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Summary Statement: Parasite-host interactions were experimentally assessed in a wild 9 

population of Columbian ground squirrels. Short-term physiological influences were minimal, 10 

suggesting evolutionary cost minimization parasites and hosts. 11 

Abstract:  12 

Parasites affect many aspects of host physiology and behavior, and thus are generally thought 13 

to negatively impact host fitness. However, changes in form of short-term parasite effects on 14 

host physiological markers have generally been overlooked in favor of larger fitness measures. 15 

Here we studied flea (Oropsylla idahoensis and Oropsylla opisocroistis tuberculata) parasitism 16 

on a natural population of Columbian ground squirrels (Urocitellus columbianus; CGS) in Sheep 17 

River Provincial Park, Alberta. Fleas were experimentally added to adult female CGS at 18 

physiologically demanding times, including birth, lactation, and weaning of their young. The 19 

body mass of adult females, as well as their oxidative stress and immunity were recorded 20 

multiple times over the CGS active season under flea-augmented and control conditions. We 21 

also measured the prevalence of an internal parasite (Trypanosoma otospermophili). Doubly 22 

labelled water (DLW) was interperitoneally injected at peak lactation to examine energy 23 

expenditure. Effects of parasites on oxidative stress were only observed after offspring were 24 

weaned. There was no direct effect of experimentally heightened flea prevalence on energy 25 

use. A short-term 24 h mass loss (-17 g) was detected briefly after parasite addition, likely due 26 
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to CGS preferentially allocating time for grooming. Our parasite augmentation did not strongly 27 

affect hosts and suggested that short-term physiological effects were unlikely to culminate in 28 

long term fitness consequences. Columbian ground squirrels appear to rapidly manage parasite 29 

costs, probably through grooming. 30 

KEY WORDS: parasitism, immune cost, Columbian ground squirrel, flea, energy expenditure, 31 

oxidative stress 32 

 33 

Introduction 34 

The resources that parasites extract from their hosts are often thought to produce 35 

negative effects on host fitness (Møller et al., 1994; Delahay et al., 1995; Careau et al., 2010). 36 

Parasitism can induce direct costs through sapping resources from their hosts (Nelson et al., 37 

1975) and indirect costs through changes in behavioral activity (Giorgi et al., 2001; Scantlebury 38 

et al., 2007), acting as pathogen vectors (Smith et al., 2005), or modifying physiological 39 

tradeoffs (Bertrand et al., 2006b; Sorci et al., 2017). These host-parasite links are illustrated by 40 

eastern grey kangaroos selectively foraging away from better quality, but faecally-41 

contaminated grass patches (Garnick et al., 2010) or male grey squirrels suffering from higher 42 

flea parasitization in exchange for larger testes (Scantlebury et al., 2010). As a result, parasites, 43 

when numerous, have the potential to generate a high resource toll on their hosts (Khokhlova 44 

et al., 2002; Krasnov, 2008). For example, when feral rock dove had lice levels experimentally 45 

increased, they steadily lost feather and body mass resulting in compromised integument 46 

insulation (increased thermal conductance) and increased metabolic rate (Booth et al., 1993).   47 

It is often difficult to distinguish direct resource loss to the parasite from the costs of 48 

anti-parasite defense or environmental effects (Bonneaud et al., 2003), such as effects of 49 

temperature extremes (Cohen et al., 2017) on energetics. Additionally, it is hard to discern 50 

whether parasites are the cause of poor host health and body condition or the result of it 51 

(Boonstra et al., 1980). Thus, it is useful to examine parasite effects through controlled 52 

experimental manipulation (Keymer & Read, 1991) to directly address these questions. Such 53 
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research has been conducted in laboratory studies that often fail to account for natural host-54 

parasite dynamics such as the “80:20 rule”, an aggregated negative binomial distribution where 55 

a few hosts (20%) harbor the majority of parasites (80%) in a population (Galvani, 2003; Poulin, 56 

2004; Craig et al., 2007). This underlines the parasite preference for hosts in terms of age, sex, 57 

and time of season (Dick & Patterson, 2007; Liberman et al., 2011), which are often overlooked 58 

and indicate the value of further field studies.  59 

These factors, coupled with experimental studies that frequently focus on long-term 60 

fitness costs, may explain findings of muted parasite effects in wild (Khokhlova et al., 2002) 61 

studies compared to laboratory tests. An alternative research design might quantify more 62 

subtle short-term physiological modifications while preserving natural features of wild 63 

conditions. Emphasis on short-term effects on physiological changes serves two purposes. 64 

Firstly, short-term physiological shifts should be more detectable and directly quantifiable than 65 

multi-faceted fitness outcomes. Secondly, collection of these chronically sustained short-term 66 

effects may allow improved interpretation of potential long-term costs.  67 

In this study, we experimentally tested the effects of ectoparasitic fleas (Oropsylla 68 

idahoensis and Oropsylla opisocroistis tuberculata) on a wild population of adult female 69 

