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Abstract 

Smart disclosure initiatives and new regulations such as GDPR allow individuals to get the 

control back on their data by gathering their entire digital life in a Personal Data 

Management Systems (PDMS). Multiple PDMS architectures exist, from centralized web 

hosting solutions to self-data hosting at home. These solutions strongly differ on their 

ability to preserve data privacy and to perform collective computations crossing data of 

multiple individuals (e.g., epidemiological or social studies) but none of them satisfy both 

objectives. The emergence of Trusted Execution Environments (TEE) changes the game. 

We propose a solution called Trusted PDMS, combining the TEE and PDMS properties to 

manage the data of each individual, and a Manifest-based framework to securely execute 

collective computation on top of them. We demonstrate the practicality of the solution 

through a real case-study being conducted over 10.000 patients in the healthcare field. 

Keywords: Trusted Execution Environment, Secure Distributed Computing, Data Privacy. 

1. Introduction 

As Tim Berners Lee advocates, “time has come to restore the power of individuals on the 

web” [23]. Smart disclosure initiatives (e.g., Blue and Green Button in the US, MiData in 

UK, MesInfos in France) and new privacy-protection regulations (e.g., GDPR in Europe 

[12]) are a first step in this direction, allowing individuals to retrieve their personal data 

from the companies and administrations hosting them. Hence, they can gather their 

complete digital environment in a single place, usually called Personal Cloud or Personal 

Data Management Systems (PDMS) [4] and manage it under their control.  

Several companies are now riding this Personal Cloud wave with highly diverse 



 

solutions, ranging from centralized web hosting PDMS solutions (e.g., CozyCloud or 

Digi.me) to fully decentralized PDMS hosted at home (e.g., CloudLocker or 

MyCloudHome). The architectural dimension of the PDMS concept raises two important 

and potentially conflicting challenges: (1) gathering personal data previously scattered 

across distinct data silos generates new opportunities but also incurs new privacy threats 

depending on where and how these data are hosted and (2) giving the power back to each 

individual on his data could impede the development of new collective services of high 

societal interest (e.g., computing statistics or clustering data for an epidemiological study). 

Decentralized PDMS architectures have recognized privacy protection virtues by 

decreasing the Benefit/Cost ratio of an attack compared to their centralized web hosting 

counterparts. However, they make challenge (2) harder to tackle. How can we convince 

individuals who selected a decentralized PMDS setting to engage their personal data in a 

distributed process they do not control? Conversely, how could a service provider trust a 

processing performed by a myriad of untrusted participants? No existing work, including 

Multi-Party Computation (MPC) [9], gossip-based [2], homomorphic encryption-based 

[13] or differential privacy-based [10] protocols fully answer this dual question in a 

practical way. Existing solutions either compute a limited set of operations (e.g., count, 

sum) in a scalable way or compute arbitrary functions on a limited number of participants. 

In this paper, we argue that the emergence of Trusted Execution Environments (TEE) [20] 

at the edge of the network  Intel SGX, ARM's TrustZone or TPM components are becoming 

omnipresent on every PC, tablets, smartphones and even smart objects  drastically changes 

the game. TEEs are able to efficiently compute arbitrary functions over sensitive data while 

providing data confidentiality and code integrity. However, TEEs have been designed to 

protect individual device/server rather than large scale distributed edge computing processes. 

Moreover, while TEE tamper-resistance makes attacks difficult and costly, side-channel 

attacks have been shown feasible [22]. Without appropriate counter-measures, a minority of 

corrupted participants in a distributed processing could endanger data from the majority. 

The solution proposed in this paper is twofold. First, we introduce the concept of 

Trusted PDMS (TPDMS), that is the combination of a TEE and a PDMS in a same 

dedicated box where only trusted code can be installed. Second, we propose a Manifest-

based framework which provides a mutual trust between participants and service provider 

that a data processing task distributed among a large set of TPDMS will deliver a correct 

result while protecting the privacy of individuals. We finally demonstrate the practicality 

of the approach through an ongoing deployment of the technology in the medical-social 

field, over 10.000 patients receiving care at home. Our contributions are the following: 

 We analyze the main alternatives in terms of personal cloud architectures and 

conclude from this analysis the need to deeply reconsider the way distributed computing 

is engineered compared to traditional cloud solutions; 



 We propose a manifest-based framework reconciling computation generality and 

scalability in the context of TPDMS; 

 We present a concrete instantiation of this protocol in the medical-social field, 

evaluate it in terms of security, performance and societal impact. 

The rest of the paper is organized as follows. Sections 2 and 3 focus on the two first 

contributions mentioned above. Section 4 presents the medical-social instantiation of our 

framework and Section 5 is devoted to its evaluation. Finally, Section 6 concludes. 

