
HAL Id: hal-02269207
https://hal.science/hal-02269207v1

Submitted on 22 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Trustworthy Distributed Computations on Personal
Data Using Trusted Execution Environments

Riad Ladjel, Nicolas Anciaux, Philippe Pucheral, Guillaume Scerri

To cite this version:
Riad Ladjel, Nicolas Anciaux, Philippe Pucheral, Guillaume Scerri. Trustworthy Distributed Compu-
tations on Personal Data Using Trusted Execution Environments. TrustCom 2019 - The 18th IEEE
International Conference on Trust, Security and Privacy in Computing and Communications / Big-
DataSE 2019 - 13th IEEE International Conference on Big Data Science and Engineering, Aug 2019,
Rotorua, New Zealand. �10.1109/TrustCom/BigDataSE.2019.00058�. �hal-02269207�

https://hal.science/hal-02269207v1
https://hal.archives-ouvertes.fr

Trustworthy Distributed Computations on Personal Data

Using Trusted Execution Environments

Riad Ladjel
Inria, UVSQ, France

riad.ladjel@inria.fr

Nicolas Anciaux
Inria, UVSQ, France

nicolas.anciaux@inria.fr

Philippe Pucheral
Inria, UVSQ, France

philippe.pucheral@uvsq.fr

Guillaume Scerri
Inria, UVSQ, France

guillaume.scerri@uvsq.fr

Abstract— Thanks to new regulations like GDPR, Personal Data

Management Systems (PDMS) have become a reality. This

decentralized way of managing personal data provides a de facto

protection against massive attacks on central servers. But, when

performing distributed computations, this raises the question of how

to preserve individuals' trust on their PDMS? And how to guarantee

the integrity of the final result? This paper proposes a secure

computing framework capitalizing on the use of Trusted Execution

Environments at the edge of the network to tackle these questions.

Keywords— Data privacy; TEE; secure distributed computing

I. INTRODUCTION

Smart disclosure initiatives (e.g., Blue Button in the US,

MiData in UK, MesInfos in France) and new privacy-

protection regulations (e.g., GDPR in Europe [1]) allow

individuals to get their personal data back and manage it under

control, in a fully decentralized way, using so-called Personal

Data Management Systems (PDMS) [3]. Decentralization is

paramount in terms of privacy protection by reducing the

Benefit/Cost ratio of an attack compared to a central server.

However, crossing data of multiple individuals (e.g.,

computing statistics or clustering data for an epidemiological

or sociological study, training a neural network to organize

bank records into categories or predict diagnoses according to

medical symptoms, etc.) is of utmost personal and societal

interest. This raises the question “how to preserve the trust of

individuals on their PDMS while engaging their data in a

distributed process that they cannot control?”. The dual

question from the querier side (i.e., the party initiating the

processing) is “how to guarantee the honesty of a computation

performed by a myriad of untrusted participants?”. These are

the two questions targeted by this paper.

Answering these questions requires establishing mutual

trust between all parties in a distributed computation. On the

one hand, any (PDMS) participant must get the guarantee that

only the data required by the computation are collected and

that only the final result of the computation he consents to

contribute to, is disclosed (i.e., none of the collected raw data

can be leaked). On the other hand, the querier must get the

guarantee that the final result has been honestly computed,

with the appropriate code, on top of genuine data. Besides this,

the computing scheme must be generic and scalable (e.g., tens

of thousands of participants) to have a practical interest.

No state of the art solution tackles all dimensions of this

problem. Multi-party computation (MPC) works guarantee

that only the final result of a computation is disclosed but they

are either not generic in terms of supported computation or not

scalable in the number of participants [10]. Similarly, gossip-

based [2], homomorphic encryption-based [13] or differential

privacy-based solutions are restricted to a limited set of

operations that can be computed. Moreover, none of these

solutions tackle the limited data collection and computation

honesty issues. Recent works like [21] address the problem of

authenticated query results, but focus on a single-user context,

where the user is the querier.

In this paper, we argue that the emergence of Trusted

Execution Environments (TEE) [15] definitely changes the

game. TEEs, like ARM's TrustZone or Intel's Software Guard

eXtention (SGX), are becoming omnipresent, from high-end

servers to PC and mobile devices. TEEs are able to compute

arbitrary functions over sensitive data while guaranteeing data

confidentiality and code integrity. This opens new

opportunities to think about secure distributed processing with

the hope to reconcile security with genericity and scalability.

But TEEs are far from providing a direct solution on their

own. They have not been designed with edge computing

involving a large number of participants in mind. Moreover,

while TEE tamper-resistance makes attacks difficult, specific

side-channel attacks have been shown feasible [19]. Without

appropriate counter-measures, a minority of corrupted

participants may endanger the data from the majority. Based

on this statement, the paper makes four contributions:

 it defines a generic and scalable TEE-based computing

protocol over decentralized PDMSs which provides the

expected mutual trust and computation honesty properties,

assuming this protocol has been safely executed;

 it provides, for each participant and the querier, a solution

to locally check that the protocol has indeed been honestly

executed, without resorting to any trusted third party;

 it proposes accurate counter-measures against side-channel

attacks conducted by corrupted TEE participants;

 finally, it qualitatively and quantitatively evaluates the

scalability and security of the solution on practical use-

cases (group-by queries, k-means clustering).

II. PROBLEM FORMULATION

A. Security properties and limits of TEEs

Relying on secure hardware, existing Trusted Execution

Environments (TEEs) provide three main security properties:

(1) code isolation, meaning that an attacker controlling a

corrupted user environment/OS cannot influence the behavior

of a program executing within a TEE enclave, (2)

confidentiality, meaning that private data residing in an

enclave may never be observed, and (3) attestation, allowing

to prove the identity of the code running inside a TEE [20].

1 Scalable solutions exist to meet this requirement [11] but this problem is

orthogonal to this paper.