Columbian ground squirrels (Urocitellus columbianus; CGS). We subjected a group of Columbian 70 

ground squirrels to an experimental increase in their natural flea loads and compared their 71 

physiological responses to a group of ground squirrels where flea loads were left unchanged. 72 

Columbian ground squirrels are hibernating sciurid rodents with a 3-4 month annual active 73 

season, during which reproduction takes place (Dobson et al., 1992). Parental care is restricted 74 

to the highly territorial mothers during the 24 days of gestation, 27 days of lactation and a short 75 

period after weaning (Murie & Harris, 1982). This species is naturally parasitized by both ecto- 76 

(ticks, mites, botflies) and endo-parasites (helminths, coccidia, trypanosomes). The most visible 77 

of these are fleas (Raveh et al., 2011, 2015) that seem to follow the aggregated 80:20 78 

distribution. Since fleas are often localized to individual hosts and burrows, natural parasite 79 

dispersal is low, thus allowing enhanced isolation of parasite effects on hosts. As such, breeding 80 

female CGS are an ideal model system to reveal parasite costs because of the lack of 81 
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confounding factors such as parasite transfer or dispersal (Krasnov et al., 2003b; Hawlena et al., 82 

2005). 83 

Prior studies on parasite effects in CGS have resulted in variable outcomes (little to no 84 

effect: Raveh et al., 2011, 2015; negative effect: Neuhaus, 2003). These studies applied 85 

experimental reductions of fleas, in a species that naturally has relatively low levels of 86 

infestation, to assess fitness consequences on individuals. Such detection of parasite effects 87 

may have been limited by the natural parasite distribution when using the approach of parasite 88 

removal in lightly infested populations. Parasite costs might only be relevant when present in in 89 

resource-deficient hosts. Co-evolution of host-parasite interactions might be favored by natural 90 

selection when they minimize negative effects of the parasite on the host (Hinnebusch et al., 91 

2017). In these cases, lowering levels of parasites are unlikely to show strong effects on fitness. 92 

Adding parasites to wild hosts provides an improvement over previous tests of ectoparasite 93 

effects reported in the literature (Booth et al., 1993; Warburton et al., 2016), because treated 94 

hosts should be more likely to reveal parasite consequences due to exacerbated costs.  95 

Our approach to understanding host-parasite dynamics thus has two novel features: 96 

augmentation of fleas that is more likely to reveal costs, and physiological measures that can 97 

reveal such costs. Short-term parasite effects on physiological metrics were assessed during 98 

energetically-constrained time-points, such as lactation (Rogowitz, 1998; Naya et al., 2008), to 99 

augment visibility of costs through a higher energy budget (Metcalfe et al., 2013). In particular, 100 

we expected that CGS would employ behavioral and immune defenses against flea-induced 101 

stress. Since fleas can serve as a vector for pathogens (Durden & Hinkle, 2019) such as the 102 

blood parasite Trypanosoma otospermophili (Freedman, 1964; Lizundia et al., 2011), 103 

trypanosome levels might also increase in the flea-treated group. We expected higher 104 

trypanosome prevalence to lead to stimulation of nitric oxide (NO), which has been shown to 105 

elevate in response to trypanosome infections (Vespa et al., 1994). By doing so, parasite 106 

infestation would be positively correlated with energy use (Kam et al., 2011) and subsequently 107 

enhanced oxidative stress due to a non-specific innate immune response (Plumel et al., 2016; 108 

Bertrand et al., 2006a). A difference in the dynamics of mass, oxidative stress, immunity and 109 
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energetic demand of heavily infested individuals would provide evidence supporting a short-110 

term physiological consequence of parasites in CGS.  111 

 112 

Methods 113 

Ethics statement 114 

Animal care was carried out in accordance with Auburn University IACUC protocol 115 

#2018-3227 (with additional approval by the University of Calgary). Authorization for 116 

conducting research and collecting samples in Sheep River Provincial Park was obtained from 117 

Alberta Environment and Parks (Research Permit #58954) and Alberta Tourism, Parks, and 118 

Recreation (Research and Collection Permit #18-448). 119 

Population monitoring 120 

Columbian ground squirrels (CGS) were followed in the Sheep River Provincial Park, 121 

Alberta, Canada (Meadow B; 50°38’11.3” N, 114°39’56.7” W; 1550 m elevation) from April to 122 

August 2018. The entire CGS population at Meadow B has been continuously monitored since 123 

1992 (Wiggett & Boag, 1986; Viblanc et al., 2010; Rubach et al., 2016), from the onset of 124 

emergence from hibernation in late April, to the end of offspring weaning in early July. Female 125 

CGS have a short active season and a single reproductive period each year (Dobson et al., 126 

