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a b s t r a c t

An experimental method is presented in this paper to measure flash temperatures of sliding surfaces.
High sliding velocities are reached by using a ballistic set-up equipped with a high speed camera. The
temperature field on the friction surface was recorded during the process. Tests were conducted under
dry sliding conditions by using an identical material for the rubbing bodies, which are of middle hard steel
easurement
etry
tures

(C22). Experiments showed that the temperature distribution generated by frictional heating is made up
of small hot spots that correspond to the friction of asperities located on the sliding surface during very
short time. Deduced from observations, maximum local surface temperatures can exceed about 1100 ◦C
around an area less than 100 �m in diameter.
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in most engineering applications, friction influences
efficiency and plays a major role in the performance

he machine. The friction is an inevitable phenomenon
consequence of heating the rubbing parts (pieces in
he interface and governs the action between the mobile
ed part. To optimize mechanical performance or just
ne component, it is necessary to improve knowledge
heating, the mean or maximum values of tempera-
e temperature distribution generated at the interface.
existence of high-localized temperature (flash tem-

at the surface can strongly influence the mechanical
concerned materials. Kennedy [1] reports that such

e can be responsible for oxide formation, spot weld,
tic instabilities, thermomechanical failure, and wear.
manufacturing processes, the high local temperature

workpiece interface on the rake face or the clearance
ines the tool’s life and the geometrical characteristics

ufacturing part. For example, during the cutting pro-
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ng has very important consequences, it is also necessary
experimental measurement technique in order to mea-
perature field and to understand the mechanical and

hanical phenomena present during friction. The diffi-
temperature measurement stands in the fact that the
ne is difficult to probe without changing the friction

In machining, the main method used for assessing tem-
the tool–chip interface is an embedded thermocouple
rtunately, the introduction of the thermocouple in the
nearest to the interface alters the temperature distribu-
ool. In addition no direct measurement is obtained due
nce between the thermocouple and the sliding surface.
ible to calculate only a mean temperature distribution at
p interface by using an analytical or numerical approach
onduction problem. Moreover, only punctual measure-
ossible and they have limited transient response due to
al inertia. With dynamic thermocouples [5], using just
ce of the temperature between the tool and the work-
nerate electromotive force, only a mean temperature
tire contact zone is obtained. For sliding surfaces, the

ermocouple (TFTC) used by Kennedy et al. [6] seems

d compromise to reduce disruption of the process and
igh response time (in a range of 1 �s) and very small
junction. With a multi-junction sensor, Kennedy et al.
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Fig. 1. Schematic of the experiment set-up used to m

the nominal value. Other numerous techniques have
ped to investigate temperature distribution of bodies

ontact. For example, during a manufacturing process,
l. [7] proposed a metallographic method to determine
e gradients in cutting tools on which the chip has been
o and Ong [8] estimated thermal effect on the chip
a chip color approach. However, these two methods
s and difficult to use, particularly on surfaces which
during the process. To provide information on the

erature distribution field and to identify the maximum
e area, which can move with sliding conditions, the
technique [9,10] seems to be actually the most adapted
is method has a very good spatial resolution and a short

e.
the sliding motion, the friction energy is dissipated
eal area of contact which is generally different from

nt area of contact. Depending on the manufacturing
surface roughness defines the profile of the contact

though the surfaces are carefully prepared, they can-
ctly flat .The irregularities and asperities from surfaces
ute the real area of contact can form interfacial junc-

ding to the compatibility of the sliding materials [11].
ns appear with the breaking of adhesive junctions and
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e microscopic observation of the different regions of

tion of a worn surface shows that the largest plastic
cated in a thickness of few microns from the sliding
]. To obtain results in accordance with initial condi-
ructure of the material near the friction surface did not
nge by superimposing several stages of friction. Results
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is mainly initiated in the immediate vicinity of the real
a and is extended by conduction to all material accord-
ime duration of the process. So the whole difficulty of
e measurements lies in taking a picture of the initial
e field in the near surface during a short duration (less
Obtaining these experimental data is very important for
erstanding of thermal phenomena during friction.
of this work is to propose an experimental approach to
e temperature fields generated at the interface of two
bodies in sliding contact, especially at high velocities.
sely, the objective is to confirm and measure the mag-
ash temperature in a sliding contact. However, if it is
estimate a mean value of the generated heat, a reliable
nt of temperature maps generally remains complex and
this study, in order to reach the contact zone, one of the
ies is drilled. The temperature disturbance is limited by