The only type of attacks successfully conducted so far over

TEE are side channel attacks [19]. The TEE in this case

behaves in a “sealed glass proof” mode [18], i.e., the

confidentiality property is compromised, but the isolation and

attestation properties still holds (these properties are not

challenged today). These attacks are complex to perform and

require physically instrumenting the TEE, which prevents

large scale attacks. However, TEEs corrupted by side-channel

attacks cannot be detected by honest ones as their behavior is

still the correct one.

B. Trust model

The trust model considered in this paper stems from the

decentralized nature of the targeted infrastructure.

Untrusted user devices and infrastructure. No credible

security assumptions can be made on the execution

environment running on widely open personal devices (PC,

laptop, home box, smartphone, etc.) managed by non-experts.

We thus consider that the device OS and applications can be

corrupted. We also consider the communication infrastructure

as untrusted. We however assume that the communication

flow incurred by the computed algorithm is (made) data

independent, i.e., that personal data cannot be inferred by

observing the communication pattern among participants1.

Large set of trusted TEEs, small set of corrupted TEEs.

We assume that each individual owns a TEE-enabled device

hosting his personal data (i.e., his PDMS). This is definitely

no longer fantasy considering the omnipresence of ARM's

TrustZone or Intel's SGX on most PC, tablets and

smartphones. As explained above, a small subset of TEEs

could have been corrupted by malicious participants to break

their confidentiality with side-channel attacks.

Trusted computation code. We consider that the code

distributed to the participants has been carefully reviewed and

approved beforehand by a regulatory body (e.g., an

association or national privacy regulatory agency). But the

fact that the code is trusted does not imply that its execution

behaves as expected.

Trusted citizen identity. We consider that citizens have

been assigned a private/public key by a trusted (e.g.,

governmental) entity (e.g., as used today for paying taxes

online). This prohibits attackers generating multiple identities

with the objective to massively contribute to a computation to

isolate a small set of participants and infer their data.

C. Problem statement

The problem can be formulated as follows: how to

translate the trust provided to the computation code by the

regulatory body into a mutual trust between all parties

participating to the computation under the presented trust

model? To solve this problem, the following properties need

to be satisfied:

Mutual trust. Assuming that the declared code is executed

within TEEs, mutual trust guarantees that: (1) only the final

result r of the computation can be disclosed, i.e., none of the

raw data of any participant is leaked and r is honestly

computed as declared, (2) only the data strictly specified for

the computation is requested from the participant PDMSs, (3)

the computation code is generic and makes it possible to verify

that any collected data is genuine2.

Local assurance of validity. The querier and each involved

participant must be able to monitor locally (i.e., on its own,

without relying on a central trusted party) that the computation

is being performed in compliance with the code declaration,

by all other participants. If any honest participant detects a

validity violation, an error is produced and the computation

stops without producing any other (partial) result.

Resilience to side-channel attacks. Assuming a small

fraction of malicious (colluding) participants involved in the

computation with corrupted TEEs, our framework must (1)

guarantee that the leakage remains circumscribed to the data

manipulated by the sole corrupted TEEs, (2) prevent the

2 Assuming data genuineness can be actually verified by the running code

in any way (e.g., thanks to a digital signature).

attackers from targeting a specific intermediate result (e.g.,

sensitive data or data of targeted participants) and (3)

maximize the Cost/Benefit ratio of an attack. Note that this is

the best we can do assuming that the code manipulates clear

data and that side channel attacks can be performed. In

addition, the means to achieve resilience should maintain the

communication flow independent of the data being processed

(i.e., attack resiliency should not affect the data independence

assumption made in our trust model).

To have a practical interest, the solution must finally: (1)

be generic enough to support any distributed computations

(e.g., from simple aggregate queries to advanced machine

learning computations) and (2) scale to a large population

(e.g., tens of thousands) of individuals.

Figure 1 Manifest-based distributed computation.

III. MUTUAL TRUST

To provide the mutual trust property, we propose adopting

a manifest-based approach. As described in Fig. 1, this

approach is conducted in three steps:

Step1: logical manifest declaration. We call Querier an

entity (e.g., a research lab, a statistic agency or a company,

acting as a data controller in the GDPR sense) wishing to

execute a treatment over personal data. The Querier specifies

a Logical Manifest describing the computation to be

performed, namely: its purpose, the source code of the

operator to be run at each participant, the distributed execution

plan materializing the data flow between operators and a set

Actor (with identity)
Logical Manifest
Physical Manifest
TEE Monitor
TEE Operation
Untrusted proxy
PDMS (personal data)
Attestation
Confidentiality
Corrupted TEE

….

Participant Participant
(corrupted)

Participant

Querier

Public store

Regul.

Citizen identityLegend:

result

1

1 Querier specifies and publish manifest; Regulator certifies it

Participants consent to manifest; Participants & querier build phys. manifest

Participants execute physi. manifest; Querier retrieves results (encrypted)

2

3

2 3

of privacy rules to be fulfilled, including data collection rules

and expected number of participants. The Querier submits this

logical manifest to a Regulatory body which certifies its

compliance with the expected privacy practices. The certified

logical manifest is then published in a public manifest store

where it can be downloaded by individuals wishing to

participate. We provide below an example (deliberately naïve

for the sake of simplicity) of a logical manifest for a group-by

query implemented using a MapReduce-like framework.

Example 1: ‘Group-by’ manifest.

