
HAL Id: hal-02269203
https://hal.science/hal-02269203v1

Submitted on 22 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A manifest-based framework for organizing the
management of personal data at the edge of the network

Riad Ladjel, Nicolas Anciaux, Philippe Pucheral, Guillaume Scerri

To cite this version:
Riad Ladjel, Nicolas Anciaux, Philippe Pucheral, Guillaume Scerri. A manifest-based framework for
organizing the management of personal data at the edge of the network. ISD 2019 - 28th International
Conference on Information Systems Development, Aug 2019, Toulon, France. �hal-02269203�

https://hal.science/hal-02269203v1
https://hal.archives-ouvertes.fr

A manifest-based framework for organizing the management of

personal data at the edge of the network

Riad Ladjel

Inria, UVSQ

Versailles, France riad.ladjel@inria.fr

Nicolas Anciaux

Inria, UVSQ

Versailles, France nicolas.anciaux@inria.fr

Philippe Pucheral

Inria, UVSQ

Versailles, France philippe.pucheral@uvsq.fr

Guillaume Scerri

Inria, UVSQ

Versailles, France guillaume.scerri@uvsq.fr

Abstract

Smart disclosure initiatives and new regulations such as GDPR allow individuals to get the

control back on their data by gathering their entire digital life in a Personal Data

Management Systems (PDMS). Multiple PDMS architectures exist, from centralized web

hosting solutions to self-data hosting at home. These solutions strongly differ on their

ability to preserve data privacy and to perform collective computations crossing data of

multiple individuals (e.g., epidemiological or social studies) but none of them satisfy both

objectives. The emergence of Trusted Execution Environments (TEE) changes the game.

We propose a solution called Trusted PDMS, combining the TEE and PDMS properties to

manage the data of each individual, and a Manifest-based framework to securely execute

collective computation on top of them. We demonstrate the practicality of the solution

through a real case-study being conducted over 10.000 patients in the healthcare field.

Keywords: Trusted Execution Environment, Secure Distributed Computing, Data Privacy.

1. Introduction

As Tim Berners Lee advocates, “time has come to restore the power of individuals on the

web” [23]. Smart disclosure initiatives (e.g., Blue and Green Button in the US, MiData in

UK, MesInfos in France) and new privacy-protection regulations (e.g., GDPR in Europe

[12]) are a first step in this direction, allowing individuals to retrieve their personal data

from the companies and administrations hosting them. Hence, they can gather their

complete digital environment in a single place, usually called Personal Cloud or Personal

Data Management Systems (PDMS) [4] and manage it under their control.

Several companies are now riding this Personal Cloud wave with highly diverse

solutions, ranging from centralized web hosting PDMS solutions (e.g., CozyCloud or

Digi.me) to fully decentralized PDMS hosted at home (e.g., CloudLocker or

MyCloudHome). The architectural dimension of the PDMS concept raises two important

and potentially conflicting challenges: (1) gathering personal data previously scattered

across distinct data silos generates new opportunities but also incurs new privacy threats

depending on where and how these data are hosted and (2) giving the power back to each

individual on his data could impede the development of new collective services of high

societal interest (e.g., computing statistics or clustering data for an epidemiological study).

Decentralized PDMS architectures have recognized privacy protection virtues by

decreasing the Benefit/Cost ratio of an attack compared to their centralized web hosting

counterparts. However, they make challenge (2) harder to tackle. How can we convince

individuals who selected a decentralized PMDS setting to engage their personal data in a

distributed process they do not control? Conversely, how could a service provider trust a

processing performed by a myriad of untrusted participants? No existing work, including

Multi-Party Computation (MPC) [9], gossip-based [2], homomorphic encryption-based

[13] or differential privacy-based [10] protocols fully answer this dual question in a

practical way. Existing solutions either compute a limited set of operations (e.g., count,

sum) in a scalable way or compute arbitrary functions on a limited number of participants.

In this paper, we argue that the emergence of Trusted Execution Environments (TEE) [20]

at the edge of the network Intel SGX, ARM's TrustZone or TPM components are becoming

omnipresent on every PC, tablets, smartphones and even smart objects drastically changes

the game. TEEs are able to efficiently compute arbitrary functions over sensitive data while

providing data confidentiality and code integrity. However, TEEs have been designed to

protect individual device/server rather than large scale distributed edge computing processes.

Moreover, while TEE tamper-resistance makes attacks difficult and costly, side-channel

attacks have been shown feasible [22]. Without appropriate counter-measures, a minority of

corrupted participants in a distributed processing could endanger data from the majority.

The solution proposed in this paper is twofold. First, we introduce the concept of

Trusted PDMS (TPDMS), that is the combination of a TEE and a PDMS in a same

dedicated box where only trusted code can be installed. Second, we propose a Manifest-

based framework which provides a mutual trust between participants and service provider

that a data processing task distributed among a large set of TPDMS will deliver a correct

result while protecting the privacy of individuals. We finally demonstrate the practicality

of the approach through an ongoing deployment of the technology in the medical-social

field, over 10.000 patients receiving care at home. Our contributions are the following:

 We analyze the main alternatives in terms of personal cloud architectures and

conclude from this analysis the need to deeply reconsider the way distributed computing

is engineered compared to traditional cloud solutions;

 We propose a manifest-based framework reconciling computation generality and

scalability in the context of TPDMS;

 We present a concrete instantiation of this protocol in the medical-social field,

evaluate it in terms of security, performance and societal impact.

