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The Lensing Effect a Proof of Large Scale Entanglement in Holographic CFTs for Non-Black Holes Objects

Many experimental works at small scale (photons, electrons, etc.) try to confirm the entanglement, in this work we will show that the Einstein ring could be a such proof of entanglement but at very large scale (cosmic objects), when, due of a QCD operation (Schwinger effect) inside nucleons is infused in quantum a flux of energy (pulse) that corresponds to stress-energy tensor onto attached nucleons as of  n sheeted Riemann surfaces glued to the boundaries (CFT), there producing a strain of space -the lensing effect. This approach is tested on light lensing around objects (Earth). FIG.1 from ref [6] : (a) AdS3 space and CFT2 living on its boundary and (b) a geodesics A  as a holographic screen. With the central charge
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Introduction

I my recent works, see in the following, I found that a Black Holes (BH) could be assimilated with space-time region created at the epoch of EWPT (more QGP), where the inside is filled with quarks open strings, which rotate in equilibrium with an accretion disk, so which don't eat nothing, it look more like SATURN planet with its rings, in rest is a imagination about being a monster! "Stefan Mehedinteanu. More On "What Would Be Inside of M87* to Explain the Event Horizon Telescope (EHT) Results ?". 2019. hal-02263360", (Online) 2349-7882" Now, we know that the light is bended by planets, stars, any structured matter objects etc. that is explained by geodesic of spacetime deformation, since the quarks are confined in thin tubes due of gluonic confinement inside nucleons, they don't radiate bit threads as in case of BH, for that we have also an explanation in entanglement theory, I will present it in this paper.

2.. Universality of Gravity from Entanglement

In the following we realize a compilation of some articles which describe the role of entanglement in the explanation of the "distance effect" mainly in the transfer of stress-energy to the boundary of the objects. Quantum entanglement is a physical phenomenon that occurs when pairs or groups of particles are generated or interact in ways such that the quantum state of each particle cannot be described independently of the others, even when the particles are separated by a large distance-instead, a quantum state must be described for the system as a whole. According to AntiDeSitter/Conformal Field Theory (AdS/CFT) correspondence, gravitational theories on AdS3 space of radius R are dual to (1+1)D CFTs with the central charge ) (c , see Fig. 1 reproduced from ref. [START_REF] Ryu | Holographic Derivation of Entanglement Entropy from AdS/CFT[END_REF]. the Ryu-Takayanagi prescription [START_REF] Ryu | Holographic Derivation of Entanglement Entropy from AdS/CFT[END_REF] for a spherical entangling surface.

Emergence of cosmological Friedmann equations from quantum entanglement

A link between the semiclassical Einstein equation and a maximal vacuum entanglement hypothesis is established [START_REF] Jacobson | Entanglement equilibrium and the Einstein equation[END_REF]. The hypothesis asserts that entanglement entropy in small geodesic balls is maximized at fixed volume in a locally maximally symmetric vacuum state of geometry and quantum fields. A qualitative argument suggests that the Einstein equation implies validity of the hypothesis. A more precise argument shows that, for first-order variations of the local vacuum state of conformal quantum fields, the vacuum entanglement is stationary if and only if the Einstein equation holds. For nonconformal fields, the same conclusion follows modulo a conjecture about the variation of entanglement entropy. The generalized second law (GSL) thus points to a deep link between vacuum entanglement and the Einstein equation [START_REF] Jacobson | Entanglement equilibrium and the Einstein equation[END_REF].

First approach

In [START_REF] Ge | Emergence of cosmological Friedmann equations from quantum entanglement[END_REF], [START_REF] Jacobson | Entanglement equilibrium and the Einstein equation[END_REF] is studied the deep connections between the concepts of quantum information theory and cosmology. Employing Fermi normal coordinates and conformal Fermi coordinates, we follow these works to construct a relation between Friedmann equations of Friedmann-Lemaitre-Robertson-Walker (FLRW) universe and entanglement. Fermi normal coordinates (FNC) are determined by an orthonormal reference frame  Friedmann equations are derived with the first law of entanglement under the assumption that entanglement entropy in a geodesic balls is maximized at fixed volume. More brief, we can expand the spacetime elements as
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x the metric becomes the following equations
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where ikjl F R denotes the projection of the Riemann tensor. This leads a new presentation of the FLRW metric in Fermi normal coordinates (for
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The FNC obtained here can also be evaluated via 00 g . In particular, the spatial components of the Ricci scalar can be easily evaluated as
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The area deficit Let us first consider the FNC system central at the geodesic O in a spacetime of dimension d. The geodesics sending out from O orthogonal to a u forms a (d-1) dimensional spacelike ball  . We assume that l is the radius of the ball. Consider a Fermi normal coordinate system based at O, with the timelike coordinate be 0 ). Note that this condition can be relaxed by considering conformal Fermi coordinates. More briefy, we can expand the spacetime elements as
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on  is given in [START_REF] Ge | Emergence of cosmological Friedmann equations from quantum entanglement[END_REF]. The volume element of  to the second order of the FNC coordinates is given by
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; h the spatial metric ij h on  is expressed in terms of ijkl R -the spatial components of the spacetime Riemann tensor evaluated at o. Then, the area variation at fixed volume satisfies [START_REF] Jacobson | Entanglement equilibrium and the Einstein equation[END_REF] 
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The area deficit can thus also be expressed as
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Then, using the Einstein equation
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, we see that the area deficit is proportional to the energy density,
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For the Friedmann-Robertson-Walker metric, the spatial Ricci scalar is given by ) ( 6 and the conformal isometry for the Minkowski line element were discussed in great detail in [START_REF] Jacobson | Entanglement equilibrium and the Einstein equation[END_REF]. It was derived that the unique conformal isometry preserving the diamond with spherical symmetry is generated by the Killing vector [START_REF] Jacobson | Entanglement equilibrium and the Einstein equation[END_REF]  
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For the at FLRW geometry with line elements
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, we can define a conformal time coordinate
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For general FLRW metric 2 ds at arbitrary space curvature, it takes the form
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The conformal Killing vector then takes the form
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As k = 0, the conformal Killing vector field yields a new form
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For non-conformal matter systems, the entanglement entropy in the causal diamond ) ( D is consisted of two contributions, the UV part and the IR part. If we consider the variation of the geometry and the state of the quantum fields, the total variation of the entanglement entropy is contributed from both the area change induced by 
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, coincides with the variation of Bekenstein's generalized entropy, here interpreted as simply the total entropy in the diamond [START_REF] Jacobson | Entanglement equilibrium and the Einstein equation[END_REF]. Jacobson proposed the maximal vacuum entanglement hypothesis (MVEH) in [START_REF] Jacobson | Entanglement equilibrium and the Einstein equation[END_REF]: when the geometry and quantum fields are simultaneously varied from maximal symmetry, the entanglement entropy in a small geodesic ball is maximal at fixed volume. The MVEH indicates that the above total entropy variation at fixed volume is vanishing at first order. That is to say 0  total S  They in [START_REF] Ge | Emergence of cosmological Friedmann equations from quantum entanglement[END_REF] proceed to derive the Friedmann equations under the MVEH first in the Fermi normal coordinates system and then we turn to conformal normal coordinate