2. Related Works and Problem Formulation 

2.1. Analysis of PDMS Architecture Alternatives 

The Personal Data Management Systems (PDMS) [4] concept, also called Personal Cloud, 

PIMS [1], Personal Data Server [3] or Personal Data Store [19], attracts significant 

attention from the research and industrial communities. We briefly review the main 

families of solutions and compare their ability to tackle the two challenges identified in the 

introduction, namely privacy preservation and distributed collective computations.  

Centralized web hosting solutions. CozyCloud, Digi.me, Meeco, or Perkeep and 

governmental programs like MyData.org (Finland), MesInfos.fing.org (France) or 

MyDex.org (UK) are representative of this family. Individuals centralize their personal 

data in a server managed by the PDMS provider and can access them through the internet. 

These approaches rely on strong security hypotheses: (i) the PDMS provider and its 

employees are assumed to be fully-honest, and (ii) the PDMS code as well as all 

applications running on top of it must be trusted. This is critical in a centralized context 

exacerbating the Benefit/Cost ratio of an attack. On the other hand, collective computations 

are simplified by the centralization but the security of such processing remains an issue. 

Zero-knowledge personal clouds such as SpiderOak or Sync and to a certain extent 

MyDex or Digi.me mentioned above, propose a variation of the centralized web hosting 

solutions where data is stored encrypted in the cloud and the user inherits the responsibility 

to store and manage the encryption keys elsewhere. The price to pay for this increase of 

security is the difficulty to develop advanced (local or distributed) services on top of zero-

knowledge personal clouds, reducing their use to a robust personal data safe. 

Home cloud software solutions (e.g., OpenPDS [19], DataBox [8]) manage personal 

data at the extremities of the network (e.g., within the user’s equipment) to circumvent the 

security risks of data centralization. Hence, queries on user’s data can be computed locally 

and only the result is sent back to the querier. However, these solutions implicitly assume 

that the computing platform at the user side is trusted and cannot be tampered with. 

Home cloud box (e.g., CloudLocker, MyCloudHome and many personal NAS solutions) 

go further in this direction by offering a dedicated box that can store TBs of data and run a 

server plugged on an individual’s home internet gateway. This solution alleviates the burden 



 

of administrating a server on the individual’s device and logically isolates the user’s 

computing environment from the box, they, however do not focus on security. Home cloud 

software nor home cloud box consider secure distributed processing as a primary target. 

The first conclusion that can be drawn from this analysis is that online personal cloud 

solutions have the technical ability to perform distributed computations but suffer from 

very strong hypotheses in terms of security. Conversely, decentralized approaches are more 

likely to gain acceptance from the individuals but do not provide any  privacy preserving 

 solution to perform distributed computation (exporting their data on a central server to 

perform the computation would obviously hurt the decentralization principle). 

Decentralizing the processing implies to temporarily transfer personal data among 

participants, transforming each into a vulnerability point. Two guarantees must then be 

provided: (i) data confidentiality, i.e., any PDMS owner cannot access the data in transit 

of other participants, and (ii) distributed computation integrity, i.e., any participant’s 

PDMS can attest that any result it supplies corresponds to the assigned computation. 

Classical distributed computation techniques used in enterprise systems do not apply here 

due to the unusual scale of the distribution (i.e., the computation may target a fraction of 

the population of a country). MPC works allow n users to perform computations involving 

their inputs while guaranteeing that only the final result of a computation will be disclosed 

but they are either not generic in terms of supported computation or not scalable in the 

number of participants [9]. Typically, MPC adaptations to distributed databases contexts, 

like SMCQL [7], either support only few tens of participants or are limited to specific 

database operations. Alternatively, gossip-based protocols allow to work on fragmented 

clear-text data exchanged among nodes and, when communication may reveal data content, 

noise is added to provide differentially private [10] communication patterns. Gossip 

protocols scale well but are not generic in terms of computations (e.g., they can evaluate 

simple operations like sums, averages or ad-hoc data mining primitives like clustering [2]). 

The second conclusion that can be drawn from this analysis is that privacy-preserving 

distributed processing has traditionally been studied in the corporate cloud and database 

context where the number of participants (servers) is kept small or in large scale 

environment (e.g., sensor networks, smart metering) where the computation to be 

performed is basic. Privacy-preserving distributed processing must thus be deeply 

rethought to tackle the PDMS context. 