Purpose:

 Compute the mean quantity of anxiolytic

 prescribed to employees group by employer

Operators:

 mapper source code

 reducer source code

Distributed execution plan and dataflow:

 Number of mappers: 10.000

 Number of reducers: 100

 Any mapper linked to all reducers

Collection rules:

 SELECT employer_name FROM Job;

 SELECT sum(qty)FROM Presc

 WHERE drugtype = ‘anxiolytic’;

Number of participants (data collectors): 10.000

Querier Public key: Rex2%ÃźHj6k7âĂę

Step2: physical manifest construction. Once certified, the

manifest can be viewed as a logical distributed query plan

(participants are not yet identified). When a sufficient number

of potential participants consent to contribute with their data,

a Physical Manifest is collectively established by the TEEs of

all participants (according to our trust model, each participant

is equipped with a TEE). A physical manifest assigns an

operator to each participant. As detailed in Section V, this step

is critical for resilience to side-channel attacks, by prohibiting

corrupted participants from selecting specific operators in the

query plan for malicious purpose.

Step3: physical manifest evaluation. Each participant

downloads the physical manifest (or the subpart allocated to

him). The participant’s TEE initializes an enclave to execute

his assigned operator and establishes communication channels

with the TEEs of other participants supposed to exchange data

with him (according to the manifest distributed execution

plan). The participants then contributes his personal data to

the operator and allows the computation to proceed. Once all

participants have executed their task, the end-result is

delivered to the querier.

Let us introduce the following definitions in order to

analyze how mutual trust is achieved.

Definition 1: Distributed Execution Plan (DEP). A

distributed execution plan DEP is defined as a directed graph

(V, E) where V vertices are couples (opi, aj)OPA with OP

the set of operators to be computed and A the set of computing

agents, and E edges are couples (<opi, aj>,<opk, al>)

materializing the dataflow among operators, namely the

transmission by aj to al of opi output. For any vi V, we denote

by Ant(vi) (resp. Succ(vi)) the antecedents (resp. successors) of

vi in the DEP, that is the vertices linked to vi by a direct

incoming (resp. outgoing) edge.

This representation of distributed execution plans is

generic enough to capture most distributed data-oriented

computations. Based on this definition, we can introduce the

notion of logical manifest.

Definition 2: Logical Manifest (LM). A logical manifest

LM is defined as a tuple <PU, DEP, CR, N>, with PU the

textual purpose declaration, DEP a distributed execution plan,

CR the collection rule applied at each participant and N the

expected number of participants.

The CR declaration translates the limited collection

principle enacted in all legislations protecting data privacy

(i.e., no data other than the ones strictly necessary to reach the

declared purpose PU will be collected). We assume that this

declaration is done using a basic assertional language (e.g., a

subset of an SQL-like language) easily interpretable by the

Regulatory body on one side and easily translatable into the

specific query language of any PDMSs on the participant’s

side. For the sake of simplicity, we assume that the data

queried at each participant follow the same schema (if it is not

the case, it is basically a matter of translating the collection

rules in different schemas). N plays a dual role: it represents

both a significance threshold for the Querier wrt. the declared

purpose and a privacy threshold for the Regulatory body wrt.

the risk of reidentification of any individual in the final result.

The notion of physical manifest can be defined as follows.

Definition 3: Physical Manifest (PM). A physical manifest

PM is defined as a tuple <LM, P, F, QCR> such that: (1)

function F: LM.DEP.A P assigns agents to the participants

P contributing to the computation of LM; (2) F is bijective, so

that a given participant cannot play the role of different agents

and each agent is represented by a participant; (3) any query

qiQCR is the translation for participant pj of the collection rule

LM.CR into the query language of his PDMS.

Definition 4: PM valid execution. An execution of a

physical manifest PM is said valid if the execution has not

deviated in any manner from what is specified in LM, i.e., (i)

the operators in LM.DEP.OP are each executed by the TEE of

the participant designated by F while respecting the dataflow

imposed by LM.DEP.E, (ii) the TEE of any participant pi

queries its host with qi, (iii) N different participants contribute

to the computation and (iv) all data exchanged between the

participants’ TEEs are encrypted with session keys.

Lemma 1. Under the hypothesis H1 that the execution of a

PM is valid and H2 that no TEE have been corrupted, the

mutual trust property is satisfied.

We postpone to Section IV how to achieve hypothesis H1

and to Section V the counter-measures suggested in the case

hypothesis H2 does not hold.

Proof of Lemma 1. The three conditions in mutual trust

definition given in Section II hold by construction. First,

condition (1) is satisfied because H1 guarantees that each

operator in DEP.OP is executed within a TEE, and H2 and the

TEE’s confidentiality property ensure that no data can leak

other than the input and output of each DEP.OP. Encrypting

the data exchanges between each vertex vi and Ant(vi) and

Succ(vi) in DEP with a session key ensures the confidentiality

of the global execution of PM.DEP. The final result is itself

sent encrypted to the Querier so that no raw data other than

the final result can leak all along the execution. Second,

condition (2) stems from the fact that each participant pi is

presented with qi which is a translation of LM.CR. The honest

execution of qi over pi’s PDMS remains however under the

participant’s responsibility who selected it to protect his

personal data. Regarding condition (3), H1 and H2 again

guarantee the integrity of the global execution of PM.DEP.

Note that this guarantee holds even in the presence of

corrupted TEEs since side-channel attacks on TEEs may

compromise the confidentiality of the processing but not the

isolation property. It immediately follows that any check

integrated in the operator code can be faithfully performed on

cleartext data, thus ensuring genericity.

Compared to state of the art solutions, our manifest-based

approach holds the capacity to reconcile security with

genericity and scalability. First, the TEE confidentiality

property can be leveraged to execute the computation code at

each participant over cleartext genuine data. Second, the shape

of the DEP and then the resulting number of messages

exchanged among participants, directly results from the

distributed computation to be performed. Hence, conversely

to MPC, homomorphic encryption, Gossip or Differential

privacy approaches, no computational constraints

compromising genericity nor performance constraints

compromising scalability need to be introduced in the

processing for security reasons.