Entanglement and Friedmann equations

In this section, we will make use of the first law of the entanglement
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and derive the Friedmann equation of the universe. Now let us assume the quantum states enclosed by the causal diamond are in thermodynamical equilibrium. Above, it is derived the area variation at fixed volume. This reminds us to take into account the minimal Helmholtz free energy TS E F   at fixed volume in the ordinary thermodynamic system in equilibrium. The vacuum state of the Quantuum Field Theory (QFT) restricted to the diamond can be expressed as a thermal density matrix
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; where K is related to the modular Hamiltonian and T the temperature. Note that for infinite diamond that overlaps with the Rindler wedge in Minskowski space, T is the Unruh temperature
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or Hawking temperature when the acceleration g a  , see ref. [19, 20] cited in [START_REF] Ge | Emergence of cosmological Friedmann equations from quantum entanglement[END_REF]. The modular free energy is given by
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denotes quantum expectation value of the modular Hamiltonian and S represents the von Neumann entropy
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in the causal diamond,  -density matrix as resulted from Gibbs entropy
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the probability of a microstate; W -the number of microstates, and the Boltzmann eq. ) ln(W k S B 

. The variation K F  must vanish due to the minimal Helmholtz free energy principle. This in turn leads to the minimal Helmholtz free energy principle. This in turn leads to

   K S IR     2 (c)
This can be interpreted as the usual Clausius relation for a thermal state. The connections between K and  H were discussed in great detail in [START_REF] Jacobson | Entanglement equilibrium and the Einstein equation[END_REF].

In general K in  above, is not a local operator, and does not generate a geometric flow. For a CFT, however, K is equal to  H , the Hamiltonian generating the flow of the conformal boost Killing vector above. (This result is conformally related to the better-known version that holds for any Poincaré invariant QFT restricted to the Rindler wedge.) That is,  H is given by the integral can be treated as constant, and using the Killing field above is find
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If  were a Killing vector,  H would vanish for all fields invariant under the Killing flow. For matter treated as a fluid, it would not vanish, because the fluid potentials do not share the symmetry of the metric. If  is only a conformal Killing vector,  H does not vanish. In general it receives contributions both from matter and from the gravitational field. If the matter field is not conformal, K is not given by above  H , and we cannot directly use
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from appendix (D2) of [START_REF] Jacobson | Entanglement equilibrium and the Einstein equation[END_REF] , see below. However, suppose that the matter is described by a QFT with a UV fixed point, so it is asymptotically conformal at short distances, and that, in addition to

excitation L l 
, the diamond is much smaller than any length scale in the QFT, QFT L l  Then we conjecture-and we shall assume-that  K  has the form of that from the Appendix (D2) with an additional term X  that is a spacetime scalar,   -sphere, X was first introduced in [START_REF] Jacobson | Entanglement equilibrium and the Einstein equation[END_REF], and see also the comment in [7f] about X  , see below. That it was developed on the base of the next section as from [7d], which could be some scalar operator in the QFT. In what follows we only consider a special case in which d = 4.
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First law of causal diamond mechanics [START_REF] Jacobson | Entanglement equilibrium and the Einstein equation[END_REF] Here, if  is only a conformal Killing vector,  H does not vanish. In general it receives contributions both from matter and from the gravitational field. If the theory is general relativity, and the background solution is Minkowski spacetime, then the gravitational field contribution to  H turns out to be
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(see [START_REF] Jacobson | Entanglement equilibrium and the Einstein equation[END_REF], [START_REF] Hollands | Stability of Black Holes and Black Branes[END_REF]). Since, following [START_REF] Hollands | Stability of Black Holes and Black Branes[END_REF] , the variation of the Lagrangian (L) for vacuum general relativity can be written as d')
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where E = 0 are the field equations and  corresponds to the boundary term that would arise if the variation were performed under an integral sign, namely, see eq.( 17) from [START_REF] Hollands | Stability of Black Holes and Black Branes[END_REF],
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The symplectic current (D -1)-form ω is defined as
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If both perturbations satisfy the linearized equations of motion, then it follows by taking a second, antisymmetrized variation of (d') 
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The symplectic form of the linearized Hamiltonian equations of motion
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is obtained by integrating  over a Cauchy surface  , or as in [START_REF] Jacobson | Entanglement equilibrium and the Einstein equation[END_REF] 
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, where finally as in [START_REF] Jacobson | Entanglement equilibrium and the Einstein equation[END_REF] h
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, inserting this we have

