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Abstract— Thanks to new regulations like GDPR, Personal Data 

Management Systems (PDMS) have become a reality. This 

decentralized way of managing personal data provides a de facto 

protection against massive attacks on central servers. But, when 

performing distributed computations, this raises the question of how 

to preserve individuals' trust on their PDMS? And how to guarantee 

the integrity of the final result? This paper proposes a secure 

computing framework capitalizing on the use of Trusted Execution 

Environments at the edge of the network to tackle these questions. 
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I.  INTRODUCTION  

Smart disclosure initiatives (e.g., Blue Button in the US, 

MiData in UK, MesInfos in France) and new privacy-

protection regulations (e.g., GDPR in Europe [1]) allow 

individuals to get their personal data back and manage it under 

control, in a fully decentralized way, using so-called Personal 

Data Management Systems (PDMS) [3]. Decentralization is 

paramount in terms of privacy protection by reducing the 

Benefit/Cost ratio of an attack compared to a central server. 

However, crossing data of multiple individuals (e.g., 

computing statistics or clustering data for an epidemiological 

or sociological study, training a neural network to organize 

bank records into categories or predict diagnoses according to 

medical symptoms, etc.) is of utmost personal and societal 

interest. This raises the question “how to preserve the trust of 

individuals on their PDMS while engaging their data in a 

distributed process that they cannot control?”. The dual 

question from the querier side (i.e., the party initiating the 

processing) is “how to guarantee the honesty of a computation 

performed by a myriad of untrusted participants?”. These are 

the two questions targeted by this paper. 

Answering these questions requires establishing mutual 

trust between all parties in a distributed computation. On the 

one hand, any (PDMS) participant must get the guarantee that 

only the data required by the computation are collected and 

that only the final result of the computation he consents to 

contribute to, is disclosed (i.e., none of the collected raw data 

can be leaked). On the other hand, the querier must get the 

guarantee that the final result has been honestly computed, 

with the appropriate code, on top of genuine data. Besides this, 

the computing scheme must be generic and scalable (e.g., tens 

of thousands of participants) to have a practical interest. 

No state of the art solution tackles all dimensions of this 

problem. Multi-party computation (MPC) works guarantee 

that only the final result of a computation is disclosed but they 

are either not generic in terms of supported computation or not 

scalable in the number of participants [10]. Similarly, gossip-

based [2], homomorphic encryption-based [13] or differential 

privacy-based solutions are restricted to a limited set of 

operations that can be computed. Moreover, none of these 

solutions tackle the limited data collection and computation 

honesty issues. Recent works like [21] address the problem of 

authenticated query results, but focus on a single-user context, 

where the user is the querier.  

In this paper, we argue that the emergence of Trusted 

Execution Environments (TEE) [15] definitely changes the 

game. TEEs, like ARM's TrustZone or Intel's Software Guard 

eXtention (SGX), are becoming omnipresent, from high-end 

servers to PC and mobile devices. TEEs are able to compute 



arbitrary functions over sensitive data while guaranteeing data 

confidentiality and code integrity. This opens new 

opportunities to think about secure distributed processing with 

the hope to reconcile security with genericity and scalability.  

But TEEs are far from providing a direct solution on their 

own. They have not been designed with edge computing 

involving a large number of participants in mind. Moreover, 

while TEE tamper-resistance makes attacks difficult, specific 

side-channel attacks have been shown feasible [19]. Without 

appropriate counter-measures, a minority of corrupted 

participants may endanger the data from the majority. Based 

on this statement, the paper makes four contributions: 

 it defines a generic and scalable TEE-based computing 

protocol over decentralized PDMSs which provides the 

expected mutual trust and computation honesty properties, 

assuming this protocol has been safely executed;  

 it provides, for each participant and the querier, a solution 

to locally check that the protocol has indeed been honestly 

executed, without resorting to any trusted third party;  

 it proposes accurate counter-measures against side-channel 

attacks conducted by corrupted TEE participants;  

 finally, it qualitatively and quantitatively evaluates the 

scalability and security of the solution on practical use-

cases (group-by queries, k-means clustering). 

II. PROBLEM FORMULATION 

A. Security properties and limits of TEEs 

Relying on secure hardware, existing Trusted Execution 

Environments (TEEs) provide three main security properties: 

(1) code isolation, meaning that an attacker controlling a 

corrupted user environment/OS cannot influence the behavior 

of a program executing within a TEE enclave, (2) 

confidentiality, meaning that private data residing in an 

enclave may never be observed, and (3) attestation, allowing 

to prove the identity of the code running inside a TEE [20].  