1992). Each squirrel in this population is permanently identified with unique numbered 127 

fingerling eartags (#1-Monel metal; National Band and Tag Company, Newport, KY, USA), and is 128 

given a unique hair dye marking (Clairol, Stamford, CT, USA) at the start of the season so it can 129 

be identified from a distance during field observations. We followed all reproductive females 130 

(n=31) to determine their mating day from behavioral observations and inspection of their 131 

genitalia (Murie & Harris, 1982). CGS were trapped using Tomahawk live traps (13x13x40 cm; 132 

Tomahawk, WI, USA) baited with a small amount of peanut butter. Some of the females (n=5) 133 

either disappeared during the breeding season or were not re-captured and were thus excluded 134 

from analyses. 135 

Experimental manipulation of fleas 136 
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We experimentally increased ectoparasite loads on 16 females (Treatment group, T) and 137 

compared them to 15 control females (Control group, C, see below). At the start of the 138 

experiment we ascertained CGS body condition and then randomly assigned females of similar 139 

condition and ages to both C- and T-groups. Body condition was estimated by regressing 140 

individual body mass on zygomatic arch breadth (an index of structural size; Dobson, 1992). 141 

Fleas were collected from squirrels at a neighboring meadow less than 400 m away from the 142 

study site (50°38’19.7” N, 114°39’47.1” W) by brushing individuals with a fine-tooth flea comb 143 

(Four Paws, Hauppauge, NY, USA) into an aerated plastic container and transferring the fleas on 144 

the same day to experimental subjects. Due to the need for the same-day transfer to new 145 

hosts, fleas were not identified to species or sex, and were assumed to belong to one of the 146 

two common species found in prior studies (Hubbard, 1947; Hilton & Mahrt, 1971). Prior to flea 147 

addition, each squirrel was carefully combed on all sides of the body including the head to 148 

assess initial natural flea numbers. After counting, all initially present fleas were returned to 149 

their host. 150 

An average of 20 fleas were added to each experimental subject at each time-point, in 151 

addition to their inherent number of parasites (see Results). Fleas were added at 3 separate 152 

time-points during the season: gestation (T1), at lactation onset (T2) and at peak lactation (T3) 153 

prior to weaning. These time-points were chosen because they represented important 154 

transitions in the breeding cycle and likely exhibited elevated physiological demands. 155 

Additionally, they coincided with other manipulations of the long-term study, hence reducing 156 

animal handling and stress. We re-captured all non-hibernating females at a 4th time-point (T4; 157 

roughly a week before the onset of hibernation), but did not re-infest any animals, as a negative 158 

control. Fleas were deposited on the ventral side of the restrained animal and rubbed into the 159 

fur. We insured all fleas had entered the animal’s pelage before releasing it.  The control group 160 

had their pelage rubbed in a similar manner to simulate flea addition, but with no change in 161 

number of natural fleas. 162 

Trypanosomes  163 
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We assayed presence of Trypanosoma otospermophili through collection of 100 μl of 164 

whole blood in capillary tubes. After collection, we centrifuged those capillary tubes at 5,000 g 165 

for 10 min to apply quantitative buffy coat methodology. Centrifugation of whole blood serves 166 

to concentrate trypanosomes in the buffy coat of the solute and enhance parasite detection 167 

(Sato et al., 2007). Five μl of the buffy coat was spread on a glass slide into a thin smear and 168 

Wright-Giesma stained (Shandon Kwik-Diff stain, Thermo Fisher Scientific, Waltham, MA, USA), 169 

followed by count estimates of trypanosomes. 170 

Behavior 171 

After flea addition, we released squirrels at the place of initial capture. We then visually 172 

observed control and treated squirrel behavior for 15 minutes to gauge how differentially 173 

parasitized squirrels allocated their time-budget to body maintenance. We recorded the 174 

number of seconds spent self-grooming.  175 

Oxidative status and innate immunity 176 

Individual oxidative stress levels and innate immunity were estimated during T1, T2, T3 177 

and T4. Blood (0.5 mL) was collected from the saphenous vein using a 27-G needle fitted to a 1 178 

mL heparinized syringe. We kept blood on ice packs in a cooler box while in the field. After 179 

centrifugation (5,000 g for 10 min) within 1–2 hrs of collection, plasma was separated and kept 180 

frozen at −20°C until the end of the field season, before transportation on dry ice and 181 

subsequent frozen storage at −80°C until laboratory analyses.  182 

We assessed female oxidative status in plasma by global measures of oxidative damage 183 

(d-ROMs test; 8 μl of plasma) and antioxidant defenses (OXY-absorbent test; 5 μl of 1:100 184 

diluted plasma) (Diacron International, Grosseto, Italy) (see Costantini, 2011; Costantini, 2016; 185 

Viblanc et al. 2018 for details). In addition, we measured nitric oxide (NO) in plasma 186 