Gl V d H     8 ) 2 (   
; where,  is the surface gravity
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for Planck particle mass results
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The surface gravity 1   is unity for the chosen conformal Killing field, so this yields the result claimed above. Here, is used the Lie derivative of the Minkowski metric along  is
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When combined with the area variation term
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 at fixed volume, [Eq. (a), above]. Moreover, the conformal boost energy of the matter integrated over  is given by the right hand side of [Eq. (a'), above], when 00 T is constant. In this way we see that
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recovers the statement of [Eq. (a'), above], that addition of matter energy to the diamond decreases the area of the boundary at fixed volume, where,  H is the Hamiltonian generating evolution along the flow of  (constructed from the symplectic form evaluated on the Lie derivative of the fields along
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-form, and the variation is to any neighboring solution [START_REF] Iyer | Some properties of Noether charge and a proposal for dynamical black hole entropy[END_REF]. Now suppose that the quantum fields in the causal diamond is in thermodynamic equilibrium and are dominated by the vacuum state.

The total entanglement entropy variation at fixed volume is zero. That is, from (b), (c), (d) and (a), we obtain
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To the first order, we assume the universe is not empty but dominated by some matter and energy. We choose to model the matter and energy in the universe by a perfect fluid. The energy-momentum tensor for a perfect fluid can be written
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where  and p are the energy density and pressure (respectively) as measured in the rest Fermi frame, and  U is the four-velocity of the fluid. The four-velocity is given by )
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. The energy-momentum tensor can be simply expressed as
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We can then recast (e) into the standard Friedmann equation
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But , that is true only for objects like BHs, and as I will show below it is not the case for structured matter of planets, stars etc. as constituted from nucleons when the stress-energy have discrete values in the bulk, see below.

Together with the continuity equation of the perfect fluid
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we obtain another Friedmann equation
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where the dot denotes derivative with respect to F t . Thus, are obtained the Friedmann equations for the FLRW universe by applying the first law of entanglement. In this sense, the emergences of the Friedmann equations can be considered as a consequence of the change in entanglement A S  caused by matter
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. The validity of the derivation is restricted to a small geodesic ball region with radius much smaller than the horizon. To overcome this limitation, in [START_REF] Ge | Emergence of cosmological Friedmann equations from quantum entanglement[END_REF] is explored the conformal Fermi coordinates, which is a generalization of FNC. The authors in ref. [START_REF] Hinterbichler | Symmetron Fields: Screening Long-Range Forces Through Local Symmetry Restoration[END_REF] cited in [START_REF] Faulkner | Gravitation from entanglement in holographic CFTs[END_REF] introduced the conformal Fermi coordinates (CFC) in order to cosmological application. Compared to the FNC, the CFC are valid outside the horizon. Similar to FNC, the CFC are constructed nearby a timelike central geodesic. In the CFC frame, the lowest order CFC metric is at FLRW spacetime. Thus are obtained the Friedmann equations (f), (g) in the CFC frame for flat universe, but in case of 0  K .

An approach for structured matter

In the following we use and follow the model described in [START_REF] Ryu | Holographic Derivation of Entanglement Entropy from AdS/CFT[END_REF], [START_REF] Holzhey | Geometric and Renormalized Entropy in Conformal Field Theory[END_REF].

For theories with entanglement the entropy is computed by the Ryu-Takayanagi formula as  plays the role of a holographic screen for an observer who is only accessible to the subsystem A. They show explicitly this relation in the lowest dimensional case d = 1, where A  is given by a geodesic line in AdS3.

The different approach [START_REF] Holzhey | Geometric and Renormalized Entropy in Conformal Field Theory[END_REF] For the case of a 1+1-dimensional critical system, whose continuum limit is a conformal field theory with central charge c , in [11c] is re-derived the result l c S A log ) 3 (  of Holzhey et al. [START_REF] Holzhey | Geometric and Renormalized Entropy in Conformal Field Theory[END_REF] when A is a finite interval of length l in an infinite system, and extend it to many other cases: finite systems, finite temperatures, and when A consists of an arbitrary number of disjoint intervals. For such a system away from its critical point, when the correlation length  (inverse mass) is large but finite, is shown that
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, where A is the number of boundary points of A [11c]. Thus, in the case of a massive 1+1-dimensional field theory it results a c S  log ) 6 (  from completely general properties of the stress tensor in the relevant geometry, a is the lattice spacing. This is then verified for a free bosonic massive field. So, is rederived
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from [START_REF] Ryu | Holographic Derivation of Entanglement Entropy from AdS/CFT[END_REF], [START_REF] Holzhey | Geometric and Renormalized Entropy in Conformal Field Theory[END_REF]. in a manner which stresses how the entropy arises through coarse graining in real space, without explicit use of mode expansions or modular invariance. The calculation follows ideas of Cardy [START_REF] Hollands | Stability of Black Holes and Black Branes[END_REF] cited in [START_REF] Holzhey | Geometric and Renormalized Entropy in Conformal Field Theory[END_REF].