2.2. TEE as Game-changer and Related Trust Model 

The emergence of Trusted Execution Environments (TEE) [20] definitely changes the 

game. A TEE combines tamper-resistant hardware and software components to guarantee: 

(1) data confidentiality, meaning that private data residing in a TEE cannot be observed 

from the outside and (2) code integrity, meaning that an attacker controlling a corrupted 



user environment (or OS) cannot influence the behavior of a program executing within a 

TEE. TEE are now omnipresent in end-user devices like PCs (e.g., Intel's Software Guard 

eXtention (SGX) in Intel CPUs since Skylake version in 2015), mobile devices (e.g., 

ARM's TrustZone in ARM processors equipping smartphones and set-top boxes) and 

dedicated platforms (e.g., TPM combined with CPU or MCU). All these solutions provide 

the two properties mentioned above with different levels of performance and different 

resilience to side-channel attacks which could compromise data confidentiality [22]. 

Anyway, side-channel attacks remain complex to perform and require physically 

instrumenting the TEE, which prevents large scale attacks. Code integrity is more difficult 

to compromise and not challenged today in most environments [16], [21]. 

In this paper, we assume that each individual is equipped with a trusted PDMS 

(TPDMS) embedded in a dedicated hardware device. The proposed solution hence falls in 

the Home cloud box family (see section 2.1), with the salient difference that the box now 

provides defenses against attacks. More precisely, the box embeds a Trusted Computing 

Base, i.e. a certified software composed of: (1) a personal data manager managing and 

protecting the individual's data (storing, updating, querying data and enforcing access 

control rules) and (2) a code loader ensuring the confidentiality and integrity of the code 

(in the TEE sense) executed in the box. Thus, only the trusted data manager and code 

loader, and additional external code certified and verified by the code loader (through a 

signature of that code) can run in the box. Persistent personal data are stored outside the 

security sphere, in a stable memory attached to the box (e.g., a SD card or a disk), but 

encrypted by the TPDMS to protect them in confidentiality and integrity. Compared to a 

regular Home cloud box, a TPDMS provides means to securely execute external code in 

the box, opening the door to the design of secure distributed computation protocols. 

Considering the omnipresence of TEE in most end-user devices today, building a TPDMS 

platform is more than realistic. Section 4 presents a concrete instantiation of a TPDMS 

platform combining a TPM (Trusted Platform Module) with a microcontroller but many 

other TPDMS instances could be devised (e.g., a Raspberry-Pi with ARM Trustzone or a 

personal cloud server or NAS with Intel SGX). We hence derive the following trust model: 

Large set of trusted TPDMS, small set of corrupted TPDMS. We assume that each 

individual is equipped with a TPDMS managing his personal data. As mentioned above, 

despite the TEE tamper-resistance and the cost of such attacks, side-channel attacks have 

been shown feasible. Hence, in a large scale setting, we cannot totally exclude the fact that 

a small subset of TPDMS could have been instrumented by malicious participants opening 

the door to side-channel attacks compromising the confidentiality property. 

Trusted computation code. We consider that the code distributed to the participants to 

contribute to a distributed computation has been carefully reviewed and approved 

beforehand by a regulatory body (e.g., an association or national privacy regulatory 



 

agency) which signed this code. But the fact that the downloaded code is trusted does not 

imply that a whole distributed execution is trusted. 

Untrusted infrastructure. Besides the presence of TPDMS, no security assumptions can 

be made about the user's environment or the communication infrastructure. 

2.3. Problem Statement  

The problem can be formulated as follows: how to translate the trust put in the computation 

code declaration, as certified by the regulatory body, into a mutual trust from all parties in 

the concrete distributed execution of that code under the trust model above? Solving this 

problem leads to satisfying the following properties: 

 Mutual trust: assuming that the declared code is executed within TPDMSs, mutual trust 

guarantees that: (1) only the data strictly specified for the computation is collected at each 

participants’ PDMS, (2) only the final result of the computation can be disclosed, i.e., none 

of the collected raw data of any participant is leaked, (3) this final result is honestly 

computed as declared and (4) the computation code has the ability to check that any 

collected data is genuine. 

 Deterrence of side-channel attacks: assuming a small fraction of malicious participants 

are involved in the computation with instrumented TPDMS, the deterrence property must 

(1) guarantee that the leakage remains circumscribed to the data manipulated by the sole 

corrupted TPDMS and (2) prevent the attackers from targeting a specific intermediate 

result (e.g., sensitive data or data of some targeted participants). 

To have a practical interest, the solution must finally: (1) be generic enough to support any 

distributed computations (e.g., from simple aggregate queries to advanced machine learning 

computations) and (2) scale to a large population (e.g., tens of thousands) of individuals. 

3. Manifest-based Framework 

3.1. Manifest-based Distributed Computation Framework 

To ensure a collective computation that scrupulously respects the properties described 

above, we propose a framework based on a Manifest describing the computation on which 

all the actors agree and a distributed protocol based on TPDMSs performing the 

computation in compliance with that Manifest. The solution is described in Figure 1. It is 

conducted in three main steps:  

Manifest declaration. The entity wishing to execute a distributed computation over 

personal data (e.g., a statistic agency, association of patients), called the Querier, acts as a 

data controller in the GDPR sense and produces a Manifest describing the computation. 

