specifications document are used for model implementation. 2.2 Modelling A model-based engineering approach has been applied. The software architecture design model, which substitutes to software specification, has been implemented in UML. Selected test objectives have been added to the UML model using Object Constraint Language. Observability and commandability, involved in OCL constraints, has been specified by adding stereotypes in the UML model. Finally, test procedures have been added using UML activity diagrams.

OCL GEN OCL GEN UML Model UML Model OBSW UML models OCL constraints Opaque exp <pre> <comment> Comments used to add test information </comment> <ocl> (OCL expressions) </ocl> </pre> <post> <comment> Comments used to add test information </comment> <ocl> (OCL ex pr es si ons) </ocl> </post> OCL constraints Opaque exp <pre> <comment> Comments used to add test information </comment> <ocl> (OCL expressions) </ocl> </pre> <post> <comment> Comments used to add test information </comment> <ocl> (OCL ex pr es si ons) </ocl> </post> OCL constraints Opaque exp <pre> <comment> Comments used to add test information </comment> <ocl> (OCL expressions) </ocl> </pre> <post> <comment> Comments used to add test information </comment> <ocl> (OCL ex pr es si ons) </ocl> </post> + ACCELEO ACCELEO Class

 Test procedures were automatically generated from the model. Stubbed bench interface have been produced to integrate OCL model implementation under eclipse native java execution platform.

				3.1 Simops test environment
				Simops test environment is connected to a numerical
				simulation of the equipments and the on-board
				computer. The connection is made of TM/TC
	UML model UML model		Java code Java code	interface and processor emulator services such as read/write of memory symbols. It allows executing
				the real On-Board Software in a representative
	PowerCtrl PowerCtrl	ACCELEO GEN ACCELEO GEN	PowerCtrl.java PowerCtrl.java	configuration.
				Java test procedures, automatically generated under
			PowerCtrlVal.java PowerCtrlVal.java	Topcased tool, have been executed on Simops test
		AC CE LE O GE N AC CE LE O GE N		control environment.
	PowerCtrlVal PowerCtrlVal	OCL GEN OCL GEN	PowerCtrlValOcl.java PowerCtrlValOcl.java	
		SE QU EN CE GE N SE QU EN CE GE N		
			PowerCtrlTestSequence.java PowerCtrlTestSequence.java	
	Figure 11: Test java code architecture	
				Native Tests Execution Native Tests Execution
			Test Development Test Development	
		PC Linux 2.6 PC Linux 2.6		
				JavaSimops 4.5 JavaSimops 4.5	OBSW OBSW OBSW
		Test Execution Test Execution	
				Simops Tests Execution Simops Tests Execution

 UML for validation study demonstrated the feasibility of using automatic test generation to produce test scripts that can be executed in a real onboard software environment. It also allowed benchmarking a new methodology for future validation process, which combines software development and validation teams. A consequent effort should be performed by actors to define and implement the test behaviour model, but the quality relative to the coherence in the test engineery process is improved as all information's are defined in the model. During maintenance phase, the evaluation impact of software modification and corresponding test regression is also improved. The test generator prototype implementation highlight that if OCL is adapted to specify unitary test, its syntax is complex and real type is limited as it not support both floating and double types. Model based methodology is innovative for space applications, which get very specific quality constraints. Applying such process required a robust and high quality model design tool. Topcased demonstrated enough robustness to perform test modelisation on dimensioning models, but an industrial development is mandatory to fulfil space quality standards.

Code

Class Code

Unit

Use case experiment

The experimentation is built on a subset of Pleiades on-board software. It is based on two major equipments:

• Modelling and test code generation have been performed using Topcased software environment toolkit.