                                                           
1 Scalable solutions exist to meet this requirement [11] but this problem is 

orthogonal to this paper. 

The only type of attacks successfully conducted so far over 

TEE are side channel attacks [19]. The TEE in this case 

behaves in a “sealed glass proof” mode [18], i.e., the 

confidentiality property is compromised, but the isolation and 

attestation properties still holds (these properties are not 

challenged today). These attacks are complex to perform and 

require physically instrumenting the TEE, which prevents 

large scale attacks. However, TEEs corrupted by side-channel 

attacks cannot be detected by honest ones as their behavior is 

still the correct one. 

B. Trust model 

The trust model considered in this paper stems from the 

decentralized nature of the targeted infrastructure.  

Untrusted user devices and infrastructure. No credible 

security assumptions can be made on the execution 

environment running on widely open personal devices (PC, 

laptop, home box, smartphone, etc.) managed by non-experts. 

We thus consider that the device OS and applications can be 

corrupted. We also consider the communication infrastructure 

as untrusted. We however assume that the communication 

flow incurred by the computed algorithm is (made) data 

independent, i.e., that personal data cannot be inferred by 

observing the communication pattern among participants1.  

Large set of trusted TEEs, small set of corrupted TEEs. 

We assume that each individual owns a TEE-enabled device 

hosting his personal data (i.e., his PDMS). This is definitely 

no longer fantasy considering the omnipresence of ARM's 

TrustZone or Intel's SGX on most PC, tablets and 

smartphones. As explained above, a small subset of TEEs 

could have been corrupted by malicious participants to break 

their confidentiality with side-channel attacks. 

Trusted computation code. We consider that the code 

distributed to the participants has been carefully reviewed and 

approved beforehand by a regulatory body (e.g., an 

association or national privacy regulatory agency). But the 



fact that the code is trusted does not imply that its execution 

behaves as expected. 

Trusted citizen identity. We consider that citizens have 

been assigned a private/public key by a trusted (e.g., 

governmental) entity (e.g., as used today for paying taxes 

online). This prohibits attackers generating multiple identities 

with the objective to massively contribute to a computation to 

isolate a small set of participants and infer their data. 

C. Problem statement 

The problem can be formulated as follows:  how to 

translate the trust provided to the computation code by the 

regulatory body into a mutual trust between all parties 

participating to the computation under the presented trust 

model? To solve this problem, the following properties need 

to be satisfied: 

Mutual trust. Assuming that the declared code is executed 

within TEEs, mutual trust guarantees that: (1) only the final 

result r of the computation can be disclosed, i.e., none of the 

raw data of any participant is leaked and r is honestly 

computed as declared, (2) only the data strictly specified for 

the computation is requested from the participant PDMSs, (3) 

the computation code is generic and makes it possible to verify 

that any collected data is genuine2. 

Local assurance of validity. The querier and each involved 

participant must be able to monitor locally (i.e., on its own, 

without relying on a central trusted party) that the computation 

is being performed in compliance with the code declaration, 

by all other participants. If any honest participant detects a 

validity violation, an error is produced and the computation 

stops without producing any other (partial) result. 

Resilience to side-channel attacks. Assuming a small 

fraction of malicious (colluding) participants involved in the 

computation with corrupted TEEs, our framework must (1) 

guarantee that the leakage remains circumscribed to the data 

manipulated by the sole corrupted TEEs, (2) prevent the 

                                                           
2 Assuming data genuineness can be actually verified by the running code 

in any way (e.g., thanks to a digital signature). 

attackers from targeting a specific intermediate result (e.g., 

sensitive data or data of targeted participants) and (3) 

maximize the Cost/Benefit ratio of an attack. Note that this is 

the best we can do assuming that the code manipulates clear 

data and that side channel attacks can be performed. In 

addition, the means to achieve resilience should maintain the 

communication flow independent of the data being processed 

(i.e., attack resiliency should not affect the data independence 

assumption made in our trust model). 

To have a practical interest, the solution must finally: (1) 

be generic enough to support any distributed computations 

(e.g., from simple aggregate queries to advanced machine 

learning computations) and (2) scale to a large population 

(e.g., tens of thousands) of individuals.  