Individual contributors give their consent on the basis of the purpose of that manifest, and 

rely on regulatory bodies (e.g., WP29 members, CNIL) which validate the entire Manifest 

with regard to good confidentiality practices. To this end, the manifest indicates the identity 



of the Querier, which must be authorized for the purpose. It also provides the collection 

queries expressed in any easily interpretable declarative language (e.g., SQL), so that the 

regulatory body can verify that they reflect the principle of limited collection established 

by the legislation for the intended use. The code of the implemented operators and the 

organization of the data flow between them are also provided, and must correspond to the 

declared purpose. The number of participants plays a dual role: it represents both a 

threshold to be achieved for a sufficiently relevant result for the stated purpose and a 

privacy threshold preventing the risk of re-identification of individual data in the final 

result, which the regulator must also check. Once certified, the Manifest is published in a 

Public store where it can be downloaded by individuals wishing to participate. Example 1 

shows the manifest of a distributed group-by query in the social-health context. 

 

Fig. 1. Manifest-based distributed computation framework. 

Random assignment of operators to participants. Participants download the manifest, 

and when a sufficient number consent to contribute with their data, each participant is 

assigned an operator of the Manifest. Ensuring a random assignment is critical to deter 

side-channel attacks on participants, by prohibiting corrupted participants from selecting 

specific operators in the execution process for malicious purpose (operators manipulating 

a large amount of data or receiving outputs from participants targeted by the attacker).  

 

Purpose: 

  Compute the avg number days of hospitalization prescribed 

  group by patient’s age and dependency-level (Iso-Resource Group, GIR) 

Operators code:  

  mapper source code  

  reducer source code  

Dataflow between the operators: 

  Number of mappers: 10000  

  Number of reducers: 10  

Collection queries:  

  SELECT GIR, to_year(sysdate-birthdate) FROM Patient; 

  SELECT avg(qty)FROM Prescription WHERE prescType = ‘hospitalization’;  

Number of participants: 10000 

Querier: ARS-Health-Agency, Public key: Rex2%ÃźHj6k7âĂę 

Example 1. ‘Group-by’ Manifest expressed by health organization. 

Secure distributed evaluation. Each participant’s TPDMS downloads the code of the 

operator assigned to it and checks the code signature, authenticates the TPDMS of 

participants supposed to exchange data with it (as specified in the random assignment) and 

establishes communication channels with them. The participant then executes his operator, 

potentially contributes personal data, and allows the computation to proceed by sending its 
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output to its successor. Once all participants have executed their operator, the end-result is 

published on the public store encrypted with the public key of the Querier. 

3.2. Random Assignment Protocol 

Obtaining a random assignment of operators to participants is key to prevent any potential 

attackers (Querier or any participants) colluding with corrupted TPDMS from being 

assigned a targeted operator or position in the dataflow at execution. While existing 

solutions have been proposed to ensure that a random number is chosen and attested in 

distributed settings, e.g., [6], none can be applied to reach this specific goal as they assume 

the list of participants is known in advance, as opposed to our case where the participant 

list is chosen based on collected users’ consents. We propose a solution to produce a 

provably random assignment, detailed in Fig. 2. As we consider TPDMS as trusted, the 

random assignment can be delegated to any TPDMS. However, the challenge is avoiding 

any malicious Participant or Querier aborting and replaying the assignment process a large 

number of times, picking the best one for a potential attack. 

 

Fig. 2. Random assignment of operators to participants. 

To avoid such attacks, we make sure, in a first step of our protocol, that the Querier 

commits to an assigning participant among the consenting participants. More precisely, 

each consenting participant first declares itself by publishing its identity and the hash of a 

random number used later to prove reception of the list of participants. Second, the protocol 

ensures that once the list of participants has been fixed, the assignment is actually 

performed randomly, and that this randomness can be checked by every participant. Hence, 

once the Querier has gathered enough participants willing to participate, it broadcasts the 

full list of participants together with the designated assigning participant, which is 

acknowledged by each participant by disclosing the random number chosen in the initial 

step. Following this, the designated assigning participant is sent the full list of participants 

Q P1…

Consent : hi,pki

Pj… Pn

pkjrandom({pki})

{hi,pki},pkj

ri,pki

{hi,ri, pki}

Mas,SMas

/* on all P1…Pn */
if checksign(Mas, SMas, pkj) and 

!t Mas,t.r=ri  t.pk=pki
then execute(M, t.pos)

/* on all P1…Pn */
if Pi consents to M 
ri random()
hi hash(ri) 

/* only onPj */
ifi,hi=hash(ri) then
seed random()
Mas /*{ri,pki,posi}*/assign(M,seed)
SMas sign(Mas,skj)

Mas,SMas

Manifest : M

/* on all P1…Pn */
store pkj

M the manifest

Q the Querier

Pi with i(1,n) the Participants 

pki their identity (public key)

ri a random chosen by Pi

hi the hash of ri

Pj the participant performing 

the random assignment 

skj its private key  

Mas the random assignment

SMas the signature Mas with skj

(verifiable by any Pi )

Legend:



together with all the acknowledgements. He then checks that all acknowledgements are 

valid, and performs a random assignment of operators to participants. Finally, he signs this 

assignment and sends it back to the Querier. 