(Diazotization assay; 10 ul plasma; see Bourgeon et al. 2007 for details) as a reflection of 187 

macrophage activation by intracellular pathogens (Playfair & Bancroft, 2004). ROM and OXY 188 

sample measurements were run in duplicate and NO was run once per sample. Intra-plate 189 

variation was 5.15% for ROMs, 12.1% for OXY. Inter-plate variation based on a standard sample 190 

repeated over plates was 2.74% for ROMs, 8.61% for OXY, and 1.51% for NO. 191 
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Estimation of total daily energy expenditure (DEE):  192 

Field protocol: Daily energy expenditure for treated and control females was determined 193 

only during peak lactation (day 25; T3), when reproductive demands on females were expected 194 

to be the highest. DEE was estimated using the doubly labeled water (DLW) technique, as 195 

extensively described elsewhere (Kenagy et al., 1990; Rimbach et al., 2018), including in CGS 196 

(Skibiel et al., 2013). Briefly, females were weighed (to the nearest 5 g using a spring scale; 1 kg, 197 

Pesola Ag, Baar, Switzerland) and a first blood draw (100 μL) was collected from the saphenous 198 

vein using a 30-G needle in two 100 µl non-heparinized capillary tubes to establish background 199 

levels of 18O and 2H. Capillaries were immediately sealed with a micro-jet flame and stored at 200 

room temperature until analyses (within 3 months). Squirrels were then injected intra-201 

peritoneally with a premixed 5 g/kg dose of DLW (10% H218O and 99.9% 2H2O, Cambridge 202 

Isotopic Laboratories, Cambridge, MA, USA). After injection, females (n = 26) were held in traps 203 

in a quiet, shaded location and covered with a dark cotton pillowcase for 75 min to allow for 204 

isotope equilibration (Król & Speakman, 1999; Simmen et al., 2010; Skibiel et al., 2013). 205 

Following the equilibration period, another blood sample was drawn (n=26), fleas were added 206 

to the experimental animals, and the subjects were released. As part of the DLW test, a 207 

subsequent blood sample and weight measurement was taken at 24 h and 72 h post-208 

enrichment (n=26) to estimate isotope elimination rates (Speakman & Racey, 1987). During the 209 

DLW experiment, we recorded the average ambient temperature (TA) experienced by 210 

individuals to control for potential thermoregulatory effects on metabolic rate. We used 211 

thermo-loggering iButtons (DS1921G, Maxim Integrated, San Jose, CA, USA), which recorded TA 212 

with 15 min intervals over the course of the experiment. iButtons were centrally located in the 213 

colony, attached to the bases of elevated observation benches, with the iButtons one meter 214 

above ground level. 215 

Isotope analyses: Sealed capillary tubes were vacuum distilled for 10 mins and the 216 

resulting water distillate analyzed by a continuous flow isotope ratio mass spectrometer (IRMS; 217 

IRMS-DELTA V PLUS, Thermo, Bremen, Germany) as described previously (Chery et al., 2015; 218 

Mahlert et al., 2018). Distillates were pyrolyzed at 1400°C into H2 and CO2 gases in a glassy 219 

carbon tube under pure He flow at 90 mL min-1. H2 and CO2 were separated at 110°C on a 220 
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molecular sieve GC column before sequential analysis in IRMS. Results were normalized using 221 

the VSMOW2/SLAP2 international scale. In addition, memory-effect and drift-corrections were 222 

applied as needed. All analyses were performed in quadruplet and samples were re-analyzed if 223 

SD exceeded 2% for 2H or 0.2% for 18O in more than three out of the four analyses. We 224 

calculated the total body water (TBW) from the 18O dilution space divided by 1.007 to correct 225 

for in vivo isotopic exchange (Racette et al., 1994). The average isotope dilution space ratio was 226 

1.029 ± 0.016 (mean ± SD). We calculated the CO2 production rate from the single pool model 227 

as recommended for the body size of CGS (Speakman, 1993; Speakman & Hambly, 2016). We 228 

converted CO2 production into DEE using a modification of Weir’s equation and an assumed 229 

food quotient of 0.85 based on the prior literature involving CGS and DLW (Skibiel et al., 2013; 230 

Speakman, J. R., University of Aberdeen, personal communication). For 6 animals, we observed 231 

either capillary leakage or incomplete DLW equilibration occurring within the standardized 232 

equilibration period, thus prompting their removal from subsequent analyses. 233 

Statistical Analysis 234 

All statistics were done in R 3.5.1 (R Core Team, 2018; https://www.R-project.org). We 235 

proceeded in a 3-step analysis. First, we assessed the efficiency of our treatment by comparing 236 

the initial and final parasite loads of our control and treated individuals at each time-point of 237 

infestation. For this, we used either linear or generalized linear mixed effects model (LMM and 238 