radiation technique. In addition, direct access to the
e allows to avoid interpolation calculations. A ballistic
ed in order to generate dry friction and produce a large
ding velocities [15]. In this paper, the interpretation of
e fields is realized at 35 m/s. To reduce the parameters
nterfere with the results, the rubbing surfaces are preci-
, with the same material, a middle hard steel C22, used
the two parts. Only one pass is realized by a specimen
continuously fresh rubbing surface.

ental device
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high sliding velocities, a dynamic set-up used was
to study processes of interaction during cutting under
ditions [16]. An air gun is used to propel a projectile

nch tube designed to avoid any rotation. This tube,
nnected to an air gun, precisely drives the projectile
enough to assure a constant velocity after the launch-
ocity range can vary from 10 to 100 m/s according to the
re. The mass of the projectile is chosen in order to have
ergy larger than the mechanical work consumed dur-

ion process. The sliding velocity is thus nearly constant
process and quasi-stationary conditions are realized. A
e coaxial to the first one receives the projectile with a

ing down after the test. The friction process, as shown
aking place at the entry of the receiving tube. Contrary



Table 1
Chemical composition, main mechanical and thermal properties of the medium-low carbon steel C22.

Mechanical properties Hardness (Brinell) Yield stress (MPa) Ultimate tensile strength (MPa) Specific heat capacity (J/kg K) Thermal conductivity (W/m K)

C22 120 340 405 ≈480 ≈52

Elements × 10−3 wt% C Mn S P

C22 140–200 300–600 max 5 max 4
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Table 2
Experimental conditions for the different tests.

Test reference Sliding velocity
(m/s)

Normal
pressure (MPa)

Delay (�s) Aperture time
(�s)

1 33.4 90.7 101 40
2 35.8 91.2 463 40
3 33.9 89.3 593 40
4 34.2 88.4 640 40
5
6
7
8
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er cutting study [16], the specimen is not fixed on the
ut held in position before impact.
ometer ring, which ensures the compressive force dur-

tion, is fixed on a load sensor made up of a thin tube
ages. Two rectangular specimens MA (h = 24 mm × � =
5 mm) are symmetrically fixed inside this dynamome-
ring the friction process, the projectile launched by
impacts the specimen MB (W = 10 mm × L = 60 mm,

The sliding movement is realized after the impact of
ile on the specimen MB. Dry friction of medium-low
l, for which the chemical composition and the main
characteristics are indicated in Table 1, is studied in
he surfaces are obtained by grinding operation follow-
ing direction and the surface roughness is Ra = 0.8 �m.
imens are machined together to admit that the geo-

fects are negligible. To distinguish various parts of the
specimen MA will indicate the fixed specimen and MB
specimen.

ature field measurement on the sliding surface

erimental technique used to measure the tempera-
the sliding process is based on the visible pyrometry

developed previously for the measurement of the
e during the cutting process [17,18]. The pyrometry
non intrusive and in order to have a weak sensitivity of

ity of the surface on the determination of the tempera-
ible pyrometry technique is used. This measurement is
with an intensified CCD Camera whose spectral range
0.4 �m and 0.8 �m. The aperture time of the camera
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s small compared to the size of the specimen (Fig. 2).

method im
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34.5 84.9 325 300
34.2 84.9 381 300
33.8. 84 573 300
33.4 92.8 261 500

perature measurement device is calibrated on a black
: PY24, temperature range: 400–1600 ◦C, temperature
: 1 ◦C). For example, the curves in Fig. 3 show the evo-
mera level according to the black body temperature for
e times of 40 �s and 300 �s.

and discussion

of tests was carried out for aperture time of the camera
0 �s and 500 �s. Table 2 sums up the different exper-
ditions (each test is reproduced twice to confirm the

nd the mean values are notified). The delay is the time
e beginning of friction and the beginning of the aper-
camera. For a sliding speed of 34 m/s, the length of

en corresponds to a friction duration of about 1700 �s.
sents the evolution of the tangential force according to
e test 3. The average value of this force during friction
d by the usual relation FT = 1/(tf − ti).