IV. LOCAL ASSURANCE OF VALIDITY

Once mutual trust is ensured, one needs to ensure that each

participant gets the assurance that the computation was

performed as expected. Ideally, this means that the

computation should behave as if all participants could

continuously monitor all the others, i.e., check all operator

computations, ensuring correction of sent/received data at

each step, and abort the whole process if any misbehavior

happens. This is formalized in the following definition. At this

stage, we assume that the execution plan has been produced

by an arbitrary function build_phys_manifest, assigning a

position i in the execution plan to each participant (the strategy

for performing this assignment is discussed in Section V). We

also assume that the local code executed by a participant either

terminates successfully or explicitly returns an error.

Definition 5: locally checkable execution. The execution

of a distributed execution plan DEP is said locally checkable

if for any participant pjPM.P, either (i) pj’s view of the

partial execution up to pj’s role is valid or (ii) pj returns an

error and no data is ever transmitted to other participants.

An immediate consequence of Definition 5 is that, for any

locally checkable execution, either a global result is produced

if the execution is valid or no intermediate values is ever

leaked. It follows that a protocol guaranteeing locally

checkable executions for a DEP exactly provides local

assurance of validity as any deviation from the normal

execution would result in an invalid execution and would

therefore result in an error at the participant’s level.

As participants execute code in TEEs, a naïve way to

satisfy Definition 5 is to instrument the code of each operator

in order to make sure that before sending out any (partial)

result the code gets approval from all other participants. While

this solution trivially satisfies our goal of local assurance of

validity, the communication overhead with a large number of

participants is overwhelming.

In order to overcome the aforementioned problem, we

leverage the fact that using the TEE mechanisms and

attestation, one can rely on checks made within other

participant’s TEEs. In our architecture, the foundation of local

checkability is the decomposition of the code running at each

participant in a generic TEE monitor and a specific TEE

computation code. The objective of this distinction is to avoid

the need for any participant to recompile the code running on

the other participants and compute its hash to evaluate the

validity of the requested remote attestations. The execution at

each participant then works as follows: (1) untrusted code

executed on the local host, called untrusted proxy in Fig. 2,

creates a TEE enclave and launches the TEE monitor code

inside this enclave, (2) the TEE monitor, the role of which is

to interpret the manifest and drive the local execution, creates

a second enclave to launch the TEE computation code

corresponding to the operator assigned to the participant in the

execution plan. Note that all of the scheduling is performed by

the untrusted proxy, in particular waking up TEE monitors as

they are needed for the computation.

The TEE monitor code is identical for each participant, so

that its hash is known by everyone. This code is minimal, can

be easily formally proved and is assumed trusted by all

participants. This lets us consider the manifest LM as data,

including the code of the local operator to be computed, let

each local TEE monitor check the integrity of this data and

then attest the other participants (antecedents and successors

in the execution plan) to the genuineness of the TEE

computation code. Antecedents and successors can easily

check in turn the validity of the received remote attestation by

checking only the genuineness of the remote TEE monitor.

This double attestation by the antecedents and by the

successors is mandatory to guarantee, for each participant, the

validity of the inputs it receives and the authenticity of the

recipients for its own outputs. This transitive attestation

principle is depicted in Fig. 2.

Following this strategy, local checkability is guaranteed.

Intuitively, if a specific participant does not execute the

genuine TEE monitor, it will be unable to provide a valid

attestation to its partners (antecedents/successors) which will

stop the execution and return an error. Then, if all participants

run the correct TEE monitor and execute the same manifest,

the execution is necessarily correct, since the TEE monitor

only executes its dedicated code, and attestation prevents

attacks from the OS on the result of the TEE computation

code. If, however, one participant does not execute the correct

manifest, its antecedents/successors will fail during the

manifest verification. Finally, for any execution plan

represented by a connected graph, the validity of the global

execution is obtained by propagating errors through the

execution graph, if an error occurs at any point during the

computation. In order to prevent an attacker from running a

large number of instances of a computation code in enclaves,

each enclave must be tied to an identity, certified by a citizen

identity provider.

The pseudo code of the TEE monitor is provided in

Algorithm 1. For the sake of conciseness, we restrict this

algorithm to the management of tree-based execution plans,

however extending it to any graph is just a matter of allowing

multiple successors. Note that the scheduling of the execution

and errors propagation can be handled by untrusted code.

Indeed, if a participant encounters an error, it would typically

propagate it upstream so as not to let successor’s enclaves

hanging. However, it is by no means security critical as

successor’s enclave would simply never execute if they fail to

receive their antecedents’ inputs.

Algorithm 1. TEE monitor

Input: LM the logical manifest, id = (ski, pki, certi) the participants’

cryptographic identity and the corresponding certificate
Output: boolean indicating success

1. if verify(LM) = false then // verify manifest

2. return error

3. PM build_phys_manifest(LM, id) // build physical manifest

4. i get_my_position(PM, ski)

5. PMi extract(PM, i)

6. Qi, Pi, Ci, opi Parse(PMi)

7. for each antecedent Ci do // get antecedents’ outputs

8. if not(channel(antecedent, self.code)) then return error

9. if not(id_check(antecedent)) then return error

10. if antecedent.PM PM then return error

11. input_tuples + accept_input(antecedent)

12. input_tuples + out_call(Qi) // query PDMS

13. EOPi create_enclave(opi) // create opi enclave

14. if not(channel(EOPi, opi) then return error

15. send_tuples(input_tuples, EOPi) // produce output
/* NB: integrity of input_tuple is checked in OPi enclave code */

16. res_opi accept_input(EOPi) // execute opi

17. successor get_ successor(PM,res_opi)

18. if successor = querier then

19. a attest(res_opi, PM)

20. send(a, res_opi)

21. return success

22. if not(channel(successor), self.code) then return error

23. if not(id_check(successor)) then return error

24. if successor.PM PM then return error

25. send_tuples(res_opi, successor)

26. return success

While hidden in the pseudo code, we assume that all

communications between participants and the different

enclaves are performed on secure channels. This is crucial to

ensure that the endpoints of channels lie in real TEE enclaves

and to prevent an adversary capable of observing the

communications from getting access to user data. A primitive

reaching this goal is called attested key exchange [5]. It allows

to exchange a key with an enclave executing a specific

program, and hence ensures (using the attestation mechanism)

that the endpoint of the channel lies within an enclave and that

the enclave is executing the expected program, even if the

administrator of the machine running the enclave is corrupted.