 

Figure 1 Manifest-based distributed computation. 

III. MUTUAL TRUST 

To provide the mutual trust property, we propose adopting 

a manifest-based approach. As described in Fig. 1, this 

approach is conducted in three steps: 

Step1: logical manifest declaration. We call Querier an 

entity (e.g., a research lab, a statistic agency or a company, 

acting as a data controller in the GDPR sense) wishing to 

execute a treatment over personal data. The Querier specifies 

a Logical Manifest describing the computation to be 

performed, namely: its purpose, the source code of the 

operator to be run at each participant, the distributed execution 

plan materializing the data flow between operators and a set 
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of privacy rules to be fulfilled, including data collection rules 

and expected number of participants. The Querier submits this 

logical manifest to a Regulatory body which certifies its 

compliance with the expected privacy practices. The certified 

logical manifest is then published in a public manifest store 

where it can be downloaded by individuals wishing to 

participate. We provide below an example (deliberately naïve 

for the sake of simplicity) of a logical manifest for a group-by 

query implemented using a MapReduce-like framework. 

Example 1: ‘Group-by’ manifest. 

Purpose:  

 Compute the mean quantity of anxiolytic 

 prescribed to employees group by employer 

Operators:  

 mapper source code  

 reducer source code  

Distributed execution plan and dataflow: 

  Number of mappers: 10.000  

  Number of reducers: 100  

 Any mapper linked to all reducers  

Collection rules:  

 SELECT employer_name FROM Job; 

 SELECT sum(qty)FROM Presc   

 WHERE drugtype = ‘anxiolytic’;  

Number of participants (data collectors): 10.000 

Querier Public key: Rex2%ÃźHj6k7âĂę 

Step2: physical manifest construction. Once certified, the 

manifest can be viewed as a logical distributed query plan 

(participants are not yet identified). When a sufficient number 

of potential participants consent to contribute with their data, 

a Physical Manifest is collectively established by the TEEs of 

all participants (according to our trust model, each participant 

is equipped with a TEE). A physical manifest assigns an 

operator to each participant. As detailed in Section V, this step 

is critical for resilience to side-channel attacks, by prohibiting 

corrupted participants from selecting specific operators in the 

query plan for malicious purpose. 

Step3: physical manifest evaluation. Each participant 

downloads the physical manifest (or the subpart allocated to 

him). The participant’s TEE initializes an enclave to execute 

his assigned operator and establishes communication channels 

with the TEEs of other participants supposed to exchange data 

with him (according to the manifest distributed execution 

plan). The participants then contributes his personal data to 

the operator and allows the computation to proceed. Once all 

participants have executed their task, the end-result is 

delivered to the querier.  

Let us introduce the following definitions in order to 

analyze how mutual trust is achieved. 

Definition 1: Distributed Execution Plan (DEP). A 

distributed execution plan DEP is defined as a directed graph 

(V, E) where V vertices are couples (opi, aj)OPA with OP 

the set of operators to be computed and A the set of computing 

agents, and E edges are couples (<opi, aj>,<opk, al>) 

materializing the dataflow among operators, namely the 

transmission by aj to al of opi output. For any vi  V, we denote 

by Ant(vi) (resp. Succ(vi)) the antecedents (resp. successors) of 

vi in the DEP, that is the vertices linked to vi by a direct 

incoming (resp. outgoing) edge. 

This representation of distributed execution plans is 

generic enough to capture most distributed data-oriented 

computations. Based on this definition, we can introduce the 

notion of logical manifest. 

Definition 2: Logical Manifest (LM). A logical manifest 

LM is defined as a tuple <PU, DEP, CR, N>, with PU the 

textual purpose declaration, DEP a distributed execution plan, 

CR the collection rule applied at each participant and N the 

expected number of participants.  

The CR declaration translates the limited collection 

principle enacted in all legislations protecting data privacy 

(i.e., no data other than the ones strictly necessary to reach the 

declared purpose PU will be collected). We assume that this 

declaration is done using a basic assertional language (e.g., a 

subset of an SQL-like language) easily interpretable by the 

Regulatory body on one side and easily translatable into the 

specific query language of any PDMSs on the participant’s 

side. For the sake of simplicity, we assume that the data 

queried at each participant follow the same schema (if it is not 

the case, it is basically a matter of translating the collection 

rules in different schemas). N plays a dual role: it represents 

both a significance threshold for the Querier wrt. the declared 



purpose and a privacy threshold for the Regulatory body wrt. 

the risk of reidentification of any individual in the final result. 