Thus, the protocol ensures that when an individual consents to a manifest, the assignment 

can only be made once, at random (any attempt to replay the assignment would be visible to 

the participants and a restart require to obtain their consents again). 

3.3. Global Assessment of the Manifest-based Framework 

We sum up by showing how the framework satisfies the properties identified in Section 2.3. 

Deterrence of attacks. This property first states that the data leakage due to an attack 

must be circumscribed to the sole data manipulated by the corrupted TPDMS. This is 

intrinsically achieved by never sharing any cryptographic information among different 

TPDMS. Hence, any persistent data residing in a TPDMS is encrypted with secret keys 

known only by that TPDMS and intermediate results in transit between a predecessor and 

a successor TPDMS is encrypted with a session key (see below) and managed in clear-text 

in that successor (inheriting the confidentiality property from the TEE processing it). The 

second requirement is to prevent any attacker from targeting specific personal data, which 

is the precise goal of the Random Assignment Protocol introduced in Section 3.2. 

These requirements satisfy deterrence of attacks by drastically increasing the 

Cost/Benefit ratio of an attack. Indeed, even if a fraction of TPDMSs is instrumented with 

side-channel attacks compromising data confidentiality, such attack incurs a high cost of 

tampering with secure hardware (with physical intervention of the PDMS owner) with a 

benefit limited to obtaining the data manipulated by the sole corrupted TPDMSs, and 

negligible probability for gaining any personal data of interest. Indeed, in a computation 

manifest, we distinguish between participants assigned to a collection operator (which only 

extracts personal raw data from the participant) and participants assigned to a computation 

operator (which process personal data collected from others). Then, attacking any TPDMS 

running a collection operator is of no interest since the attacker only gains access to his 

own data. Moreover, the probability of a corrupted node being assigned a computation 

operator is negligible in practice (see security analysis in Section 5). Thus, although more 

elaborate strategies could be adopted to further maximize the Cost/Benefit ratio (e.g., 

blurring data), they are considered unnecessary in our context. 

Mutual trust. The mutual trust property is guaranteed if two hypotheses hold: (H1) all 

data exchanged between the participants’ TPDMSs are encrypted with session keys and 

(H2) each TPDMS involved in the computation authenticates its neighboring participants 

as legitimate TPDMSs complying with the random assignment for that manifest. The first 

condition for mutual trust (see Section 2.3) stems from the fact that (1) the collection 

queries are part of the manifest certified by the Regulatory body, (2) its authenticity is 



 

cryptographically checked by each TPDMS and (3) the TPDMS evaluating these queries 

is part of the Trusted Computing Base thereby guaranteeing the integrity of this collection 

phase. The second condition is satisfied by construction since each TPDMS guarantees the 

confidentiality of local data and H1 guarantees the confidentiality of intermediate data in 

transit. The final result is itself encrypted with the public key of the Querier so that no other 

data is ever leaked outside the TPDMS ecosystem. The third condition is again satisfied 

by construction by H2 guaranteeing that only genuine operators are computed and conform 

to the dataflow specified in the manifest. The last condition stems from the fact that (1) 

local data can be manipulated in clear-text inside each TPDMS, allowing any form of 

verification (e.g., check signature of data produced by a smart meter or quantified-self 

device, or issued by an employer or a bank) and (2) H2 guarantees the integrity of the data 

collection operator at each participant. Note that this guarantee holds even in the presence 

of corrupted TPDMSs which could compromise the confidentiality property. 

In conclusion, the proposed solution is generic enough to capture any distributed 

execution plan where any node can be an operator of any complexity and edges are secure 

communication channels between the TPDMS of participants executing the operators. 

Compared to the state of the art, our manifest-based approach has the ability to reconcile 

security with genericity and scalability. First, the TEE confidentiality property can be 

leveraged to execute each operation over clear-text genuine data. Second, the number of 

messages exchanged among participants only results from the distributed computation to 

be performed, but not from the underlying security mechanism. Hence, unlike secure 

Multiparty computations (MPC), homomorphic encryption, Gossip or Differential privacy 

approaches, no computational constraint hurting genericity nor scalability need to be 

introduced in the processing for security reasons. 