We abstract this creation of a secure channel as channel(

remote, expected_code) where remote is the remote enclave

and expected_code is the code expected to be running in the

remote enclave. The cost is essentially 1 remote attestation

and 2 communications. Once established, all communications

are assumed to be done on this channel. For simplicity’s sake

we abstract away who is the initiator of the secure channel and

view this process as symmetric.

Algorithm description. In lines 1 to 6, the integrity of the

logical manifest is verified by checking its signature, the

physical manifest is built in collaboration with the other

participating TEE monitors (cf. Section V, which also covers

the explanation of line 4, not required in this section) and the

part of the manifest related to this participant is extracted (i.e.,

the set of its antecedents/successors, the data collection query

used to retrieve data from the local PDMS and the code of the

operator to be evaluated locally).

Then, in lines 7 to 12, the attestation of each antecedent is

verified, by comparing the hash value of the code it is running

to the hash value of the TEE monitor code (common to each

participant). Once the antecedent TEE monitor is known to be

correct, we check that it runs the correct manifest. We also

check its identity by requiring its enclave to send it. This

provides enough assurance because once we know the code of

its enclave we know that it will honestly send its identity.

Finally, the input tuples of the local operator are retrieved

from its antecedents and/or the local PDMS of this participant.

In lines 13 to 16, the TEE monitor creates an additional

enclave for the operator to be run (its code is part of the

manifest) and requests an attestation from this enclave (the

hash of the operator is compared to the hash of the code

computed by the TEE monitor) to make sure that the host did

not compromise or impersonate the operator code. Then the

monitor establishes a secure channel with the operator

enclave, using an attested key exchange as in [5] and TEE

monitor calls the operator using the appropriate inputs.

Finally, in lines 17 to 26, the TEE monitor, either sends

the result to the querier if its result is the final result, together

with an attestation guaranteeing the result was indeed

produced by the correct computation of the specified data; or

sends its result to the next participants as planned by the DEP.

Proposition 1. Algorithm 1 satisfies the locally checkable

execution property for the physical manifest PM derived from

the logical manifest LM by the build_phys_manifest function.

The sketch of proof of Proposition 1 is given in [23].

V. RESILIENCE TO SIDE-CHANNEL ATTACKS

According to our trust model, a small fraction of TEEs can

be instrumented by malicious (colluding) participants owning

them to conduct side-channel attacks compromising the TEE

confidentiality property. This issue is paramount in our

Manifest-based approach which draws its genericity and

scalability from the fact that computing nodes manipulate

cleartext genuine data, putting them at risk.

The resilience to side-channel attacks property introduced

in Section II, states first that the leakage generated by an attack

must be circumscribed to the data manipulated solely by the

corrupted TEEs. This is intrinsically achieved in our proposal

by never sharing any cryptographic information among

different nodes. A second requirement is to prevent any

attacker from targeting specific personal data. Randomness

and Sampling are introduced next to achieve this goal. Finally,

DEP reshaping is proposed to tackle the third requirement,

i.e., maximizing the average Cost/Benefit ratio of an attack.

A. Randomness and Sampling

In a physical manifest, we distinguish participants

assigned to a collection task (which contribute to the query

with their own personal raw data) from participants assigned

to a computation task (which process personal data produced

by other participants). Attacking any TEE running a collection

task has no interest since the attacker only gains access to his

own personal data. Hence, the primary objective of an attacker

is to tamper with the building phase of a physical manifest

such that his TEE is assigned a computation task to leak the

data it manipulates. The randomness counter-measure assigns

a random position in the DEP to each participant. More

precisely, it ensures that for a given physical manifest PM, any

participant pj ∈ PM.P is able to locally verify that its position

and the position of any other participant in PM.P have been

obtained randomly. A protocol achieving this goal, adapted

from [22], can be found in [23]. The idea is to ensure that the

randomness is generated by an enclave once the querier has

committed to the list of participants. As we consider that

enclave integrity may not be compromised, this ensures that

this number is chosen uniformly at random even in the

presence of an active adversary.

Figure 2. Attestation flow for position i.

The second counter-measure to prevent an attacker from

selecting its position in the DEP is to add a sampling phase in

Step2 (physical manifest construction, Section III) by

selecting a given rate of individuals accepting to contribute

to the computation. The lower this rate , the more TEEs need

be corrupted to keep the same probability of selecting a given

position in the built DEP for an attacker. For conciseness, we

3

Participant
Physical Manifest
TEE Monitor
TEE Operation
Untrusted proxy
PDMS (personal data)
Attestation flow

Antecedent

Successor

Legend:

Participant
(at position i)

3

Antecedent

...

refer to a technical report [23] for details on randomness and

sampling algorithms and security proofs.

B. DEP Reshaping

In our context, the Cost factor of the Cost/Benefit ratio is

expressed in terms of the number of TEEs to corrupt and the

Benefit is measured by the amount of personal data leaked by

the attack. While randomness and sampling contribute to

exacerbate the Cost factor, our third countermeasure aims at

reducing the amount of raw data exposed at a single TEE. To

introduce the idea, let us consider a DEP with n participants,

among which m computation nodes computing a function f

and n-m collection nodes contributing with their own data.