The rest of the paper is organized as follows. Sections 2 and 3 focus on the two first

contributions mentioned above. Section 4 presents the medical-social instantiation of our

framework and Section 5 is devoted to its evaluation. Finally, Section 6 concludes.

2. Related Works and Problem Formulation

2.1. Analysis of PDMS Architecture Alternatives

The Personal Data Management Systems (PDMS) [4] concept, also called Personal Cloud,

PIMS [1], Personal Data Server [3] or Personal Data Store [19], attracts significant

attention from the research and industrial communities. We briefly review the main

families of solutions and compare their ability to tackle the two challenges identified in the

introduction, namely privacy preservation and distributed collective computations.

Centralized web hosting solutions. CozyCloud, Digi.me, Meeco, or Perkeep and

governmental programs like MyData.org (Finland), MesInfos.fing.org (France) or

MyDex.org (UK) are representative of this family. Individuals centralize their personal

data in a server managed by the PDMS provider and can access them through the internet.

These approaches rely on strong security hypotheses: (i) the PDMS provider and its

employees are assumed to be fully-honest, and (ii) the PDMS code as well as all

applications running on top of it must be trusted. This is critical in a centralized context

exacerbating the Benefit/Cost ratio of an attack. On the other hand, collective computations

are simplified by the centralization but the security of such processing remains an issue.

Zero-knowledge personal clouds such as SpiderOak or Sync and to a certain extent

MyDex or Digi.me mentioned above, propose a variation of the centralized web hosting

solutions where data is stored encrypted in the cloud and the user inherits the responsibility

to store and manage the encryption keys elsewhere. The price to pay for this increase of

security is the difficulty to develop advanced (local or distributed) services on top of zero-

knowledge personal clouds, reducing their use to a robust personal data safe.

Home cloud software solutions (e.g., OpenPDS [19], DataBox [8]) manage personal

data at the extremities of the network (e.g., within the user’s equipment) to circumvent the

security risks of data centralization. Hence, queries on user’s data can be computed locally

and only the result is sent back to the querier. However, these solutions implicitly assume

that the computing platform at the user side is trusted and cannot be tampered with.

Home cloud box (e.g., CloudLocker, MyCloudHome and many personal NAS solutions)

go further in this direction by offering a dedicated box that can store TBs of data and run a

server plugged on an individual’s home internet gateway. This solution alleviates the burden

of administrating a server on the individual’s device and logically isolates the user’s

computing environment from the box, they, however do not focus on security. Home cloud

software nor home cloud box consider secure distributed processing as a primary target.

The first conclusion that can be drawn from this analysis is that online personal cloud

solutions have the technical ability to perform distributed computations but suffer from

very strong hypotheses in terms of security. Conversely, decentralized approaches are more

likely to gain acceptance from the individuals but do not provide any privacy preserving

 solution to perform distributed computation (exporting their data on a central server to

perform the computation would obviously hurt the decentralization principle).

Decentralizing the processing implies to temporarily transfer personal data among

participants, transforming each into a vulnerability point. Two guarantees must then be

provided: (i) data confidentiality, i.e., any PDMS owner cannot access the data in transit

of other participants, and (ii) distributed computation integrity, i.e., any participant’s

PDMS can attest that any result it supplies corresponds to the assigned computation.

Classical distributed computation techniques used in enterprise systems do not apply here

due to the unusual scale of the distribution (i.e., the computation may target a fraction of

the population of a country). MPC works allow n users to perform computations involving

their inputs while guaranteeing that only the final result of a computation will be disclosed

but they are either not generic in terms of supported computation or not scalable in the

number of participants [9]. Typically, MPC adaptations to distributed databases contexts,

like SMCQL [7], either support only few tens of participants or are limited to specific

database operations. Alternatively, gossip-based protocols allow to work on fragmented

clear-text data exchanged among nodes and, when communication may reveal data content,

noise is added to provide differentially private [10] communication patterns. Gossip

protocols scale well but are not generic in terms of computations (e.g., they can evaluate

simple operations like sums, averages or ad-hoc data mining primitives like clustering [2]).

The second conclusion that can be drawn from this analysis is that privacy-preserving

distributed processing has traditionally been studied in the corporate cloud and database

context where the number of participants (servers) is kept small or in large scale

environment (e.g., sensor networks, smart metering) where the computation to be

performed is basic. Privacy-preserving distributed processing must thus be deeply

rethought to tackle the PDMS context.

2.2. TEE as Game-changer and Related Trust Model

The emergence of Trusted Execution Environments (TEE) [20] definitely changes the

game. A TEE combines tamper-resistant hardware and software components to guarantee:

(1) data confidentiality, meaning that private data residing in a TEE cannot be observed

from the outside and (2) code integrity, meaning that an attacker controlling a corrupted

user environment (or OS) cannot influence the behavior of a program executing within a

TEE. TEE are now omnipresent in end-user devices like PCs (e.g., Intel's Software Guard

eXtention (SGX) in Intel CPUs since Skylake version in 2015), mobile devices (e.g.,

ARM's TrustZone in ARM processors equipping smartphones and set-top boxes) and

dedicated platforms (e.g., TPM combined with CPU or MCU). All these solutions provide

the two properties mentioned above with different levels of performance and different

resilience to side-channel attacks which could compromise data confidentiality [22].