∫ tf

ti
fT dt where

tantaneous tangential force, tf and ti respectively are
nd the final friction time corresponding to a constant
ss. Indeed, as shown in Fig. 1, the specimen MB has a
ign to assure its guiding through the receiving tube after
[15]. This design imposes a variation in rigidity, which
decreasing normal stress (see Fig. 4) after a sliding dis-
�). In the case of test 3, a constant normal loading is
for a distance of 38 mm which corresponds to an aver-
tial force equal to 1.35 kN. In Fig. 4, the delay and the

e of the camera are specified. It must be noted, that
uency oscillations observed on the recorded signal, are

y the eigenmode of the sensor and are filtered by con-
e average value of this signal. The moving time in the
aterial point on the mobile specimen is approximately

al pressure is deduced from the dimensions of sam-
red at the beginning of each test and the stiffness of the
ter ring.
rmographs which correspond to the tests 3 and 5 are
respectively in Figs. 5 and 6. These two thermographs

ntative of all thermographs obtained during these tests.
atures are calculated by using the respective calibra-
given in Fig. 3. Thus, this temperature determination
plies that those temperatures remain constant during
e time of the camera. This assumption will be justified
document. X and Y axes, with origins in the center of

e directed respectively along the sliding direction and
to the sliding direction.



Fig. 3. Calibration curve of the intensified CCD camera. (a) Aperture tim

Fig. 4. Recorded signal by the load sensor according to time during test 3.

Fig. 5. Thermography of the sliding surface for a sliding velocity of 33.9 m/s and a
40 �s aperture time of the camera (test 3).

Table 3
Location and value of the different hot spots.

Streak reference Maximal temperature (◦C) Position along X axis (mm)

Test 3 Test 5 Test 3 Test 5

1 839 848 1.08 0.95
2 917 918 0.97 0.85
3 942 901 0.70 0.76
4 951 852 0.76 0.54
5 991 780 0.35 0.40
6 952 781 −0.25 0.07
7 1004 861 −0.49 −0.14
8 998 901 −0.54 −0.26
9 838 −0.46
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temperature. During tests 3 and 5, respectively eight
eaks can be counted. The maximum temperatures vary
9 ◦C and 1004 ◦C for test 3 and between 780 ◦C and

est 5; Table 3 gives the maximum temperatures mea-
heir location along X axis. Thermographs, presented in
6, highlight the same temperature levels even though
ith very different aperture times and thus show that

�s the temperature seems to be stationary.
resents the temperature profile along the axis X around
t 5 (test 3) where the maximum temperature is 991 ◦C.
of distances in Fig. 7a is centered on the hot spots in
ake the reading easier. Due to the difficulty to define
e width, this size will be chosen in an arbitrary way
th corresponding to a temperature higher than 90% of
m temperature. This choice is a compromise between
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o the thermal sensitivity of our measurement device.

efinition, the width of the hot spot (5) is estimated to be
rresponding to a temperature higher than 864 ◦C. Fig. 7b
mperature evolution along the Y axis for the hot spots

(2). The origin of the distances of each hot spot in this
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poral scale obtained by dividing the distance from the
hole by the sliding velocity, is plotted at the top of the

ography of the sliding surface for a sliding velocity of 34.5 m/s and a
re time of the camera (test 5).



Fig. 7. Spatial distribution of temperature during test 3. (a) Temperature profile along X axis near point (5) (b) Temperature profile along Y axis on point (5), point (7) and
point (2).
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Table 4
Estimation of the distance between the asperities and the edge of the hole for the
test 3.

Streak reference Distance
Asperity–edge of the hole (mm)

1 0.83
2 0.35
3 0.21
4 0.16
5
6
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erature measurement.
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