With the randomness countermeasure, the probability to

corrupt exactly t computation nodes among m with c corrupted

participants (side-channel attacks), follows an hypergeometric

distribution 𝑝𝑛,𝑚,𝑐(𝑥 = 𝑡) = (𝑚
𝑥

)(𝑛−𝑚
𝑐−𝑥

) (𝑛
𝑐
)⁄ . The probability

of corrupting t or more computation tasks over m is then:

𝑝𝑛,𝑚,𝑐(𝑡 𝑥 𝑚) = ∑ (𝑚
𝑥

)(𝑛−𝑚
𝑐−𝑥

)
𝑚

𝑥=𝑡
(𝑛

𝑐
)⁄ .

With n=10000, m=10 and c=100 (which is a high number

of corrupted participants), the probability of corrupting at least

one computation node is p10000,10,100 (1 x 10)=0.095, while

with m=100, this probability drops to p10000,100,100 (10 x

100)=5.10-8. For simplicity, we assume that each participant

contributes with exactly one tuple mapped to a single

computation node, hence each computation node processes

(and may endanger) on average N/m tuples (1000 tuples here).

Figure 3. Probability and expected values in tuples of successful attacks.

Fig. 3 (left) plots the privacy benefit of increasing the

number of computation nodes by reshaping the DEP such that

each initial computation node mi is split in rf new computation

nodes sharing mi’s initial computing load, with rf denoting the

reshaping factor. More precisely, this curve plots the

probability to leak the same amount of data as with the

original settings in function of the number c of corrupted

nodes with different reshaping factor rf (e.g., rf=1 is the initial

settings with m=10 computation nodes, rf=2 means m=20,

etc.). Unsurprisingly, increasing rf dramatically decreases the

probability of an attack leaking the same amount of tuples

since rf different computation nodes (among rfm) must now

be corrupted with the same number c of corrupted participants.

Fig. 3 (right) shows the expected value in number of

leaked tuples (i.e., sum of the probability of a successful attack

on some computation nodes times the number of tuples

leaked) in the case of successful side-channel attacks with

c=100 corrupted nodes. The expected gain is always small,

although the number c of corrupted TEE is relatively high, and

reduces linearly with rf, which is deterrent for attackers.

Indeed, the probability to successfully break two computation

nodes is close to zero, hence the expected gain is nearly given

by the probability of breaking a single computation node times

the number of leaked tuples processed in that node, which

linearly decreases with rf. These results are true if m and c are

small compared to n, which is typically the case in our context.

The conclusion is that, while maximizing the distribution

of a computation has recognized virtues in terms of

performance and scalability (explaining the success of

MapReduce or Spark models), this strategy leads as well to a

better resilience against side-channel attacks. Maximizing the

distribution can be done by exploiting some properties of the

functions to be evaluated by DEP computation nodes:

Definition 6: Distributive function. Let f be a function to

be computed over a dataset D, f is said distributive if there

exists a function g such that f(D) = g(f(D1), f(D2), …, f(DN))

where Di forms a partition of D (e.g., D = i ((i, Di)) with

a selection function).

1E-10

1E-8

1E-6

1E-4

1E-2

1E+0

0 50 100 150 200

p
n

,m
,c

(
x

rf
)

Currupted participants (c)

rf = 1
rf = 4
rf = 8

0

2

4

6

8

10

12

rf=1 rf=4 rf=8

E
xp

ec
te

d
 g

ai
n

(i
n

tu
p
le

s)

Definition 7: Algebraic function. A function f is said

algebraic if f can be computed by a combination of distributive

functions (e.g., mean(D) = sum(D)/count(D)).

For any DEP node computing a distributive or algebraic

function, the number of D input tuples exposed to that node

can be linearly reduced by augmenting the number of Di

partitions in the same proportion. This general principle,

called DEP reshaping, splits distributive/algebraic tasks

allocated to a single participant into several tasks allocated to

different nodes, each working on a partition of the initial input.

Definition 8: rf-reshaping. Given an attribution function

𝑎𝑡: 𝑉 → {1, … , 𝑟𝑓} associating vertices to integers uniformly,

a distributed execution plan DEP’(V’,E’) is obtained by rf-

reshaping from DEP(V,E) such that: V’V and

vi=(ai,opi)V/ distrib_algebra(opi)=true vi,j’=(ai,j,opi)

V’ with j:1..rf, and vi,j’Ant(vi) in E’ and vAnt(vi) in E,

vAnt(vi,j’) with 𝑗 = 𝑎𝑡(𝑣) in E’.

This definition is illustrated on Fig. 4, showing a DEP with

6 additional computation nodes obtained by 3-reshaping from

an initial DEP with only 2 computation nodes. Note that the

communication overhead is very small, as only one additional

message from each added reshaped node to the original node

is produced compared to the original execution. In the

remainder of the paper, we call a cluster all vertices attributed

to the same reshaped node (i.e. 𝑎𝑡−1(𝑗)).

All other things being equal, rf-reshaping drastically

reduce the data exposure at each computing node. Indeed, for

any distributive/algebraic vertex vi in DEP, rf-reshaping

divides the probability of gaining access to the entire input D

of vi by a factor (𝑛−𝑟𝑓
𝑐−𝑟𝑓

) ∏ (𝑛 − 𝑖) (𝑐 − 𝑖)⁄𝑖=1..𝑟𝑓 .

The final issue is showing that rf-reshaping may hurt the

independence between the processed data and the dataflow as

specified in the initial DEP. Recall that a communication flow

E is said data independent if the DEP is such that personal

data cannot be inferred from observing the communication

pattern among participants. E can be data independent by

construction (e.g., broadcast-based algorithm) or be made

data independent for privacy concern (e.g., sending fake data

among participants to normalize the communications). It is

thus mandatory to preserve this independence.

Lemma 2. If the communication flow E of a distributed

execution plan DEP(V,E) is data independent, the

communication flow E’ of any DEP’(V’,E’) obtained by rf-

reshaping of DEP(V,E) is also data independent.

The result is ensured by the fact that the communication

flow in the DEP’ only depends on the communication pattern

in DEP and the at() function in Definition 8, which in turn

only depends on vertices identifiers and not on data. Hence,

the communication flow E’ reveals nothing more about the

transmitted data compared to E.