The notion of physical manifest can be defined as follows.  

Definition 3: Physical Manifest (PM). A physical manifest 

PM is defined as a tuple <LM, P, F, QCR>  such that: (1) 

function F: LM.DEP.A P assigns agents to the participants 

P contributing to the computation of LM; (2) F is bijective, so 

that a given participant cannot play the role of different agents 

and each agent is represented by a participant; (3) any query 

qiQCR is the translation for participant pj of the collection rule 

LM.CR into the query language of his PDMS.  

Definition 4: PM valid execution. An execution of a 

physical manifest PM is said valid if the execution has not 

deviated in any manner from what is specified in LM, i.e., (i) 

the operators in LM.DEP.OP are each executed by the TEE of 

the participant designated by F while respecting the dataflow 

imposed by LM.DEP.E, (ii) the TEE of any participant pi 

queries its host with qi, (iii) N different participants contribute 

to the computation and (iv) all data exchanged between the 

participants’ TEEs are encrypted with session keys. 

Lemma 1. Under the hypothesis H1 that the execution of a 

PM is valid and H2 that no TEE have been corrupted, the 

mutual trust property is satisfied.  

We postpone to Section IV how to achieve hypothesis H1 

and to Section V the counter-measures suggested in the case 

hypothesis H2 does not hold.  

Proof of Lemma 1. The three conditions in mutual trust 

definition given in Section II hold by construction. First, 

condition (1) is satisfied because H1 guarantees that each 

operator in DEP.OP is executed within a TEE, and H2 and the 

TEE’s confidentiality property ensure that no data can leak 

other than the input and output of each DEP.OP. Encrypting 

the data exchanges between each vertex vi and Ant(vi) and 

Succ(vi) in DEP with a session key ensures the confidentiality 

of the global execution of PM.DEP. The final result is itself 

sent encrypted to the Querier so that no raw data other than 

the final result can leak all along the execution. Second, 

condition (2) stems from the fact that each participant pi is 

presented with qi which is a translation of LM.CR. The honest 

execution of qi over pi’s PDMS remains however under the 

participant’s responsibility who selected it to protect his 

personal data. Regarding condition (3), H1 and H2 again 

guarantee the integrity of the global execution of PM.DEP. 

Note that this guarantee holds even in the presence of 

corrupted TEEs since side-channel attacks on TEEs may 

compromise the confidentiality of the processing but not the 

isolation property. It immediately follows that any check 

integrated in the operator code can be faithfully performed on 

cleartext data, thus ensuring genericity.  

Compared to state of the art solutions, our manifest-based 

approach holds the capacity to reconcile security with 

genericity and scalability. First, the TEE confidentiality 

property can be leveraged to execute the computation code at 

each participant over cleartext genuine data. Second, the shape 

of the DEP and then the resulting number of messages 

exchanged among participants, directly results from the 

distributed computation to be performed. Hence, conversely 

to MPC, homomorphic encryption, Gossip or Differential 

privacy approaches, no computational constraints 

compromising genericity nor performance constraints 

compromising scalability need to be introduced in the 

processing for security reasons. 

IV. LOCAL ASSURANCE OF VALIDITY  

Once mutual trust is ensured, one needs to ensure that each 

participant gets the assurance that the computation was 

performed as expected. Ideally, this means that the 

computation should behave as if all participants could 

continuously monitor all the others, i.e., check all operator 

computations, ensuring correction of sent/received data at 

each step, and abort the whole process if any misbehavior 

happens. This is formalized in the following definition. At this 

stage, we assume that the execution plan has been produced 

by an arbitrary function build_phys_manifest, assigning a 

position i in the execution plan to each participant (the strategy 



for performing this assignment is discussed in Section V). We 

also assume that the local code executed by a participant either 

terminates successfully or explicitly returns an error. 

Definition 5: locally checkable execution. The execution 

of a distributed execution plan DEP is said locally checkable 

if for any participant pjPM.P, either (i) pj’s view of the 

partial execution up to pj’s role is valid or (ii) pj returns an 

error and no data is ever transmitted to other participants. 

An immediate consequence of Definition 5 is that, for any 

locally checkable execution, either a global result is produced 

if the execution is valid or no intermediate values is ever 

leaked. It follows that a protocol guaranteeing locally 

checkable executions for a DEP exactly provides local 

assurance of validity as any deviation from the normal 

execution would result in an invalid execution and would 

therefore result in an error at the participant’s level. 