Anyway, side-channel attacks remain complex to perform and require physically

instrumenting the TEE, which prevents large scale attacks. Code integrity is more difficult

to compromise and not challenged today in most environments [16], [21].

In this paper, we assume that each individual is equipped with a trusted PDMS

(TPDMS) embedded in a dedicated hardware device. The proposed solution hence falls in

the Home cloud box family (see section 2.1), with the salient difference that the box now

provides defenses against attacks. More precisely, the box embeds a Trusted Computing

Base, i.e. a certified software composed of: (1) a personal data manager managing and

protecting the individual's data (storing, updating, querying data and enforcing access

control rules) and (2) a code loader ensuring the confidentiality and integrity of the code

(in the TEE sense) executed in the box. Thus, only the trusted data manager and code

loader, and additional external code certified and verified by the code loader (through a

signature of that code) can run in the box. Persistent personal data are stored outside the

security sphere, in a stable memory attached to the box (e.g., a SD card or a disk), but

encrypted by the TPDMS to protect them in confidentiality and integrity. Compared to a

regular Home cloud box, a TPDMS provides means to securely execute external code in

the box, opening the door to the design of secure distributed computation protocols.

Considering the omnipresence of TEE in most end-user devices today, building a TPDMS

platform is more than realistic. Section 4 presents a concrete instantiation of a TPDMS

platform combining a TPM (Trusted Platform Module) with a microcontroller but many

other TPDMS instances could be devised (e.g., a Raspberry-Pi with ARM Trustzone or a

personal cloud server or NAS with Intel SGX). We hence derive the following trust model:

Large set of trusted TPDMS, small set of corrupted TPDMS. We assume that each

individual is equipped with a TPDMS managing his personal data. As mentioned above,

despite the TEE tamper-resistance and the cost of such attacks, side-channel attacks have

been shown feasible. Hence, in a large scale setting, we cannot totally exclude the fact that

a small subset of TPDMS could have been instrumented by malicious participants opening

the door to side-channel attacks compromising the confidentiality property.

Trusted computation code. We consider that the code distributed to the participants to

contribute to a distributed computation has been carefully reviewed and approved

beforehand by a regulatory body (e.g., an association or national privacy regulatory

agency) which signed this code. But the fact that the downloaded code is trusted does not

imply that a whole distributed execution is trusted.

Untrusted infrastructure. Besides the presence of TPDMS, no security assumptions can

be made about the user's environment or the communication infrastructure.

2.3. Problem Statement

The problem can be formulated as follows: how to translate the trust put in the computation

code declaration, as certified by the regulatory body, into a mutual trust from all parties in

the concrete distributed execution of that code under the trust model above? Solving this

problem leads to satisfying the following properties:

 Mutual trust: assuming that the declared code is executed within TPDMSs, mutual trust

guarantees that: (1) only the data strictly specified for the computation is collected at each

participants’ PDMS, (2) only the final result of the computation can be disclosed, i.e., none

of the collected raw data of any participant is leaked, (3) this final result is honestly

computed as declared and (4) the computation code has the ability to check that any

collected data is genuine.

 Deterrence of side-channel attacks: assuming a small fraction of malicious participants

are involved in the computation with instrumented TPDMS, the deterrence property must

(1) guarantee that the leakage remains circumscribed to the data manipulated by the sole

corrupted TPDMS and (2) prevent the attackers from targeting a specific intermediate

result (e.g., sensitive data or data of some targeted participants).

To have a practical interest, the solution must finally: (1) be generic enough to support any

distributed computations (e.g., from simple aggregate queries to advanced machine learning

computations) and (2) scale to a large population (e.g., tens of thousands) of individuals.

3. Manifest-based Framework

3.1. Manifest-based Distributed Computation Framework

To ensure a collective computation that scrupulously respects the properties described

above, we propose a framework based on a Manifest describing the computation on which

all the actors agree and a distributed protocol based on TPDMSs performing the

computation in compliance with that Manifest. The solution is described in Figure 1. It is

conducted in three main steps:

Manifest declaration. The entity wishing to execute a distributed computation over

personal data (e.g., a statistic agency, association of patients), called the Querier, acts as a

data controller in the GDPR sense and produces a Manifest describing the computation.

Individual contributors give their consent on the basis of the purpose of that manifest, and

rely on regulatory bodies (e.g., WP29 members, CNIL) which validate the entire Manifest

with regard to good confidentiality practices. To this end, the manifest indicates the identity

of the Querier, which must be authorized for the purpose. It also provides the collection

queries expressed in any easily interpretable declarative language (e.g., SQL), so that the

regulatory body can verify that they reflect the principle of limited collection established

by the legislation for the intended use. The code of the implemented operators and the

organization of the data flow between them are also provided, and must correspond to the

declared purpose. The number of participants plays a dual role: it represents both a

threshold to be achieved for a sufficiently relevant result for the stated purpose and a

privacy threshold preventing the risk of re-identification of individual data in the final

result, which the regulator must also check. Once certified, the Manifest is published in a

Public store where it can be downloaded by individuals wishing to participate. Example 1

shows the manifest of a distributed group-by query in the social-health context.

Fig. 1. Manifest-based distributed computation framework.

Random assignment of operators to participants. Participants download the manifest,

and when a sufficient number consent to contribute with their data, each participant is

assigned an operator of the Manifest. Ensuring a random assignment is critical to deter

side-channel attacks on participants, by prohibiting corrupted participants from selecting

specific operators in the execution process for malicious purpose (operators manipulating

a large amount of data or receiving outputs from participants targeted by the attacker).

