Large deformations of Timoshenko and Euler beams under distributed load
Résumé
In this paper, the general equilibrium equations for a geometrically nonlinear version of the Timoshenko beam are derived from the energy functional. The particular case in which the shear and extensional stiffnesses are infinite, which correspond to the inextensible Euler beam model, is studied under a uniformly distributed load. All the global and local minimizers of the variational problem are characterized, and the relative monotonicity and regularity properties are established.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...