GLMM; lme4 package in R; Bates et al., 2015) with initial or final (initial + additional fleas) 239 

parasite counts entered as the dependent variable, time-point (T1 to T4), treatment (C or T) and 240 

their interaction entered as independent variables, and female ID as a random factor to 241 

account for longitudinal data collection. For initial flea levels, we used a Poisson distribution as 242 

is appropriate when working with count data and given the distribution of initial flea loads. For 243 

final flea loads, the addition of ca. 20 fleas per squirrel in the treated group normalized the 244 

distribution of residuals in our model. Second, we investigated changes in body mass, oxidative 245 

status (ROM and OXY) and innate immunity (NO and trypanosomes) over the season using a 246 

similar procedure. Mass, ROM, OXY, NO or trypanosome levels were entered as dependent 247 

variables in separate LMM and we tested for the fixed effects of time-point, treatment and 248 

their interaction. In those models, we added female ID and age as random factors to account 249 
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for repeated observations and potential age effects on physiological variables. The number of 250 

observations (n) and corresponding number of individuals (N) are indicated for each model. 251 

Because of repeated observations on individuals n > N. Finally, we analyzed the effects of our 252 

treatment on female energy expenditure during peak lactation, the period of highest 253 

reproductive demand. We compared treatment and control groups in terms of body mass, DEE, 254 

oxidative status and immunity using linear models (LMs). We included female age, litter mass at 255 

weaning (reproductive investment) and TA (average temperature between release of the 256 

individual after DLW injection and collection of last blood sample), as covariates in the model to 257 

test for their effects on DEE. For all analyses we visually inspected the distribution of model 258 

residuals using QQ-plots to insure a reasonable fit to normality. Mean differences between 259 

groups (time-points or treatment) were assessed using post-hoc Tukey’s HSD test (‘glht’ 260 

package in R; Hothorn et al., 2008). For each model, we calculated effect sizes (Cohen’s d) and 261 

their 95% confidence intervals (‘effsize’ package in R; Torchiano, 2018). We used benchmarks d 262 

= 0.2, 0.5, 0.8 to indicate small, medium and large effect sizes respectively (Nakagawa & Cuthill, 263 

2007). The alpha-level was set at 0.05 for all statistical analyses and results are presented as 264 

averages ± 1 standard error (s.e.m.). 265 

Results 266 

Changes in parasite loads and individual condition over the experiment 267 

Fleas: Over the course of the experiment, treated individuals were infested at 3 268 

different time-points with an average of 19.59 ± 0.71 fleas/animal on top of their originally 269 

present 0.93 ± 0.24 fleas. In contrast, control animals had on average 0.61 ± 0.16 fleas/animal 270 

at each time-point (Fig. 1B). Thus after treatment, individuals averaged 33.63 times the flea 271 

load of the control individuals (LMM; t = 22.94, P < 2e-16, n = 90 observations, N = 31 272 

individuals). Treated individuals had returned to a level near their initial flea levels by the next 273 

experimental infestation (Fig. 1A).  274 

Mass: We did not observe differential mass changes between groups (Table 1) from T1 275 

to T4. During the DLW experiment, at T3, initial mass was not significantly different between 276 

control and treatment groups prior to flea application (Table 1): treated CGS experienced a 277 
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short-term (24 h) mass loss compared to control animals. This disparity was negligible at 72 278 

hours post-flea application. Due to incomplete DLW equilibration, some individuals (n = 5) were 279 

removed from mass analyses. 280 

Behavior: After controlling for age, treated CGS responded to flea infestation by 281 

increasing their self-grooming behavior by 53.64% compared to controls (Fig. 2; T1-T3; 282 

treatment = 20.45 ± 3.41 s, control = 11.8 ± 2.18 s; LMM; t = 2.22, P =0.03, n = 89, N = 31). 283 

Grooming decreased for both groups at peak lactation.  284 

Trypanosomes: Trypanosome prevalence steadily decreased over the season in both 285 

treatment and control groups (Fig. 3). At T4, we observed a statistically insignificant increase in 286 

average count of trypanosomes (per 5 μl of buffy coat) in the control group (329.82 ± 272.43; 287 

LM; t = 1.789, P =0.09, n = 23, N = 23) compared to the treatment group (25.46 ± 19.14). Upon 288 

removal of an extreme outlier, there was no appreciable difference between treatment and 289 

control groups (Fig. 5; control = 62.8 ± 59.72; LM; t = -0.66, P =0.52, n = 22, N = 22).  290 

Total daily energy expenditure at peak lactation (T3):  291 

During peak lactation, treated individuals did not show significantly higher DEE than 292 

controls (Fig. 4; LM; t = 0.31, P = 0.76, n = 20, N = 20), even when we accounted for differences 293 

in fat free mass. Energy expenditure (DEE) significantly increased with age (Fig. 3; LM; t = 2.48, P 294 

=0.02, n = 20, N = 20). Older breeders did not have larger litter masses at weaning (LM; t = 0.84, 295 