Purpose:

 Compute the avg number days of hospitalization prescribed

 group by patient’s age and dependency-level (Iso-Resource Group, GIR)

Operators code:

 mapper source code

 reducer source code

Dataflow between the operators:

 Number of mappers: 10000

 Number of reducers: 10

Collection queries:

 SELECT GIR, to_year(sysdate-birthdate) FROM Patient;

 SELECT avg(qty)FROM Prescription WHERE prescType = ‘hospitalization’;

Number of participants: 10000

Querier: ARS-Health-Agency, Public key: Rex2%ÃźHj6k7âĂę

Example 1. ‘Group-by’ Manifest expressed by health organization.

Secure distributed evaluation. Each participant’s TPDMS downloads the code of the

operator assigned to it and checks the code signature, authenticates the TPDMS of

participants supposed to exchange data with it (as specified in the random assignment) and

establishes communication channels with them. The participant then executes his operator,

potentially contributes personal data, and allows the computation to proceed by sending its

Querier

(Lab., Heatlh org.)

Regulatory Body

(DPO, CNIL, ANSSI…)

Manifest declaration

Random assignation
operators-to-TPDMSs

Secure
distributed

computation

Manifest download
and consent

Manifest validation

Individuals

(and their TPDMS :)

Result transmission

output to its successor. Once all participants have executed their operator, the end-result is

published on the public store encrypted with the public key of the Querier.

3.2. Random Assignment Protocol

Obtaining a random assignment of operators to participants is key to prevent any potential

attackers (Querier or any participants) colluding with corrupted TPDMS from being

assigned a targeted operator or position in the dataflow at execution. While existing

solutions have been proposed to ensure that a random number is chosen and attested in

distributed settings, e.g., [6], none can be applied to reach this specific goal as they assume

the list of participants is known in advance, as opposed to our case where the participant

list is chosen based on collected users’ consents. We propose a solution to produce a

provably random assignment, detailed in Fig. 2. As we consider TPDMS as trusted, the

random assignment can be delegated to any TPDMS. However, the challenge is avoiding

any malicious Participant or Querier aborting and replaying the assignment process a large

number of times, picking the best one for a potential attack.

Fig. 2. Random assignment of operators to participants.

To avoid such attacks, we make sure, in a first step of our protocol, that the Querier

commits to an assigning participant among the consenting participants. More precisely,

each consenting participant first declares itself by publishing its identity and the hash of a

random number used later to prove reception of the list of participants. Second, the protocol

ensures that once the list of participants has been fixed, the assignment is actually

performed randomly, and that this randomness can be checked by every participant. Hence,

once the Querier has gathered enough participants willing to participate, it broadcasts the

full list of participants together with the designated assigning participant, which is

acknowledged by each participant by disclosing the random number chosen in the initial

step. Following this, the designated assigning participant is sent the full list of participants

Q P1…

Consent : hi,pki

Pj… Pn

pkjrandom({pki})

{hi,pki},pkj

ri,pki

{hi,ri, pki}

Mas,SMas

/* on all P1…Pn */
if checksign(Mas, SMas, pkj) and

!t Mas,t.r=ri t.pk=pki
then execute(M, t.pos)

/* on all P1…Pn */
if Pi consents to M
ri random()
hi hash(ri)

/* only onPj */
ifi,hi=hash(ri) then
seed random()
Mas /*{ri,pki,posi}*/assign(M,seed)
SMas sign(Mas,skj)

Mas,SMas

Manifest : M

/* on all P1…Pn */
store pkj

M the manifest

Q the Querier

Pi with i(1,n) the Participants

pki their identity (public key)

ri a random chosen by Pi

hi the hash of ri

Pj the participant performing

the random assignment

skj its private key

Mas the random assignment

SMas the signature Mas with skj

(verifiable by any Pi)

Legend:

together with all the acknowledgements. He then checks that all acknowledgements are

valid, and performs a random assignment of operators to participants. Finally, he signs this

assignment and sends it back to the Querier.

Thus, the protocol ensures that when an individual consents to a manifest, the assignment

can only be made once, at random (any attempt to replay the assignment would be visible to

the participants and a restart require to obtain their consents again).

3.3. Global Assessment of the Manifest-based Framework

We sum up by showing how the framework satisfies the properties identified in Section 2.3.

Deterrence of attacks. This property first states that the data leakage due to an attack

must be circumscribed to the sole data manipulated by the corrupted TPDMS. This is

intrinsically achieved by never sharing any cryptographic information among different

TPDMS. Hence, any persistent data residing in a TPDMS is encrypted with secret keys

known only by that TPDMS and intermediate results in transit between a predecessor and

a successor TPDMS is encrypted with a session key (see below) and managed in clear-text

in that successor (inheriting the confidentiality property from the TEE processing it). The

second requirement is to prevent any attacker from targeting specific personal data, which

is the precise goal of the Random Assignment Protocol introduced in Section 3.2.