Path integral formula for the Entanglement Entropy

Consider a lattice quantum theory in one space and one time dimension [11b]. The lattice spacing is a , and the lattice sites are labelled by a discrete variable x . The domain of x can be finite, i.e. some interval of length L, semi-infinite, or infinite. Time is considered to be continuous. A complete set of local commuting observables will be denoted by  
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respectively. For a bosonic lattice field theory, these will be the fundamental bosonic fields of the theory; for a spin model some particular component of the local spin. The dynamics of the theory is described by a timeevolution operator  ˆ. The density matrix  in a thermal state at inverse temperature  is
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is the partition function This may be expressed in the standard way as a (euclidean) path integral: , and is found by setting {φ(x)′′} = {φ(x)′} and integrating over these variables. This has the effect of sewing together the edges along τ = 0 and τ = β to form a cylinder of circumference β. Let A be a subsystem consisting of the points x in the disjoint intervals ) , ( ),..., , (
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. An expression for the reduced density matrix A  may be found by sewing together only those points x which are not in A. This will leave open cuts, one for each interval ) , (

j j v u
, along the line τ = 0. See figure 1 from [START_REF] Calabrese | Entanglement entropy and conformal field theory[END_REF] for a pictorial representation of this. The normalization factor of the partition function ensures that 1  

Tr

, and is found by setting {φ(x)′′} = {φ(x)′} and integrating over these variables. This has the effect of sewing together the edges along τ = 0 and τ = β to form a cylinder of circumference β. We may then compute

n A
Tr , for any positive integer n , by making n copies of the above, labelled by an integer k with 1 ≤ k ≤ n, and sewing them together cyclically along the cuts so that 
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for all x ∈ A. Let us denote the path integral on this n -sheeted structure by
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, where λ are the eigenvalues of A  (which lie in [0, 1),) and since
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, it follows that the left hand side is absolutely convergent and therefore analytic for all Re n > 1. The derivative wrt n therefore also exists and is analytic in the region. Moreover, if the entropy
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is finite, the limit as n → 1+ of the first derivative converges to this value. They conclude that the right hand side of (2.2) above has a unique analytic continuation to Re n > 1 and that its first derivative at n = 1 gives the required entropy:
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as the eq. from [START_REF] Holzhey | Geometric and Renormalized Entropy in Conformal Field Theory[END_REF] if we taking the trace, respectively,
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Figure 2 from [START_REF] Calabrese | Entanglement entropy and conformal field theory[END_REF]. A representation of the Riemann surface 1 , 3

 .

Path integral formulation and Riemann surfaces

So far, everything has been for a discrete space domain. We now discuss the continuum limit, in which a → 0 keeping all other lengths fixed [START_REF] Calabrese | Entanglement entropy and conformal field theory[END_REF]. The points x then assume real values, and the path integral is over fields φ(x, τ) on an n-sheeted Riemann surface, with branch points at j u and j v . In this limit, SE is supposed to go over into the Euclidean action for a quantum field theory.

We indicate these n-sheeted surfaces with

N n,



and they are fully defined by the 2N branch points j u and j v . Whenever the value of n and N is not important, we will simply indicate the surface with  .

In the simplest instances it is possible to directly calculate the partition function on a n-sheeted Riemann surface, but in most of the cases this is very difficult. However, the surface we are dealing with has curvature zero everywhere except at a finite number of points (i.e. the boundaries between A and B j u and j v above). Since the lagrangian density does not depend explicitly on the Riemann surface  as a consequence of its locality, it is expected that the partition function can be expressed as an object calculated from a model on the complex plane C, where the structure of the Riemann surface is implemented through appropriate boundary conditions around the points with non-zero curvature. Consider for instance the simple Riemann surface , τ = 0. We expect that the associated partition function in a theory defined on the complex plane z = x + iτ can be written in terms of certain "fields" at 

         ) , ]( [ exp ] [     x L dxd d Z
essentially defines these fields, i.e. it gives their correlation functions, up to a normalization independent of their positions. However in the model on the complex plane, this definition makes them non-local (see for a complete discussion [START_REF] Cardy | Form factors of branch-point twist fields in quantum integrable models and entanglement entropy[END_REF]). Locality is at the basis of most of the results in field theory, so it is important to recover it. The solution to the problem consists in moving the complicated topology of the world-sheet  (i.e. the space where the coordinates x, τ live) to the target space (i.e. the space where the fields live). Let us consider a model formed by n independent copies of the original model. (Note that n is the number of Riemann sheets necessary to describe the Riemann surface by coordinates on the plane.) The partition function above can be re-written as the path integral on the complex plane

         1 1 )) , ]( [ ... ) , ]( [ ( exp ] ... [ 1 1 v Cu C n n x L x L dxd d d Z       
where with  1 1 v Cu we indicated the restricted path integral with conditions