4. A Trusted PDMS in the Medical-Social Field 

This section presents an on-going deployment of a TPDMS in the medical-social field and 

assesses the practicality of the Manifest framework. 

Overview. End of 2017, the Yvelines district in France launched a public call for tender 

to deploy an Electronic Healthcare Record (EHR) infrastructure facilitating the medical 

and social care at home for elderly people. 10.000 patients are primarily targeted by this 

initiative, with the objective to use it as a testbed for a larger medium-term 

national/international deployment. The question raised by this initiative is threefold: 

 How to make patients, caregivers and professionals trust the EHR security despite the 

recent and massive privacy leakages due to piracy, scrutinization and opaque business 

practices inherent to any data centralization process?  

 How to combine privacy expectations with the collective benefits of data analysis tools to 

rationalize care, improve business practices and predict disease evolution? 



 How to make patient’s healthcare folder available even in a disconnected mode 

considering the low adoption of internet by elderly people? 

The Hippocad company, in partnership with the Inria research institute and the 

University of Versailles (UVSQ), won this call for tender with a solution called hereafter 

THPC (Trusted Health Personal Cloud). THPC is based on a home box, pictured in Figure 

3, combining 3 usages: (1) effectiveness control and vigilance, (2) home care coordination 

and (3) supervision (forthcoming). The hardware incorporates a number of sensors and 

communication modules (in particular SigFox) managed by a first microcontroller (called 

MCU1) devoted to the communication and sensing tasks. The data delivered by the box 

are used by the Yvelines district to cover usage (1), that is adjusting the care payment to 

their duration and performing a remote vigilance of the patient home. A second 

microcontroller (MCU2: STM32F417, 168 MHz, 192 KB RAM, 1 MB of NOR storage) 

is devoted to the PDMS managing the patient folder, a µ-SD card hosting the raw patient 

data (encrypted by the PDMS) and a tamper-resistant TPM (Trusted Platform Module) 

securing the cryptographic keys and the boot phase of the PDMS in MCU2. As detailed 

next, the combination of a TPM with MCU2 forms a TPDMS. Care professionals interact 

with the PDMS (i.e., query and update the patient’s folder) through Bluetooth connected 

smartphone apps, covering usage (2). Finally, volunteer patients accepting to contribute to 

distributed computations (usage (3)), will be equipped with a box variant where the SigFox 

module is replaced by a GPRS module. 

 

Fig. 3. Architecture of the THPC solution. 

The PDMS engine itself has been specifically designed by Inria/UVSQ to 

accommodate the constraints of MCU2. This embedded PDMS is a full-fledged personal 

database server capable of storing data in tables, querying them in SQL, and provides 

access control policies. Hence, care professionals can each interact with the patient’s folder 

according to the privileges associated to their role (e.g., a physician and a nurse will not 

get access to the same data). Finally, the patient’s data is replicated in an encrypted archive 
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on a remote server to be able to recover it in case of crash. A specific master key recovery 

process (based on Shamir’s secret sharing) has been designed to guarantee that no one but 

the patient can recover this master key. 

THPC as an instance of Trusted PDMS. The THPC platform described above is an 

illustrative example of TPDMS. As introduced in Section 2.2, a TPDMS is a combination 

of a TEE and a PDMS software embedded in a same dedicated hardware device, providing 

confidentiality and integrity guarantees for the code running in this device. The presence 

of two separate MCUs answers security concerns, indeed the Trusted Computing Base 

(TCB) is limited to the code located in MCU2 and does not include drivers and sensors 

(managed by MCU1) and is thus minimalistic. Additionally, the TCB is cryptographically 

signed. The TPM protecting the box is used at boot time (and NOR flash time) to check 

the genuineness of the PDMS code by checking the signature. The PDMS code in turn can 

download external pieces of code corresponding to the operators extracted from a Manifest, 

check their integrity thanks to the code signature provided by the Regulatory body, and run 

it. Hence, no code other than the TCB and signed operators can run in the box. The TPM 

also protects the cryptographic certificate that securely identifies the box and the master 

key protecting the personal database footprint on the µ-SD card. Note however that, while 

the TPM is tamper-resistant, the MCU2 is not. Hence, a motivated attacker could 

physically instrument his box to spy the content of the RAM at run time. 

Distributed computations of interest. The next critical step of the project is to 

integrate usage (3) (supervision). GPRS variant of the boxes are under development to 

establish a communication network via a central server settled by the Hippocad company, 

which plays the role of a communication gateway between the THPC boxes (it relays 

encrypted data bunches between THPC boxes but cannot access to the underlying data). 