These requirements satisfy deterrence of attacks by drastically increasing the

Cost/Benefit ratio of an attack. Indeed, even if a fraction of TPDMSs is instrumented with

side-channel attacks compromising data confidentiality, such attack incurs a high cost of

tampering with secure hardware (with physical intervention of the PDMS owner) with a

benefit limited to obtaining the data manipulated by the sole corrupted TPDMSs, and

negligible probability for gaining any personal data of interest. Indeed, in a computation

manifest, we distinguish between participants assigned to a collection operator (which only

extracts personal raw data from the participant) and participants assigned to a computation

operator (which process personal data collected from others). Then, attacking any TPDMS

running a collection operator is of no interest since the attacker only gains access to his

own data. Moreover, the probability of a corrupted node being assigned a computation

operator is negligible in practice (see security analysis in Section 5). Thus, although more

elaborate strategies could be adopted to further maximize the Cost/Benefit ratio (e.g.,

blurring data), they are considered unnecessary in our context.

Mutual trust. The mutual trust property is guaranteed if two hypotheses hold: (H1) all

data exchanged between the participants’ TPDMSs are encrypted with session keys and

(H2) each TPDMS involved in the computation authenticates its neighboring participants

as legitimate TPDMSs complying with the random assignment for that manifest. The first

condition for mutual trust (see Section 2.3) stems from the fact that (1) the collection

queries are part of the manifest certified by the Regulatory body, (2) its authenticity is

cryptographically checked by each TPDMS and (3) the TPDMS evaluating these queries

is part of the Trusted Computing Base thereby guaranteeing the integrity of this collection

phase. The second condition is satisfied by construction since each TPDMS guarantees the

confidentiality of local data and H1 guarantees the confidentiality of intermediate data in

transit. The final result is itself encrypted with the public key of the Querier so that no other

data is ever leaked outside the TPDMS ecosystem. The third condition is again satisfied

by construction by H2 guaranteeing that only genuine operators are computed and conform

to the dataflow specified in the manifest. The last condition stems from the fact that (1)

local data can be manipulated in clear-text inside each TPDMS, allowing any form of

verification (e.g., check signature of data produced by a smart meter or quantified-self

device, or issued by an employer or a bank) and (2) H2 guarantees the integrity of the data

collection operator at each participant. Note that this guarantee holds even in the presence

of corrupted TPDMSs which could compromise the confidentiality property.

In conclusion, the proposed solution is generic enough to capture any distributed

execution plan where any node can be an operator of any complexity and edges are secure

communication channels between the TPDMS of participants executing the operators.

Compared to the state of the art, our manifest-based approach has the ability to reconcile

security with genericity and scalability. First, the TEE confidentiality property can be

leveraged to execute each operation over clear-text genuine data. Second, the number of

messages exchanged among participants only results from the distributed computation to

be performed, but not from the underlying security mechanism. Hence, unlike secure

Multiparty computations (MPC), homomorphic encryption, Gossip or Differential privacy

approaches, no computational constraint hurting genericity nor scalability need to be

introduced in the processing for security reasons.

4. A Trusted PDMS in the Medical-Social Field

This section presents an on-going deployment of a TPDMS in the medical-social field and

assesses the practicality of the Manifest framework.

Overview. End of 2017, the Yvelines district in France launched a public call for tender

to deploy an Electronic Healthcare Record (EHR) infrastructure facilitating the medical

and social care at home for elderly people. 10.000 patients are primarily targeted by this

initiative, with the objective to use it as a testbed for a larger medium-term

national/international deployment. The question raised by this initiative is threefold:

 How to make patients, caregivers and professionals trust the EHR security despite the

recent and massive privacy leakages due to piracy, scrutinization and opaque business

practices inherent to any data centralization process?

 How to combine privacy expectations with the collective benefits of data analysis tools to

rationalize care, improve business practices and predict disease evolution?

 How to make patient’s healthcare folder available even in a disconnected mode

considering the low adoption of internet by elderly people?

The Hippocad company, in partnership with the Inria research institute and the

University of Versailles (UVSQ), won this call for tender with a solution called hereafter

THPC (Trusted Health Personal Cloud). THPC is based on a home box, pictured in Figure

3, combining 3 usages: (1) effectiveness control and vigilance, (2) home care coordination

and (3) supervision (forthcoming). The hardware incorporates a number of sensors and

communication modules (in particular SigFox) managed by a first microcontroller (called

MCU1) devoted to the communication and sensing tasks. The data delivered by the box

are used by the Yvelines district to cover usage (1), that is adjusting the care payment to

their duration and performing a remote vigilance of the patient home. A second

microcontroller (MCU2: STM32F417, 168 MHz, 192 KB RAM, 1 MB of NOR storage)

is devoted to the PDMS managing the patient folder, a µ-SD card hosting the raw patient

data (encrypted by the PDMS) and a tamper-resistant TPM (Trusted Platform Module)

securing the cryptographic keys and the boot phase of the PDMS in MCU2. As detailed

next, the combination of a TPM with MCU2 forms a TPDMS. Care professionals interact

with the PDMS (i.e., query and update the patient’s folder) through Bluetooth connected

smartphone apps, covering usage (2). Finally, volunteer patients accepting to contribute to

distributed computations (usage (3)), will be equipped with a box variant where the SigFox

module is replaced by a GPRS module.

Fig. 3. Architecture of the THPC solution.

The PDMS engine itself has been specifically designed by Inria/UVSQ to

accommodate the constraints of MCU2. This embedded PDMS is a full-fledged personal

database server capable of storing data in tables, querying them in SQL, and provides

access control policies. Hence, care professionals can each interact with the patient’s folder

according to the privileges associated to their role (e.g., a physician and a nurse will not

get access to the same data). Finally, the patient’s data is replicated in an encrypted archive

Usage 1

Effectiveness

control & vigilance

Sigfox/GPRS

Yvelines District

8000 households

262 counties

10000 patients

Usage 3

Supervision Bluetooth

Usage 2

Home care

coordination

on a remote server to be able to recover it in case of crash. A specific master key recovery

process (based on Shamir’s secret sharing) has been designed to guarantee that no one but

the patient can recover this master key.