The rf-reshaping principle can be applied in many

practical examples of computations over distributed PDMSs,

ranging from simple statistical queries to big data analysis, as

illustrated in the validation section. The rf-reshaping process

can be automatically performed by a precompiler taking as

input a logical manifest LM and producing a transformed

logical manifest LMminExp minimizing data exposure for the

participants for each node computing distributive or algebraic

functions. The degree of distribution impacts the performance

and the protection of raw data in case of successful attacks

(see Section VI), but selecting the optimal strategy and

integrating it into a precompiler is left for future work.

Figure 4. 3-reshaping of DEP with m=2 distributive computation nodes.

VI. VALIDATION

The effectiveness of the solution in terms of security and

scalability is assessed on a platform composed of 8 SGX

capable machines with Intel I5-7200U and 16GB RAM,

Clustered antecedents

a1 a2

Root

result

a11 a12 a13

Agents added

by reshaping

a21 a22 a23

a1 a2

Root

……. … … …

result

Initial DEP DEP’ obtained by 3-reshaping of DEP

equipped with Intel SGX SDK 2.3.101 over Ubuntu 16.04.

We consider two use-cases of distributed processing over

personal data, to validate the genericity of our framework.

(a) Combining counter-measures (b) Impact of rf-reshaping on Cost

(c) Impact of rf-reshaping on Benefit (d) Performance without reshaping

(e) Performance with rf-reshaping (f) Time ratio with rf-reshaping

Figure 5. Security and performance evaluation.

Group-by aggregation. We consider a MapReduce-like

implementation of an aggregate with a group by query run

over distributed PDMSs. The processing is as follows: (1)

each mapper sends a couple (h(group_key), value) to a reducer

where h is a hash function which projects the group key on a

given reducer, (2) each reducer computes the aggregate

function over the values received for the group keys it

manages. If the aggregate function is distributive (e.g., count,

min, max, sum, rank, etc.) or algebraic (e.g., avg, var, etc.), rf-

reshaping is applied to all reducer nodes. Sub-reducer nodes

contribute to the computation of the function for a subset of a

grouping value and the initial reducers combine their work.

K-means clustering. It is similarly computed: (1) k initial

means representing the centroid of k clusters are randomly

generated by the querier and sent to all participants to initialize

the processing, (2) each participant acting as a mapper

computes its distance with these k means and sends back its

data to the reducer node managing the closest cluster, (3) each

reducer recomputes the new centroid of the cluster it manages

based on the data received from the mappers and sends it back

to all participants. Steps 2 and 3 are repeated a number of

times. The function computed by step 3 is algebraic since the

centroid of a cluster ci can be computed thanks to sums and

counts computed over all sub-clusters of ci. Hence, the number

of reducers in step 3 can also be arbitrarily augmented by rf-

reshaping, such that each of the k initial reducers is preceded

in DEP by a set of sub-reducers computing a partial centroid.

The SGX platform is used to perform real measurements

at small scale (up to 100 participants) and to calibrate an

analytical model required to conduct large scale experiments.

We used synthetic datasets since the primary goal is not

studying the peak performance for specific data distributions

and save seconds or minutes (manual surveys over thousands

of participants usually take weeks). We present in Fig. 5 a

summary of our results and give the main outcome. We refer

to [23] for extensive experiments and details.

Several conclusions can be drawn. First, even if the overall

time can be considered rather high (tens of minutes for large

numbers of participants), it is not a critical issue in our context

from a querier perspective. Second, rf-reshaping drastically

reduces the elapsed time by augmenting the parallelism while

decreasing the number of attestations between mappers and

reducers. Third rf-reshaping is deterrent for attackers by

acting on the Benefit/Cost ratio, even for low values of rf.

VII. RELATED WORKS

Several works focus on protecting outsourced databases

with encryption, but most of the existing encryption schemes

applied to databases have been shown vulnerable to inference

attacks [7]. Going further induces fully homomorphic

1E-31

1E-23

1E-15

1E-07

1E+01

0 100 200 300

P
ro

b
a
b

il
it

y
 o

f
s
u

c
c
e
s
s

Number of corrupted TEEs

Rnd.+Smpl.
Rnd.+Reshp.
Rnd.+Reshp.+Smpl. 1

100

10000

1 8 16

N
b

 o
f

c
o

rr
u

p
te

d
 T

E
E

s

Reshaping factor (rf)

Fixed target
Any target

0

1000

2000

1 8 16

N
b

 o
f

le
a
k
e
d

 t
u

p
le

s

Reshaping factor (rf)

Zipfian distribution
Uniform distribution

1

100

10000

20 200 3000 7000 10000

E
la

p
se

d
ti

m
e

(s
)

Number of mappers

K-means

Group-by

0

200

400

rf=8 rf=16 rf=8 rf=16

E
la

p
se

d
ti

m
e

(s
) 100 mappers

5000 mappers
10000 mappers

Group-by K-means

0

20

40

60

80

100

rf=1 rf=16 rf=1 rf=16

T
im

e
ra

ti
o

 (
%

)

Validity
Rnd.
Algo.

Group-by K-means

encryption [8] with intractable performance issues. Some

works [4] deploy secure hardware at database server side.

These solutions are centralized by nature and do not match our

assumption that no hardware module is perfectly secure.

In terms of decentralized computing, Secure Multi-Party

Computations (MPC) have been adapted to databases (e.g.

SMCQL [6]), but only support a few tens of participants.

Using secure hardware, TrustedPals [9,12] makes MPC more

scalable, but their goal and security assumptions differ from

ours. TrustedPals ensures that results are distributed to all

honest parties, and that all received results are consistent.

Hence, TrustedPals is highly fault tolerant as opposed to our

solution. Our solution is simpler, as it only aims at delivering

the result to a querier, and thus does away with the consensus

protocols. However, at the end of the computation, all

involved parties in TrustedPals hold the entirety of the data

within their security module, which would be unacceptable in

our case as some TEEs might be compromised.