Two essential distributed computations are considered, namely the Group-by and K-means 

computations. Group-by allows computing simple statistics by evaluating aggregate 

functions (sum, average, min, max, etc.) on population subsets grouped by various 

dimensions (the level of dependence or GIR, age, gender, income, etc.). Such statistics are 

of general interest in their own and are also often used to calibrate more sophisticated data 

analysis techniques (e.g., accurately calibrate the k parameter of a K-means computation). 

K-means is one of the most popular clustering technique and is broadly used to analyze 

health data [17]. To date however, few studies was conducted on home care [15] because 

data management techniques for this type of care are still emerging. Yet, K-means 

techniques already delivered significant results to predict the evolution of patient 

dependency level after a hip fracture [11] or Alzheimer symptoms, and derive from that 

the required evolution of the home cares to be provided and their cost. The first two 

Manifest-based computations considered in the project cover these use cases as follows: 



 The Group-by manifest is the one presented in Example 1, using the usual map-reduce 

implementation of a Group-by computation, where operators executed by participants are 

the map and reduce task respectively. It computes the sum and average duration of home 

visits by professionals grouped by professional category and level of dependence (GIR) 

of the patient. Such statistics are expected to help adjusting the duration of interventions 

and the level of assistance according to the patients’ situation. 

 The K-means manifest is inspired by a previous study conducted in Canada with 

elderly people in home care. This study analyses 37 variables, and provides 7 centroids 

[5] that finely characterize the people cared for. On a similar map-reduce basis, we define 

K-means manifests computed over distributed PDMSs in three steps: (1) k initial means 

representing the centroid of k clusters are randomly generated by the Querier and sent to all 

participants to initialize the processing, (2) each participant playing a mapper role computes 

its distance with these k means and sends back its data to the reducer node managing the 

closest cluster, (3) each reducer recomputes the new centroid of the cluster it manages based 

on the data received from the mappers and sends it back to all participants. Steps 2 and 3 are 

repeated a given number of times or until convergence. 

In Section 5, we give preliminary measures obtained by a combination of real measures 

and simulations for these two manifests since they are not yet deployed. Running manifests 

in the THPC context has required an adaptation of the random assignation protocol to cope 

with the intrinsic limitation of GPRS in terms of communication bandwidth. 

Adaptation of the Random Assignment Protocol to the THPC context. Given the 

low bandwidth of the THPC boxes (GPRS communications), a critical problem is limiting 

the amount of data transmitted to all participants, as hundreds of KBs broadcasted to all 

thousands of participants would not be compatible with acceptable performance. In order 

to reach this goal, we optimize the two main parts of the random assignation protocol 

(Section 3.2) that lead to transmission of large amounts of data. The main optimization is 

making sure that we do not need to transmit neither the whole assignment nor the whole 

manifest to all participants as they only need their part of the assignment and the manifest 

related to their part of the computation. However, we need to make sure that the integrity 

of the whole manifest and assignment is ensured. In order to achieve these two seemingly 

antagonistic goals, we make use of Merkle hash trees [18] over the corresponding data 

structures. The properties of the Merkle hash tree ensures that given the root of the hash 

tree, it is possible to provide a small checksum proving (in the cryptographic sense) that an 

element belongs to the corresponding hash tree, and it is computationally infeasible to forge 

such a proof. Note that the checksum is a logarithmic (in the number of values in the tree) 

number of hashed values and thus stays manageable (small size). Additionally, we avoid 

broadcasting the whole list of participants as only the assigning participant needs to 

perform checks on this list. We only broadcast a cryptographic hash of this list, and only 



 

send it in full to the assigning participant who actually needs to check it. The assigning 

participant however does not need to send back the full assignment, only a Merkle hash 

tree signed with its private key, and the random seed used to generate the assignment (so 

that the Querier can reconstruct it) is sent back. Finally, in order to perform its task in the 

manifest, any participant only needs its position together with the corresponding operator, 

collection queries and data flow and proof of membership to the logical manifest. 

Additionally, the participant needs to receive proof that the assignment is correct. 

Summing up, we reduce the communication load during assignment building phase 

from a few broadcasts of a few hundreds of KB (for tens of thousands of participants) to 

only one large download for the assigning participant (again a few hundreds of KB), and 

small downloads/uploads (a few tens of Bytes) for all other participants, drastically 

reducing the overall communication load, and making it manageable in constrained setting. 

5. Validation 

While the THPC platform is still under deployment over the 10.000 targeted patients, we 

can already draw interesting lessons learned and present preliminary performance and 

security results of the Manifest framework applied to the Group-by and K-means cases. 

5.1. Lessons learned for the Deployment of THPC Solution 

An important criterion for the Yvelines District when selecting the THPC solution was its 

compliance with the new GDPR regulations and its ability to foster its adoption by 

patients and professionals.   