P =0.41, n = 28, N = 28), nor did litter mass differ substantially between treated and control 296 

individuals (Table 1; LM; t = 0.3, P = 0.77, n = 28, N = 28). We did not observe a relationship 297 

between DEE and ROM or NO levels (Fig. 4; LM; t = 0.64, P =0.54, n = 20, N = 20; LM; t = 0.19, P 298 

=0.85, n = 20, N = 20; respectively). A similar analysis on antioxidant defenses (OXY) revealed a 299 

relationship of decreased OXY levels (LM; t = -2.26, P =0.04, n = 20, N = 20) with increased 300 

energy expenditure in treated CGS. Upon removal of an outlier, this relationship disappeared 301 

(LM; t = -0.61, P =0.55, n = 19, N = 19). 302 

Changes in innate immunity and oxidative status 303 



 12 

Innate immunity (Nitric Oxide levels): Level of inflammation, assayed through NO 304 

concentration, was similar in both groups and over time (Fig. 5, LMM with Tukey’s post-hoc; t = 305 

0.25, P =0.63, n = 69, N = 29). NO concentration was not associated with ROM (LMM; t = 0.07, P 306 

=0.95, n = 69, N = 29), OXY (LMM; t = 1.17, P =0.25) or trypanosome (LMM; t = 0.893, P = 0.38) 307 

levels.  308 

Oxidative stress: There was a significant effect of time period on ROM and OXY levels 309 

(Fig. 6; ROM z = -5.08, P < 0.001, n = 107, N = 31; OXY z = -3.26, P < 0.001, n = 108, N = 31). ROM 310 

levels decreased from T1 to T3, but slightly rebounded at T4 in the treated group (LMM; 311 

Tukey’s post hoc test; t = -2.5, P < 0.02, n = 54, N = 15) compared to the control group (LMM; 312 

Tukey’s post hoc test; t = -5.1, P < 0.01, n = 53, N = 16). OXY levels steadily decreased in both 313 

groups as the season progressed. Like in other metrics, ROM (LM; t = -0.42, P =0.68, n = 69, n = 314 

24, N = 24) and OXY (LM; t = -0.36, P =0.72) values were not significantly different between the 315 

treatment and control groups at peak lactation (T3).  316 

Discussion 317 

Our experimental transformation of an aggregated parasite distribution to a bimodal 318 

distribution by adding fleas to some ground squirrels was an attempt to discern short-term 319 

parasite effects. However, like other CGS studies that removed parasites, our results indicated 320 

that these fleas did not significantly impact their hosts over the short-term in regards to any of 321 

our physiological measures.  322 

Flea augmentation and grooming 323 

By experimentally adding fleas to CGS, we expected a multitude of downstream 324 

physiological responses. This was partially fulfilled, at least in terms of the treatment of fleas 325 

temporarily enforcing a large short-term increase of parasites. This level of parasites was at the 326 

extreme high end of what is normally seen in adult female CGS at this specific field site, but not 327 

outside the natural range of variation. CGS, especially males and juveniles, have the capacity to 328 

harbor and maintain numbers of fleas equivalent or in excess of the treatment level under 329 

natural conditions (Raveh et al., 2015; JDR, FSD, VAV personal observations). Post-flea addition, 330 
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treated CGS allocated almost double the time of their non-parasitized counterparts to 331 

grooming. More importantly, they allocated energy that would normally be devoted to 332 

acquiring resources into maintenance of low flea levels at energetically and nutritionally 333 

demanding times. Within 24 hours (personal observations of recaptured animals), almost all of 334 

the added fleas were removed, as evidenced by the equilibration of initial flea levels at each 335 

time-point. This grooming timeframe coincides with the 24-hour mass shifts seen only in the 336 

treated group at the lactation peak time-point. However, in the context of an acute high 337 

infestation, this statistically significant mass loss is hardly biologically costly due to the return to 338 

normal mass within 72 h. Given that this population behaviorally enforces low parasite levels, a 339 

situation of prolonged high parasitization is improbable and thus not of high consequence for 340 

most host individuals. 341 

Surprisingly, even during peak lactation, a critical period of the year where female 342 

energy demands are typically highest in mammals (Oftedal et al., 1984; Speakman & 343 