THPC as an instance of Trusted PDMS. The THPC platform described above is an

illustrative example of TPDMS. As introduced in Section 2.2, a TPDMS is a combination

of a TEE and a PDMS software embedded in a same dedicated hardware device, providing

confidentiality and integrity guarantees for the code running in this device. The presence

of two separate MCUs answers security concerns, indeed the Trusted Computing Base

(TCB) is limited to the code located in MCU2 and does not include drivers and sensors

(managed by MCU1) and is thus minimalistic. Additionally, the TCB is cryptographically

signed. The TPM protecting the box is used at boot time (and NOR flash time) to check

the genuineness of the PDMS code by checking the signature. The PDMS code in turn can

download external pieces of code corresponding to the operators extracted from a Manifest,

check their integrity thanks to the code signature provided by the Regulatory body, and run

it. Hence, no code other than the TCB and signed operators can run in the box. The TPM

also protects the cryptographic certificate that securely identifies the box and the master

key protecting the personal database footprint on the µ-SD card. Note however that, while

the TPM is tamper-resistant, the MCU2 is not. Hence, a motivated attacker could

physically instrument his box to spy the content of the RAM at run time.

Distributed computations of interest. The next critical step of the project is to

integrate usage (3) (supervision). GPRS variant of the boxes are under development to

establish a communication network via a central server settled by the Hippocad company,

which plays the role of a communication gateway between the THPC boxes (it relays

encrypted data bunches between THPC boxes but cannot access to the underlying data).

Two essential distributed computations are considered, namely the Group-by and K-means

computations. Group-by allows computing simple statistics by evaluating aggregate

functions (sum, average, min, max, etc.) on population subsets grouped by various

dimensions (the level of dependence or GIR, age, gender, income, etc.). Such statistics are

of general interest in their own and are also often used to calibrate more sophisticated data

analysis techniques (e.g., accurately calibrate the k parameter of a K-means computation).

K-means is one of the most popular clustering technique and is broadly used to analyze

health data [17]. To date however, few studies was conducted on home care [15] because

data management techniques for this type of care are still emerging. Yet, K-means

techniques already delivered significant results to predict the evolution of patient

dependency level after a hip fracture [11] or Alzheimer symptoms, and derive from that

the required evolution of the home cares to be provided and their cost. The first two

Manifest-based computations considered in the project cover these use cases as follows:

 The Group-by manifest is the one presented in Example 1, using the usual map-reduce

implementation of a Group-by computation, where operators executed by participants are

the map and reduce task respectively. It computes the sum and average duration of home

visits by professionals grouped by professional category and level of dependence (GIR)

of the patient. Such statistics are expected to help adjusting the duration of interventions

and the level of assistance according to the patients’ situation.

 The K-means manifest is inspired by a previous study conducted in Canada with

elderly people in home care. This study analyses 37 variables, and provides 7 centroids

[5] that finely characterize the people cared for. On a similar map-reduce basis, we define

K-means manifests computed over distributed PDMSs in three steps: (1) k initial means

representing the centroid of k clusters are randomly generated by the Querier and sent to all

participants to initialize the processing, (2) each participant playing a mapper role computes

its distance with these k means and sends back its data to the reducer node managing the

closest cluster, (3) each reducer recomputes the new centroid of the cluster it manages based

on the data received from the mappers and sends it back to all participants. Steps 2 and 3 are

repeated a given number of times or until convergence.

In Section 5, we give preliminary measures obtained by a combination of real measures

and simulations for these two manifests since they are not yet deployed. Running manifests

in the THPC context has required an adaptation of the random assignation protocol to cope

with the intrinsic limitation of GPRS in terms of communication bandwidth.

Adaptation of the Random Assignment Protocol to the THPC context. Given the

low bandwidth of the THPC boxes (GPRS communications), a critical problem is limiting

the amount of data transmitted to all participants, as hundreds of KBs broadcasted to all

thousands of participants would not be compatible with acceptable performance. In order

to reach this goal, we optimize the two main parts of the random assignation protocol

(Section 3.2) that lead to transmission of large amounts of data. The main optimization is

making sure that we do not need to transmit neither the whole assignment nor the whole

manifest to all participants as they only need their part of the assignment and the manifest

related to their part of the computation. However, we need to make sure that the integrity

of the whole manifest and assignment is ensured. In order to achieve these two seemingly

antagonistic goals, we make use of Merkle hash trees [18] over the corresponding data

structures. The properties of the Merkle hash tree ensures that given the root of the hash

tree, it is possible to provide a small checksum proving (in the cryptographic sense) that an

element belongs to the corresponding hash tree, and it is computationally infeasible to forge

such a proof. Note that the checksum is a logarithmic (in the number of values in the tree)

number of hashed values and thus stays manageable (small size). Additionally, we avoid

broadcasting the whole list of participants as only the assigning participant needs to

perform checks on this list. We only broadcast a cryptographic hash of this list, and only

send it in full to the assigning participant who actually needs to check it. The assigning

participant however does not need to send back the full assignment, only a Merkle hash

tree signed with its private key, and the random seed used to generate the assignment (so

that the Querier can reconstruct it) is sent back. Finally, in order to perform its task in the

manifest, any participant only needs its position together with the corresponding operator,

collection queries and data flow and proof of membership to the logical manifest.