) 0 , ( ) 0 , ( 1     x x i i   , n i v u x ,..., 1 ], , [ 1 1 
  where we identify n + i ≡ i. The lagrangian density of the multi-copy model is  as in [11c], also see below. (see Fig. 2 for the case T ). More precisely, we have as from [START_REF] Cardy | Form factors of branch-point twist fields in quantum integrable models and entanglement entropy[END_REF], where L coming from the th i copy of L . The generalization to Riemann surfaces with more branch points is straightforward, but will not be needed here. The conformal dimension of branch-point twist fields was calculated in [START_REF] Calabrese | Entanglement entropy and quantum field theory[END_REF]. Consider the model L to be a conformal field theory (CFT). Then also
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1 1 a u  , 2 1 a v  2 , 2 1 2 , 1 , ) 0 , ( ) 0 , ( ) , (   
) (n L is a CFT. There are n fields ) (z T j in ) (n
L that correspond to the stress-energy tensors of the n copies of L , and in particular the sum

   1 ) ( ) ( ) ( j j n z T z T is the stress-energy tensor of ) (n L . The central charge of ) (n L is nc if c is that of L . Consider the stress-energy tensor ) (w T in L .
We can evaluate the one-point function 

          
, see below the continuation.

ENTANGLEMENT ENTROPY IN 2D CONFORMAL FIELD THEORY

Now specialize the discussion of the previous section to the case when the field theory is relativistic and massless, i.e. a conformal field theory (CFT), with central charge c, and initially consider the case of zero temperature [11c]. We show that in this case the ratio of partition functions in (2.2) is the same as the correlation function arising from the insertion of primary scaling operators ) (

j n u  and ) ( j n v   , with scaling dimensions ) 1 1 )( 12 ( 2 2 n c X n n    
, into each of the n (disconnected) sheets. Moreover, this 2N-point correlation function is computable from the Ward identities of CFT.

Single interval

They first consider the case N = 1 and no boundaries, that is the case considered by Holzhey et al. [START_REF] Holzhey | Geometric and Renormalized Entropy in Conformal Field Theory[END_REF] of a single interval of length ℓ in an infinitely long 1d quantum system, at zero temperature. The conformal mapping w → ζ = (w-u)/(w-v) maps the branch points to (0,∞). This is then uniformised by the mapping

n n v w u w z 1 1 )) ( ) ( (       
. This maps the whole of the n-sheeted Riemann surface n  to the z-plane C. Now consider the holomorphic component of the stress tensor T(w). This is related to the transformed stress tensor T(z) by [START_REF] Belavin | Infinite conformal symmetry in two-dimensional quantum field theory[END_REF].

} , { 12 ) ( ) ( ) ( 2 v z c z T dw dz w T   , (2.3) 
where {z,w} is the Schwartzian derivative

2 2 ) 2 3 ( z z z z        
. In particular, taking the expectation value of this, and using 0 ) (  C z T by translational and rotational invariance, we find

2 2 2 2 ) ( ) ( ) ( 24 ) 1 ( 1 ( } , { 12 ) ( v w u w u n c w z c w T n        (2.4)
This is to be compared with the standard form [START_REF] Belavin | Infinite conformal symmetry in two-dimensional quantum field theory[END_REF] of the correlator of T with two primary Operators

) (u n  and ) (v n  
which have the same complex scaling dimensions

) ) 1 ( 1 )( 24 ( 2 n c n n      n n u v u v v w u w v u w T n C n n             2 2 2 2 2 ) ( ) ( ) ( ) ( ) ( ) ( ) ( (2.5) 
where

n   are normalized so that n n u v v u C n n         2 2 ) ( ) ( . Eq. (2.5) is equivalent to the conformal Ward identity [22] C n n n n C n n v u v v w u u w v w u w v u w T ) ( ) ( 1 1 ) ( ) ( ) ( ) ( ) ( 2 2                             (2.6)
In writing the above, we are assuming that w is a complex coordinate on a single sheet C, which is now decoupled from the others. We have therefore shown that

C n n C n n S S v u v u w T e d e w T d w T n E n E n ) ( ) ( ) ( ) ( ) ( ] [ ) ( ] [ ) ( ) ( ) (                  (2.7)
Now consider the effect of an infinitesimal conformal transformation w → w′ = w +α(w) of C which act identically on all the sheets of n  . The effect of this is to insert a factor

w d w T w i dw w T w i C C    ) ( ) ( 2 1 ) ( ) ( 2 1     (2.8)
into the path integral, where the contour C encircles the points u and v. The insertion of T(w) is given by (2.5). Since this is to be inserted on each sheet, the right hand side gets multiplied by a factor n . Since the Ward identity (2.4) determines all the properties under conformal transformations, we conclude that the renormalized

n A n n Tr Z A Z   ) (
behaves (apart from a possible overall constant) under scale and conformal transformations identically to the nth power of two-point function of a primary operator

n  with ) ) 1 ( 1 )( 24 ( 2 n c n n     
. In particular, this means that

) 1 )( 6 ( ) ) ( ( n n c n n A a u v c Tr      (2.9)
where the exponent is just

n n 4
. The power of a (corresponding to the renormalization constant Z) has been inserted so as the make the final result dimensionless, as it should be. The constants n c are not determined by this method. However 1 c must be unity. Applying the formula (2.2') to (2.9) by differentiating with respect to n and setting 1  n , we recover the result of Holzhey et al. [START_REF] Holzhey | Geometric and Renormalized Entropy in Conformal Field Theory[END_REF] 
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,where, a is the UV cut off (or lattice spacing) and we set

u v l  
, and the central charge is

) 3 ( 2 3 N G c   .
In the following we use the w coordinates as in [START_REF] Holzhey | Geometric and Renormalized Entropy in Conformal Field Theory[END_REF], where the system is represented by an annulus restricted to the lower halfplane. The positive real axis is the subsystem where observations are made, and the negative real axis is the rest of the universe. Forming the density matrix of the accessible subsystem we trace over variables on the negative real axis. Then the density matrix is given by a functional integral over fields over the whole annulus, with the indices X and X  of