Adoption by patients. From the patients’ perspective, a crucial point was to provide 

differentiated views of their medical-social folder (e.g., a nurse is not supposed to see the 

income of the elderly person). To this end, a RBAC matrix (role-based access control) has 

been defined so that a professional owning a badge with a certificate attesting role R can 

play this role with the appropriate privileges on all patients’ boxes. Each patient can 

explicitly - and physically - express his consent (or not) to the access of a given professional 

by allowing access to his box during the consultation, as he would do with a paper folder. 

The patient can also express his consent, with the help of his referent, for each manifest. A 

notable effect of our proposal is to consent to a specific use of the data and to disclose only 

the computed result rather than all raw data as usual (e.g., consenting to an Android 

application manifest provides an unconditional access to the raw data). 

Adoption by professionals. Professionals are reluctant to use an EHR solution which 

could disclose their contact details, planning and statistical information that may reveal 

their professional practice (e.g., quantity of drugs prescribed or duration and frequency of 

home visits). A decentralized and secured solution is a great vector of adoption compared 

to any central server solution. Similarly, professionals are usually reluctant to see the data 



related to their practice involved in statistical studies unless strict anonymization 

guarantees can be provided. While the consent of the professionals is not requested for 

distributed computations, a desirable effect of our proposal is to never disclose individual 

data referring to a given professional, and submit all computation to regulatory approval. 

5.2. Performance and Security Evaluation of the Manifest-based Framework 

We validate the effectiveness of our approach on the Group-by and K-means use-cases.   

Experimental setting. We implemented the corresponding mappers and reducers code 

in the THPC box with a server used to route (encrypted) messages between participants, 

as described in Section 4. We computed the execution time while considering different 

numbers of participants and amount of data transferred during the computations. We used 

a simulation to derive execution times with large numbers of participants. The results are 

shown in Fig. 4 (the curves are in log. scale). For the Group-by case we consider an 

implementation with 10 reducers and 50 different group keys, while for the K-means we 

consider 7 different clusters with 1 cluster per reducer as in [5] using a traditional distance 

metric [14]. We used synthetic datasets, as the objective is not to choose the most efficient 

implementation of a given computation, but rather to assess the efficiency of the manifest-

based protocol on real use-cases. As cryptographic tools we used ECC 256 bits for 

asymmetric encryption, ECDSA signature scheme, AES 128 bits for symmetric encryption 

and SHA-2 as a hash function, leveraging the hardware acceleration provided by MCU2. 

   

(a) Execution time (assignment) 
 

(b) Execution time (computation) (c) Overall performance ratios 

   

(d) Exchanged data (by participant) (e) Exchanged data (in total) (f) Deterrence of attacks 

Fig. 4. Performance and security evaluation. 

Performance evaluation. Figures 4.a-b-d-e plot the various costs associated with our 

protocol. First, the optimization of our random assignment protocol has a strong impact on 

its execution time, from 75 seconds without optimization down to 22 seconds with 10000 

participants (this cost depends on the number of participants, but not on the query 

performed), as well as on the volume of data exchanges, from 800 KB per participant 
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without optimization down to 13 KB (with in total, 7 GB exchanged data down to 130 

MB). Once the assignation is performed, the query computation time remains reasonable, 

with 18 seconds (resp. 40 seconds) for a Group-by (resp. K-means) over 10000 participants. 

Finally, the overhead incurred by the random assignation is limited (e.g., between 20 and 

30% of overall time), and the main part of the cost is due to communications (see Fig. 4.c). 

Fig. 4.f shows the tremendous impact of the random assignment protocol in terms of 

security. It plots the probability for a set of colluding malicious participants, acting with 

corrupted TPDMSs in Group-by and K-means computations, to be assigned a reducer 

operator (hence gaining access to data produced by other participants) or to the data of a 

given participant of interest (targeted attack). This probability remains very low (few 

percent) even if several participants successfully corrupt their TPDMS and collude. 

The main lessons drawn from these experiments are: First, even with the hardware 

limitations of the box in terms of computing power and communication throughput, the 

global time is rather low and acceptable for this kind of study (less than a minute for 10000 

participants in comparison with manual epidemiological surveys which may last weeks). 

Second, the optimization of the assignment protocol has a decisive impact on both 

execution times and data volumes exchanged, with a significant financial benefit in the 

context of pay-per-use communication services (such as GPRS network). 

6. Conclusion 

The concept of TPDMS combined with a Manifest-based framework leverages the security 

properties provided by TEE to build a comprehensive personal data management solution. 

This solution reconciles the privacy preservation expected by individuals with the ability 

to perform collective computations of prime societal interest. We expect that such solution 

could pave the way to new research works and industrial initiatives tackling the privacy-

preserving distributed computing challenge with a new spirit and vision. 
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