McQueenie, 1996), we did not observe an effect of our treatment on female energy 344 

expenditure. This result indicates that these parasites do not have a high energetic cost on their 345 

host or that the cost of managing parasites (i.e. grooming) is compensated through other 346 

pathways. Indeed, the time invested in flea removal likely accounts for the loss in body mass 347 

through changes in potential energy intake. With both species of fleas being ground squirrel 348 

specialists (Hubbard, 1947; Hilton & Mahrt, 1971) and a lack of alternative hosts in the area, it 349 

makes sense that the fleas have muted effects on CGS. If parasites have co-evolved to specific 350 

hosts, they are more likely to deliver less irritable bites and introduce saliva that does not elicit 351 

an immune or behavioral response from the host (Dick & Patterson, 2007). Unfortunately, our 352 

observations do not account for a sex-biased effect whereupon fleas of a particular sex 353 

differentially induce stress (Hawlena et al., 2005; Krasnov et al., 2008). Since fleas were 354 

collected and assigned randomly to treated individuals, we can assume that any sex-bias in the 355 

parasites averaged out when the treated and control groups are compared. However, whether 356 

potential sex ratio biases in flea populations may differently affect individuals remains to be 357 

tested in the future. Given larger blood meals consumed by female fleas (Krasnov et al., 2003a), 358 
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one might expect female-biased populations to have larger impacts on hosts than male-biased 359 

populations. 360 

 A multitude of studies in other systems have demonstrated that the complexity of 361 

parasite and host energetics obscure the quantification of parasite effects (Hicks et al., 2018; 362 

Careau et al., 2010). For example, cape ground squirrels’ (Xerus inauris) DEE is similarly 363 

unaffected when parasite levels were manipulated (Scantlebury et al., 2007). Rather than 364 

parasites, increasing age stimulated slightly higher DEE. Many attributes associated with body 365 

composition such as larger litters or heavier young (Adams, 2005) would logically result in 366 

increased maternal investment and thus higher DEE. For example, older female CGS appear to 367 

undergo reproductive senescence and may require extra energy to succeed at breeding 368 

(Broussard et al., 2003, 2005). In addition, younger breeding females may exhibit reproductive 369 

inefficacies when breeding for the first time (Broussard et al., 2008; Rubach et al., 2016), 370 

perhaps resulting in younger animals having lower reproduction-associated DEE than older 371 

animals (e.g., through reduced milk production). As such, instead of parasites, age-related body 372 

composition and activity levels largely influence DEE (Klausen et al., 1997).  373 

Oxidative stress and immunity 374 

Given their relationship, it is natural that a lack of parasite effects on energy use 375 

culminated in a similar lack of treatment consequences on immunity and oxidative stress. 376 

However, given that NO is a key immune factor involved in the oxidative killing machinery of 377 

macrophages (Playfair & Bancroft 2004) and been implicated in the fighting trypanosome 378 

infections (Magez et al., 2006; Gobert et al., 2000), it is somewhat surprising that nitric oxide 379 

concentration did not mirror trypanosome levels in our study. Trypanosome levels declined in 380 

both groups over the season, but nitric oxide concentration equally fluctuated in both groups. 381 

One likely explanation of the lack of treatment effect is that this species of flea is simply an 382 

inefficient trypanosome vector (Eisen et al., 2009). This putative inefficiency, in addition to the 383 

rapid grooming response, affords only a short transmission window and subsequent lack of 384 

nitric oxide response to trypanosomes. This absence indicates that, at least in CGS, 385 

trypanosomes are of little consequence or are at least not managed by NO in macrophages.  386 
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In contrast, oxidative stress patterns were more responsive to change over time in that 387 

they mirrored prior studies (Viblanc et al., 2018), likely due to the establishment of an oxidative 388 

shield early on during lactation (Blount et al., 2016; Vitikainen et al., 2016) that allowed costs to 389 

be offset. The oxidative shielding model proposes that mothers increase antioxidant defenses 390 

early in reproduction to prevent the transfer of damaged molecules to their offspring, which 391 

may occur as maternal oxidative stress increases through gestation and lactation (i.e. the 392 

oxidative cost of breeding). In our study, effects of parasites appeared to manifest in the post-393 

shielding period (T4), with treated individuals experiencing larger increases in ROM levels. This 394 

may reflect a poorer capacity of parasitized females to buffer reproduction-associated oxidative 395 

increases or a potential delayed effect of parasites. Generally, similar flea infestation studies 396 

have largely found no results of parasites on oxidative stress (Devevey et al., 2008; Maronde et 397 

al., 2018; Wegmann et al., 2015). That said, our finding of an interaction between parasitism 398 

and oxidative stress where others have not is not surprising given the multifaceted and non-399 

linear relationship between the two (Costantini and Møller, 2009).   400 

 401 

Conclusion  402 

We attempted to quantify the previously variable costs of parasitism in CGS by 403 

discriminating between short and long-term effects (Asghar et al., 2015). However, it became 404 

clear that the cognizance of CGS to prioritize immediate grooming of parasites was likely the 405 

reason for the initial low level of fleas (Raveh et al., 2011, 2015) and the lack of seasonal effects 406 

of our experimental parasite manipulation. This unexpectedly strong grooming response 407 

coupled with oxidative shielding likely resulted in the dampening of any physiologically 408 

detectable parasite effects, even during the energetically demanding reproductive period. 409 

Some subtle short-term effects do manifest but are unlikely to culminate in detrimental long-410 

term fitness consequences unless parasitemia is chronically sustained. As such, fleas, even 411 

when experimentally augmented to increase their impact, do not strongly affect these hosts. 412 