X X 
 specifying fields on the lower and upper side of the positive real axis. As before we use the replica trick as in (2.2')) above

) ( ln ) 1 ( 1 n Z dn d n S n   where n tr n Z   ) (
is the partition function of an annulus covered n times. Extending n analytically to be slightly less than 1, we can interpret By dimensional analysis Z ln depends only on the ratio of the two radii, so we can choose to rescale only the outer radius twice as much and keep the inner one fixed. This is implemented by the rescaling

    x x x ) 2 1 (    
, in the limit where not only  but also 1 R is treated as small, i.e. we squeeze the inner boundary to a conical singularity. Using conformal invariance of the path integral measure and the definition of the energy momentum tensor as the generator of coordinate transformations it is easy to show [START_REF] Holzhey | Geometric and Renormalized Entropy in Conformal Field Theory[END_REF]  
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We find it illuminating to proceed slightly differently, writing
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, where were introduced complex coordinates. Performing the surface integral we are to integrate over the outer surface only. The expectation value of ) (w T on a cone with angular circumference n  2 is easily found by mapping to the cone with 1  n which is simply a disc. We map n y w  and impose 0 ) (    y T on the disc. This is appropriate to our problem, since the primary object of study is the geometric entropy relative to the ground state on the disc. Using the standard transformation formula for a conformal field theory with central charge c , [START_REF] Holzhey | Geometric and Renormalized Entropy in Conformal Field Theory[END_REF], [11(a,b,c)], see eq. (2.12) from [START_REF] Belavin | Infinite conformal symmetry in two-dimensional quantum field theory[END_REF] );
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(2.12) they find
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Inserting this in (2.11) , we find 

n n c c r d T    2 ) 1 1 ( 24 2 2       (2.13) which we insert in (2.10) to find ) 2 ( 12 ) 1 ( 12 0 )) 1 ( 12 ( ) ( ) 1 12 ( 2 2 
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Notice that in this procedure a finite  -independent term cannot be excluded. In this derivation the conformal anomaly plays a crucial role. Formally, and classically, the trace of the energymomentum tensor vanishes as a consequence of conformal invariance; but the necessity of regulating the quantum theory brings in the correction term c .

Another Approach: Entanglement Entropy from Weyl Anomaly

Central charges in CFTs can be defined from the Weyl anomaly (or conformal anomaly)     T [6]. Define the energy-momentum tensor  T in terms of the functional derivative of the (quantum corrected) action S with respect to the metric  g .

We can compute

n n n A A Z Z tr ) ( 1   (k)
from the partition function n Z on the n-sheeted d + 1 dimensional manifold n M as in the 2D case [START_REF] Ryu | Holographic Derivation of Entanglement Entropy from AdS/CFT[END_REF], and [11c]. Define the energy-momentum tensor  T in terms of the functional derivative of the (quantum corrected) action S with respect to the metric  g

     S g T 4 
In 2D CFTs, the Weyl anomaly is given by the well-known formula

     12 c T   (l)
where R is the scalar curvature. We can regard this as a definition of the central charge c in 2D CFTs.

Where

l is the length of the subsystem A . We thus reproduce the known result below.

a l c S A log 3  (r)
where a is the UV cut off (or lattice spacing) and we set

u v l  
. When we are away from a critical point, the logarithmic scaling law Eq. (r) does not persist for

  l
, where  is the correlation length (inverse of the mass gap). For large

) (   l
, the entanglement entropy saturates to a finite value [START_REF] Ryu | Holographic Derivation of Entanglement Entropy from AdS/CFT[END_REF], [11c].

a c S A  log 6   (s)
where A is the number of boundary points ) (n that separate A from its complement. Thus, unlike critical (1+1)D systems, the area law holds for the massive case.

To compute the entanglement entropy, we first consider the partition function n Z on the 1  d dimensional n -sheeted manifold n M . Then we find the trace of n  reduced to the subsystem A is given by the formula (k). The entanglement entropy can be found by taking the derivative of n with the 1  n limit. If we define the length scale of the manifold A by l , then the scaling of l is related to the Weyl scaling [START_REF] Ryu | Holographic Derivation of Entanglement Entropy from AdS/CFT[END_REF]. They should be the same at least in the 1  n limit. In this way we find similarly with (2.1)
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, the second term (i.e. integral on

1 1     d M M
) become obviously vanishing. Below we omit writing the second term explicitly just to make the appearance of expressions simple even if M is a curved manifold. Then the entanglement entropy satisfies
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Eq. (m) can be used to relate the entanglement entropy and central charge in a direct fashion. It is also possible to derive (s) from (n) We will call eq. (u) as Ryu-Takayanagi formula eq. (4.26) from [ [START_REF] Ryu | Holographic Derivation of Entanglement Entropy from AdS/CFT[END_REF] Similarly, but to account for the above "boundary points", we have as follow: we accounts of stress tensors integral by multiplying by a factor 

2 1
corresponding to the conventional normalization of the stress tensor [11c ],
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we have from eq. (u'):
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, where
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, and

3 2 C j n bulk c T n n t RiemanShee      ; Tensor energy stress nucleon V T j        
; see below.