Additionally, the participant needs to receive proof that the assignment is correct.

Summing up, we reduce the communication load during assignment building phase

from a few broadcasts of a few hundreds of KB (for tens of thousands of participants) to

only one large download for the assigning participant (again a few hundreds of KB), and

small downloads/uploads (a few tens of Bytes) for all other participants, drastically

reducing the overall communication load, and making it manageable in constrained setting.

5. Validation

While the THPC platform is still under deployment over the 10.000 targeted patients, we

can already draw interesting lessons learned and present preliminary performance and

security results of the Manifest framework applied to the Group-by and K-means cases.

5.1. Lessons learned for the Deployment of THPC Solution

An important criterion for the Yvelines District when selecting the THPC solution was its

compliance with the new GDPR regulations and its ability to foster its adoption by

patients and professionals.

Adoption by patients. From the patients’ perspective, a crucial point was to provide

differentiated views of their medical-social folder (e.g., a nurse is not supposed to see the

income of the elderly person). To this end, a RBAC matrix (role-based access control) has

been defined so that a professional owning a badge with a certificate attesting role R can

play this role with the appropriate privileges on all patients’ boxes. Each patient can

explicitly - and physically - express his consent (or not) to the access of a given professional

by allowing access to his box during the consultation, as he would do with a paper folder.

The patient can also express his consent, with the help of his referent, for each manifest. A

notable effect of our proposal is to consent to a specific use of the data and to disclose only

the computed result rather than all raw data as usual (e.g., consenting to an Android

application manifest provides an unconditional access to the raw data).

Adoption by professionals. Professionals are reluctant to use an EHR solution which

could disclose their contact details, planning and statistical information that may reveal

their professional practice (e.g., quantity of drugs prescribed or duration and frequency of

home visits). A decentralized and secured solution is a great vector of adoption compared

to any central server solution. Similarly, professionals are usually reluctant to see the data

related to their practice involved in statistical studies unless strict anonymization

guarantees can be provided. While the consent of the professionals is not requested for

distributed computations, a desirable effect of our proposal is to never disclose individual

data referring to a given professional, and submit all computation to regulatory approval.

5.2. Performance and Security Evaluation of the Manifest-based Framework

We validate the effectiveness of our approach on the Group-by and K-means use-cases.

Experimental setting. We implemented the corresponding mappers and reducers code

in the THPC box with a server used to route (encrypted) messages between participants,

as described in Section 4. We computed the execution time while considering different

numbers of participants and amount of data transferred during the computations. We used

a simulation to derive execution times with large numbers of participants. The results are

shown in Fig. 4 (the curves are in log. scale). For the Group-by case we consider an

implementation with 10 reducers and 50 different group keys, while for the K-means we

consider 7 different clusters with 1 cluster per reducer as in [5] using a traditional distance

metric [14]. We used synthetic datasets, as the objective is not to choose the most efficient

implementation of a given computation, but rather to assess the efficiency of the manifest-

based protocol on real use-cases. As cryptographic tools we used ECC 256 bits for

asymmetric encryption, ECDSA signature scheme, AES 128 bits for symmetric encryption

and SHA-2 as a hash function, leveraging the hardware acceleration provided by MCU2.

(a) Execution time (assignment)

(b) Execution time (computation) (c) Overall performance ratios

(d) Exchanged data (by participant) (e) Exchanged data (in total) (f) Deterrence of attacks

Fig. 4. Performance and security evaluation.

Performance evaluation. Figures 4.a-b-d-e plot the various costs associated with our

protocol. First, the optimization of our random assignment protocol has a strong impact on

its execution time, from 75 seconds without optimization down to 22 seconds with 10000

participants (this cost depends on the number of participants, but not on the query

performed), as well as on the volume of data exchanges, from 800 KB per participant

1

10

100

2000 5000 7000 10000

E
la

p
se

d
 t

im
e

(s
)

Number of participants

Assignment

Opt. assignment

1

10

100

2000 5000 7000 10000

E
la

p
se

d
 t

im
e

(s
)

Number of participants

GroupBy

Kmeans

58%31%

11%

Communication Crypto. Algorithm

54%
30%

16%

GroupBy Kmeans

1

10

100

1000

10000

2000 5000 7000 10000D
at

a
tr

an
sm

is
si

o
n

(K
B

)

Number of participants

Assignment

Opt. assignment

1

10

100

1000

10000

2000 5000 7000 10000

D
at

a
tr

an
sm

is
si

o
n

(M
B

)

Number of participants

Assignment
Opt. assignment

0

0,01

0,02

0,03

1 5 10 15 20

P
ro

b
ab

ili
ty

o

f
su

cc
es

s

Nb of colluding corrupted TPDMS

Kmeans
GroupBy
Targeted attack

without optimization down to 13 KB (with in total, 7 GB exchanged data down to 130

MB). Once the assignation is performed, the query computation time remains reasonable,

with 18 seconds (resp. 40 seconds) for a Group-by (resp. K-means) over 10000 participants.

Finally, the overhead incurred by the random assignation is limited (e.g., between 20 and

30% of overall time), and the main part of the cost is due to communications (see Fig. 4.c).