Several works suggest distributed computation schemes

providing anonymous data exchanges and confidential

processing using gossip-style protocols [2]. They typically

scale well but are not generic in terms of computations.

Similarly, decentralized processing solutions based on secure

hardware have also been proposed for aggregate queries [17]

but do not match our genericity objective.

To the best of our knowledge, all works regarding

executing data oriented task using SGX (e.g. Ryoan [14]) have

a unique controller, as opposed to our setting where no unique

individual is supposed to be in control of the computation.

Additionally, most of the time this controller also provides the

data to be computed on. This greatly simplifies the problem as

a same controller verifies all enclaves and organizes the

computation. Other works [14], following VC3 [16], provide

SGX-based Map-Reduce frameworks for executing

computations in the cloud to ensure data confidentiality and

hide communication patterns between mappers and reducers,

but again, they consider a unique controller. Communication

between enclaves in these works is quite similar to ours, but

the assumption of a unique controller completely removes the

need for establishing trust at a local level, which is exactly

what our notion of local checkability aims at solving.

VIII. CONCLUSION

Smart disclosure initiatives and new regulations push for

the adoption of Personal Data Management Systems managed

under individual's control while keeping the capability to

cross personal data of multiple individuals (e.g., economic,

epidemiological or sociological studies). However, without

appropriate security measures, the risk is high to see

individuals refuse their contribution. Only fragmented

solutions have emerged so far. The generalization of Trusted

Execution Environment at the edge of the network changes

the game. This paper capitalizes on this trend and proposes a

generic secure decentralized computing framework where

each participant gains the assurance that his data is used for

the purpose he consents to and that only the final result is

disclosed. Conversely, the querier is assured that the result has

been honestly computed. We have shown the practicality of

the solution in terms of privacy and performance. We hope

that this work will lay the groundwork for thinking differently

about decentralized computing on personal data.

ACKNOWLEDGEMENTS

This research is supported by the ANR PerSoCloud grant no

ANR-16-CE39-0014.

REFERENCES

[1] European Parliament. General Data Protection Regulation. Law. (27

April 2016). https://gdpr-info.eu/

[2] T. Allard, G. Hébrail, E. Pacitti, et al. Chiaroscuro: Transparency and

privacy for massive personal time-series clustering. SIGMOD, 2015.

[3] N. Anciaux, P. Bonnet, L. Bouganim, B. Nguyen, P. Pucheral, I. S.

Popa, and G. Scerri. Personal data management systems: The security

and functionality standpoint. Information Systems, 80, 2019.

[4] A. Arasu and R. Kaushik. Oblivious query processing. In ICDT, 2014.

[5] M. Barbosa, B. Portela, G. Scerri, et al. Foundations of hardware based

attested computation and application to SGX. In EuroS&P, 2016.

[6] J. Bater, G. Elliott, C. Eggen, et al, and J. Rogers. SMCQL: secure

query processing for private data networks. PVLDB, 10(6), 2017.

[7] V. Bindschaedler, P. Grubbs, D. Cash, et al. The tao of inference in

privacy-protected databases. PVLDB, 11(11), 2018.

[8] D. Boneh, C. Gentry, S. Halevi, F.Wang, and D. J.Wu. Private database

queries using somewhat homomorphic encryption. ACNS, 2013.

[9] R. Cortiñas et al. Secure Failure Detection and Consensus in

TrustedPals. IEEE Trans. Dependable Sec. Comput. 9(4), 2012.

[10] I. Damgård, M. Keller, E. Larraia, et al. Practical covertly secure MPC

for dishonest majority - or: Breaking the SPDZ limits. ESORICS, 2013.

[11] A. Dinh, P. Saxena, C. Chang, et al. M2R: enabling strong-er privacy

in mapreduce computation. USENIX Security Symposium, 2015.

[12] M. Fort, F.C. Freiling, L.D. Penso et al. TrustedPals: Secure Multiparty

Computation Implemented with Smart Cards. ESORICS, 2006.

[13] T. Ge and S. B. Zdonik. Answering aggregation queries in a secure

system model. VLDB, 2007.

[14] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel. Ryoan: A distributed

sandbox for untrusted computation on secret data. OSDI, 2016.

[15] M. Sabt, M. Achemlal, et al. Trusted execution environment: What it

is, and what it is not. TrustCom/BigDataSE/ISPA (1), 2015.

[16] F. Schuster, M. Costa, C. Fournet, et al. VC3: trustworthy data

analytics in the cloud using SGX. S&P, 2015.

[17] Q. To, B. Nguyen, P. Pucheral. Private and scalable execution of SQL

aggregates on a secure decentralized architecture. TODS, 41(3), 2016.

[18] F. Tramèr, F. Zhang, H. Lin, et al. Sealed-glass proofs: Using

transparent enclaves to prove and sell knowledge. EuroS&P, 2017.

[19] W. Wang, G. Chen, X. Pan, et al. Leaky cauldron on the dark land:

Understanding memory side-channel hazards in SGX. CCS, 2017.

[20] I. Anati, S. Gueron, S. Johnson, et al. Innovative technology for CPU

based attestation and sealing. HASP, 2013.

[21] Zhang, Y., Genkin, D., Katz, J., et al. vSQL: Verifying arbitrary SQL

queries over dynamic outsourced databases. S&P, 2017.

[22] M. Backes, et al. CSAR. A Practical and Provable Technique to Make

Randomized Systems Accountable. In NDSS, vol. 9. 2009.

[23] R. Ladjel, et al. Trustworthy Distributed Computations on Personal

Data. Inria report. http://petrus.inria.fr/~anciaux/papers/TR.pdf, 2019.

http://petrus.inria.fr/~anciaux/papers/TR.pdf