Magnetic field generation at the Confinement mechanism

At present, we have no analytic proof of the existence of the condensate of abelian magnetic monopoles in gluodynamics and in chromodynamics. However, there are two large gaps between QCD and the dual-superconductor picture [START_REF] Grasso | Potential s in the Early Universe[END_REF].

1. The dual-superconductor picture is based on the Abelian gauge theory subject to the Maxwell type equations, while QCD is a non-Abelian gauge theory.

2. The dual-superconductor picture requires color-magnetic monopole condensation as the key concept, while QCD does not have such a monopole as the elementary degrees of freedom.

In [START_REF] Suzuki | The dual Meissner effect in SU(2) Landau gauge[END_REF] is found another confinement mechanism. In this note, where is sown that the dual Meissner effect in an Abelian sense works good even when monopoles do not exist, performing Monte-Carlo simulations of quenched SU(2) QCD with Landau gauge fixing. Instead of monopoles, time-dependent Abelian magnetic fields regarded as magnetic displacement currents are squeezing Abelian electric fields. The dual Meissner effect leads us to the dual London equation and the mass generation of the Abelian electric fields which suggests the existence of a dimension 2 gluon condensate. The present numerical results, hence, suggest the Abelian dual Meissner effect is the real universal mechanism of color confinement which has been sought for many years. Moreover the relation of the Abelian dual Meissner effect with the dimension 2 gluon condensate sheds new light on the importance of the gluon condensate, cited [START_REF] Hollands | Stability of Black Holes and Black Branes[END_REF][START_REF] Iyer | Some properties of Noether charge and a proposal for dynamical black hole entropy[END_REF][START_REF] Hotta | Quantum Energy Teleportation: An Introductory Review[END_REF][START_REF] Guth | [END_REF][START_REF] Hinterbichler | Symmetron Fields: Screening Long-Range Forces Through Local Symmetry Restoration[END_REF]. Hence, the Abelian fields satisfy kinematically the simple Abelian Bianchi identity

a A a A B E    4     0    a A B   (15) 
The dual Meissner effect says that the squeezing of the electric flux occurs due to cancellation of the Coulombic electric fields and those from solenoidal magnetic currents. Now what happens in a smooth gauge like the Landau gauge where monopoles do not exist? From Eq.( 15), only

A B  4 
regarded as a magnetic displacement current could play the role of the solenoidal current. It is very interesting to see Fig. 4 from [START_REF] Suzuki | The dual Meissner effect in SU(2) Landau gauge[END_REF], in which this happens actually in Landau gauge. Note that the solenoidal current has a direction squeezing the Coulombic electric field. Let us see also the detailed distributions shown in Fig. 5 In comparison, we show the case of MA gauge also in Fig. 5 of [START_REF] Suzuki | The dual Meissner effect in SU(2) Landau gauge[END_REF]. Now they have shown that the magnetic displacement currents are important in the dual Meissner effect when there are no monopoles. Then how can we understand the origin of the dualMeissner effect without monopoles?. The Abelian dualMeissner effect indicates the massiveness of the Abelian electric field as an asymptotic field.

DIMENSION 2 GLUON CONDENSATE

Now in [START_REF] Suzuki | The dual Meissner effect in SU(2) Landau gauge[END_REF] is shown that the magnetic displacement currents are important in the dual Meissner effect when there are no monopoles. Then how can we understand the origin of the dualMeissner effect without monopoles? The Abelian dualMeissner effect indicates the massiveness of the Abelian electric field as an asymptotic field:

0 ) ( 2 2    A E m   (16) 
This leads us to a dual London equation which is a key to the dual Meissner effect. Let us evaluate the curl of the magnetic displacement current. Using Eq.( 15), we get 16), we get the dual London equation:
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Neglecting gauge-fixing and Fadeev-Popov terms, we have equations of motion 0  
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we see asymptotically that the electric fields become massive 0

) ( 2 2    a k E m  with 2 2 2 8 v g m 
as in [START_REF] Arriola | Landau-gauge condensates from the quark propagator on the lattice[END_REF]. Now the Abelian electric field is also massive asymptotically 0 ) ( 

From eq. (u') above we have an expression in terms of glued Riemann sheets n , that results from eq. ( 20)
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] [ 1878 m H 
, which corresponds with the above value of ] [ 1740 m H  . In the case of a homogeneous potential directed along the z-axis [START_REF] Grasso | Potential s in the Early Universe[END_REF] eq. (2.2), the Einstein stress-energy tensor is:
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, at Compton length equally with the penetration length 
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Now, the rate per unit volume of quarks pair creation is given by using the Schwinger effect R inside the nucleon or EW bubbles, when this electric field E is induced by ; the mass of quarks.