Fig. 4.f shows the tremendous impact of the random assignment protocol in terms of

security. It plots the probability for a set of colluding malicious participants, acting with

corrupted TPDMSs in Group-by and K-means computations, to be assigned a reducer

operator (hence gaining access to data produced by other participants) or to the data of a

given participant of interest (targeted attack). This probability remains very low (few

percent) even if several participants successfully corrupt their TPDMS and collude.

The main lessons drawn from these experiments are: First, even with the hardware

limitations of the box in terms of computing power and communication throughput, the

global time is rather low and acceptable for this kind of study (less than a minute for 10000

participants in comparison with manual epidemiological surveys which may last weeks).

Second, the optimization of the assignment protocol has a decisive impact on both

execution times and data volumes exchanged, with a significant financial benefit in the

context of pay-per-use communication services (such as GPRS network).

6. Conclusion

The concept of TPDMS combined with a Manifest-based framework leverages the security

properties provided by TEE to build a comprehensive personal data management solution.

This solution reconciles the privacy preservation expected by individuals with the ability

to perform collective computations of prime societal interest. We expect that such solution

could pave the way to new research works and industrial initiatives tackling the privacy-

preserving distributed computing challenge with a new spirit and vision.

Acknowledgements

This research is supported by the ANR PerSoCloud grant no ANR-16-CE39-0014.

References

1. Abiteboul, S., André, B., Kaplan, D.: Managing your digital life. CACM,58(5) (2015).

2. Allard, T., Hébrail, G., Pacitti, E., Masseglia, F.: Chiaroscuro: Transparency and privacy

for massive personal time-series clustering. In: ACM SIGMOD, (2015).

3. Allard, T., Anciaux, N., Bouganim, L., Yanli, G., Le Folgoc, L., Nguyen, B., Pucheral, P.,

Ray, I., Yin, S.: Secure Personal Data Servers: a vision paper. In: VLDB, (2010).

4. Anciaux, N., Bonnet, P., Bouganim, L., Nguyen, et al.: Personal Data Management

Systems: The Security and Functionality Standpoint. Information Systems, 80, (2019).

5. Armstrong, J., Zhu, M., Hirdes, J., Stolee, P.: K-means cluster analysis of rehabilitation

service users in the home health care system of Ontario: Examining the heterogeneity of a

complex geriatric population. Arch. of physical medicine and rehab., 93(12) (2012).

6. Backes, M., Druschel, P., Haeberlen, A., Unruh, D.: A Practical and Provable Technique

to Make Randomized Systems Accountable. In: NDSS, 9 (2009).

7. Bater, J., Elliott, G., Eggen, C., Rogers, J.: SMCQL: secure query processing for private

data networks. PVLDB, 10(6) (2017).

8. Chaudhry, A., Crowcroft, J., Howard, H., Haddadi, H., Howard, H., Madhavapeddy, A.,

Mortier, R.: Personal data: thinking inside the box. In: Critical Alternatives (2015).

9. Damgård, I., Keller, M., Larraia, E., Pastro, et al..: Practical covertly secure MPC for

dishonest majority - or: Breaking the SPDZ limits. In: ESORICS (2013).

10. Dwork, C.: Differential privacy. In: ICALP (2006).

11. Elbattah, M., Molloy, O.: Clustering-Aided Approach for Predicting Patient Outcomes

with Application to Elderly Healthcare in Ireland. In: Workshops at AAAI (2017).

12. General Data Protection Regulation. (2016). https://gdpr-info.eu/. Accessed August, 2019

13. Ge, T., Zdonik, S.: Answering Aggregation Queries in a Secure Model. In: VLDB (2007).

14. Huang, Z.: Extensions to the k-means Algorithm for Clustering Large Data Sets with

Categorical Values, pp 283–304. Data Mining and Knowledge Discovery (1998).

15. Johnson, S., Bacsu, T., Jeffery, B., Novik, N.: No Place Like Home: A Systematic

Review of Home Care for Older Adults. Canadian Journal on Aging, 37(4) (2018).

16. Ladjel, R., Anciaux, N, Pucheral, P., Scerri, G.: Trustworthy Distributed Computations on

Personal Data Using Trusted Execution Environments. In: TrustCom (2019)

17. Liao, M., Li, Y, Kianifard, F, Obi, Z, Arcona, S.: Cluster analysis and its application to

healthcare claims data: a study of end-stage renal disease patients who initiated

hemodialysis. BMC Nephrology (2016).

18. Merkle, C.: Protocols for public key cryptosystems. In: S&P (1980).

19. De Montjoye, Y., Shmueli, E., Wang, S., Pentland, A.: OpenPDS: Protecting the privacy

of metadata through SafeAnswers. PloS one, 9(7) (2014).

20. Sabt, M., Achemlal, M., Bouabdallah, A.: Trusted Execution Environment: What it is,

and what it is not. In: TrustCom/BigDataSE/ISPA (1) (2015).

21. Tramèr, F., Zhang, F., Lin, H., Hubaux J., Juels, A., Shi, E.: Sealed-glass proofs: Using

transparent enclaves to prove and sell knowledge. In: EuroS&P (2017).

22. Wang, W., Chen, G., Pan, X., Zhang, Y., Wang, X., Tang, H., Gunter, A.: Leaky cauldron

on the dark land: Understanding memory side-channel hazards in SGX. In: CCS (2017)

23. www.inrupt.com/blog/one-small-step-for-the-web, Sept. (2018). Accessed August, 2019.