This result suggests that while hosts in poor condition may exhibit high flea loads, flea 413 

infestation is unlikely to debilitate hosts. Seasonal variance in parasite levels over many species 414 

coupled with larger processes (i.e. oxidative shielding T1-T3) temporarily masking costs may 415 
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result in studies overlooking parasite effects due to a short detection timeframe. Given the 416 

current direction of climate change, it is eminently possible for parasite prevalence to increase 417 

(Cohen et al., 2017), and with it, the manifestation of these subtle costs. As such, short-term 418 

physiological measurements may be a better approach than long-term fitness estimates to 419 

detect parasite costs in wild populations. 420 
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 652 

Figure Legends: 653 

Fig. 1: (A) Initial and (B) Final flea numbers in Columbian ground squirrels between April and 654 

August 2018. T1 = Gestation (16c, 15t), T2 = Early lactation (14c, 14t), T3 = Peak lactation 655 

(14c, 15t), T4 = Prior to hibernation immergence (11c, 13t). Data are medians±s.e.m. (*, **, 656 

***) indicate significant differences between groups (≤ 0.05, ≤ 0.01, ≤ 0.001, respectively).  657 

Fig. 2: Time spent Grooming (s) in Columbian ground squirrels in Columbian ground squirrels 658 

between April and August 2018. T1 = Gestation (16c, 15t), T2 = Early lactation (14c, 14t), 659 

T3 = Peak lactation (14c, 15t). Data are means±s.e.m. Tukey letters above boxes detail if 660 

there are significant differences between time-points. 661 

Fig. 3: Regression of Age (y) on Daily Energy Expenditure (kJ d-1). Effects of age on DEE are 662 

plotted with a light grey 95% confidence interval.  663 

Fig. 4: Impact of Daily Energy Expenditure (kJ d-1) on (A) OXY and (B) ROM concentrations in 664 

plasma. Effects of DEE on oxidative stress are plotted with a light grey 95% confidence 665 

interval.  666 

Fig. 5: (A) Log Nitric Oxide (μM) and (B) Trypanosome Count in Columbian ground squirrels 667 

between April and August 2018. T1 = Gestation (16c, 15t), T2 = Early lactation (14c, 14t), 668 

T3 = Peak lactation (14c, 15t), T4 = Prior to hibernation immergence (11c, 13t). Data are 669 

medians±s.e.m. Trypanosome count is per 5 μl of buffy coat. 670 

Fig. 6: (A) ROM concentration (mg H2O2 dl-1) and (B) OXY concentration (μ mol HCl ml-1) in 671 

Columbian ground squirrels between April and August 2018. T1 = Gestation (16c, 15t), T2 672 

= Early lactation (14c, 14t), T3 = Peak lactation (14c, 15t), T4 = Prior to hibernation 673 
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immergence (11c, 13t). Data are medians±s.e.m. Tukey letters above boxes detail presence 674 

of significant differences between groups. 675 

Table 1: Seasonal data. T1 = Gestation (16c, 15t), T2 = Early lactation (14c, 14t), T3 = Peak 676 

lactation (14c, 15t), T4 = Prior to hibernation immergence (11c, 13t). Data are means±95% 677 

CI. Cohen’s d is given, with 0.2 being a small effect size, 0.5 being a medium effect size, and 678 

0.8 being a large effect size.  679 

Variable   Control   Treatment   Cohen's d 

Age (y) 
 

4.07 ± 0.40 
 

4.13 ± 0.43 
 

0.03 (-0.35, 0.4) 

Littersize 
 

1.714 ± 0.37 
 

1.64 ± 0.33 
 

-0.04 (-0.41, 0.34) 

Litterweight 
 

179.21 ± 36.99 
 

195.87 ± 40.96 
 

-0.13 (-0.5, 0.24) 

Temperature (°C)  13.94 ± 0.29  13.67 ± 0.28  0.27 (-0.54, 1.08) 

(T3) Mass change 24H (g) 
 

4.5 ± 6.6 

 

-17 ± 6.67 

 

1.02 (0.02, 2.02) 

(T3) Mass change 72H (g) 
 

3.5 ± 8.5 
 

-2.22 ± 8.38 
 

0.22 (-0.75, 1.19) 

Mass 
     

  

T1 Mass (g)  552.81 ± 11.36  563.33 ± 8.36  -0.27 (-1.00, 0.47) 

T2 Mass (g) 
 

538.21 ± 15.61  
 

540 ± 16.28 
 

-0.03 (-0.81, 0.75) 

T3 Mass (g) 
 

529.64 ± 14.21 
 

546.13 ± 19.23 
 

-0.28 (-1.05, 0.48) 

T4 Mass (g) 
 

545.45 ± 19.93 
 

550.38 ± 19.61 
 

-0.07 (-0.92, 0.78) 

 680 