The strain at Earth surface Strain Model

From [START_REF] Ford | CLASSICAL SCALAR FIELDS AND THE GENERALIZED SECOND LAW[END_REF] we have:

kv e 1     ; M 4 1    ;    r t v ; r M C 2 1  ; and     dr C r 1 ; 2 , 2 r M C
r  We will assume that ) (v T vv represents ingoing radiation which changes the black hole's mass by only a small fractional amount, M M  

. We can then take κ to be constant to lowest order. If we change the independent variable from λ to v = t + r * , then ; if we have the generation eq. ( 22) , 

Conclusions

In this work are confirmed the following models: -author' model of electromagnetic fields in nucleon, -the origin of the gravitational potential, -the Schwinger effect to create particles inside nucleons, -the holographic derivation of entanglement for structured matter objects, -the origin of the deformation of the horizon for structured matter objects, -the lensing effect due of magnetic flux passing the hologram-CFT.
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e

  is the timelike unit vector that is 3 tangent to the central geodesic O. The point    F x P is found by first following O for a proper time  and following a certain orthogonal geodesic at a proper distance  .

F.

  Assume the radius of the ball is much smaller than the local curvature length (i.e.

  The past and future development of the region enclosed by a diamond is the domain of dependence of a spherical region and the space of all ) 2 (  d -spheres is the same as the space of all causal diamonds.See FIG.1from[START_REF] Jacobson | Entanglement equilibrium and the Einstein equation[END_REF]. Causal diamond, in a maximally symmetric spacetime, for a geodesic ball  of radius l with center O and boundary   . The dashed curves are flow lines of  , the conformal Killing vector field, whose flow preserves the diamond and which vanishes at the top and bottom vertices and on   . The vectors show  at four points of  . Also, see the correspondence Figure from[START_REF] Faulkner | Gravitation from entanglement in holographic CFTs[END_REF].

Figure 1 .

 1 Figure 1. from [7] Causal development D (left) of a ball-shaped region B on a spatial slice of Minkowski space, showing the evolution generated by B H . A conformal transformation maps D to a hyperbolic cylinder time H d  1

  total entropy variation can be written as



  If the quantum field state is varied away from the vacuum, with an excitation length scale much longer than the diamond size,



  is the change in the energy density in comparison to the vacuum state and X

  the d + 2 dimensional Newton constant. Intuitively, this suggests that the minimal surface A

L

  the euclidean lagrangian. The normalization factor of the partition function ensures that 1   Tr

1

 1 

1 , n 

 1n needed for the calculation of the entanglement entropy of a single interval ] sheets sequentially joined to each other on the segment x ∈

  The partition function (here L[ϕ](x, τ) is the local lagrangian density)

  ) ), the integral on the right hand side is evaluated as similar to Zamolodchikov's c-theorem[11a,b]. We thus recover (s)

4  and Az B 4 

 44 from [31]. The other components of the magnetic displacement current Ar B are not vanishing but they are much suppressed 20 consistently with Fig.2 from [31].

.

  Applying D operator to the Bianchi identity and using the Jacobi identity and the equations of motion, we get

.

  Hence the dual London equation (17) is obtained.Most estimates in the literature refer to the gluon mass, related to the

21

 21 

  Hubble constant is defined as, see eq.(3.20,3.21,3.22) from[START_REF] Grasso | Potential s in the Early Universe[END_REF].

  by use of the Compton length as:

  charge e , mass m , Compton wave-length mc C  and so-called "critical" electric field

 2  2 

 22 For spherically symmetric pulses, the shear and vorticity vanish, and the Raychaudhuri equation, Eq. (36) from [36]be the initial area of the black hole in the distant past, where 0 M is its initial mass, then we have In this approximation, the change in the mass of the black hole is the result obtained by calculating the change in mass directly from Eq. (23) as Here, it was defined an "effective magnetic field", effB , in terms of the total energy density in the magnetic field of MF Vortex, Since the quarks generated inside nucleons or in EW bubbles are generated by a pulsating process , or, we have obtained the classical formula for deformation. The build of spacetime is obtained by using well-known Inflation models [34a,b], which in our opinion is nothing else than a spreading of entanglement-energy source-horizon end, where the scale leaving the horizon at a given epoch is directly related to the number ) (Nof e -folds of slow-roll inflation that occur after the epoch of horizon exit. Indeed, since H -the Hubble length is slowly varying, we have scale leaving the horizon at the end slow-roll inflation, or usually ]

  that the energy density is the sum of the energy densities of the n individual copies.

	Hence the expression of  Z does indeed define local fields at	( 1 u	) 0 ,	and	( 1 v	) 0 ,	in the multi-
	copy model [23]. Notice that n  ~ can be identified with	n  (and in fact they were called 		

n  and n 

  . In other words the pulse is transferred from nucleons via electromagnetic field as glued Riemann sheets to CFT viewed as a hologram, that it means the greater contribution to expansion.

	To note, that the gravitational potential for Earth is	U		Earth 2 GM R Earth		6 . 3 	10	32	J	; the stress-
	energy tensor is:	T	j	 		U	44 . 1	10 	8 		n	nucleons		2 . 4	10 	12 	J	;
	n		M	10	27 		6		10	51						
	nucleons		Earth															
	1 or the expansion due of EW epoch since continue till ) (   vol V V R ; where ] , ] [ 10  1  10 1 [  14 v   10  s 10 8 . 3 . 6   4 . 4 3 m A     6   0 . 1 3 C    A A 10 10    So, the deformation is 10 2 57    V V R vol ] [ 10 5 . 1 15 s    ; v today since 8 . 6   , that corresponds with well known Einstein ring, A here ] [ 10 5 . 6 6 1 m R H A      .

v e 