As participants execute code in TEEs, a naïve way to 

satisfy Definition 5 is to instrument the code of each operator 

in order to make sure that before sending out any (partial) 

result the code gets approval from all other participants. While 

this solution trivially satisfies our goal of local assurance of 

validity, the communication overhead with a large number of 

participants is overwhelming. 

In order to overcome the aforementioned problem, we 

leverage the fact that using the TEE mechanisms and 

attestation, one can rely on checks made within other 

participant’s TEEs. In our architecture, the foundation of local 

checkability is the decomposition of the code running at each 

participant in a generic TEE monitor and a specific TEE 

computation code. The objective of this distinction is to avoid 

the need for any participant to recompile the code running on 

the other participants and compute its hash to evaluate the 

validity of the requested remote attestations. The execution at 

each participant then works as follows: (1) untrusted code 

executed on the local host, called untrusted proxy in Fig. 2, 

creates a TEE enclave and launches the TEE monitor code 

inside this enclave, (2) the TEE monitor, the role of which is 

to interpret the manifest and drive the local execution, creates 

a second enclave to launch the TEE computation code 

corresponding to the operator assigned to the participant in the 

execution plan. Note that all of the scheduling is performed by 

the untrusted proxy, in particular waking up TEE monitors as 

they are needed for the computation.  

The TEE monitor code is identical for each participant, so 

that its hash is known by everyone. This code is minimal, can 

be easily formally proved and is assumed trusted by all 

participants. This lets us consider the manifest LM as data, 

including the code of the local operator to be computed, let 

each local TEE monitor check the integrity of this data and 

then attest the other participants (antecedents and successors 

in the execution plan) to the genuineness of the TEE 

computation code. Antecedents and successors can easily 

check in turn the validity of the received remote attestation by 

checking only the genuineness of the remote TEE monitor. 

This double attestation by the antecedents and by the 

successors is mandatory to guarantee, for each participant, the 

validity of the inputs it receives and the authenticity of the 

recipients for its own outputs. This transitive attestation 

principle is depicted in Fig. 2. 

Following this strategy, local checkability is guaranteed. 

Intuitively, if a specific participant does not execute the 

genuine TEE monitor, it will be unable to provide a valid 

attestation to its partners (antecedents/successors) which will 

stop the execution and return an error. Then, if all participants 

run the correct TEE monitor and execute the same manifest, 

the execution is necessarily correct, since the TEE monitor 

only executes its dedicated code, and attestation prevents 

attacks from the OS on the result of the TEE computation 

code. If, however, one participant does not execute the correct 

manifest, its antecedents/successors will fail during the 

manifest verification. Finally, for any execution plan 

represented by a connected graph, the validity of the global 

execution is obtained by propagating errors through the 

execution graph, if an error occurs at any point during the 



computation. In order to prevent an attacker from running a 

large number of instances of a computation code in enclaves, 

each enclave must be tied to an identity, certified by a citizen 

identity provider.  

The pseudo code of the TEE monitor is provided in 

Algorithm 1. For the sake of conciseness, we restrict this 

algorithm to the management of tree-based execution plans, 

however extending it to any graph is just a matter of allowing 

multiple successors. Note that the scheduling of the execution 

and errors propagation can be handled by untrusted code. 

Indeed, if a participant encounters an error, it would typically 

propagate it upstream so as not to let successor’s enclaves 

hanging. However, it is by no means security critical as 

successor’s enclave would simply never execute if they fail to 

receive their antecedents’ inputs. 

Algorithm 1. TEE monitor 

Input: LM the logical manifest, id = (ski, pki, certi) the participants’ 

cryptographic identity and the corresponding certificate  
Output: boolean indicating success  

1. if verify(LM) = false then // verify manifest  

2.  return error 

3. PM  build_phys_manifest(LM, id)  // build physical manifest 

4. i  get_my_position(PM, ski)  

5. PMi  extract(PM, i)  

6. Qi, Pi, Ci, opi  Parse(PMi)   

7. for each antecedent  Ci do // get antecedents’ outputs 

8.  if not(channel(antecedent, self.code)) then return error 

9.  if not(id_check(antecedent)) then return error 

10.  if antecedent.PM  PM then return error 

11.  input_tuples + accept_input(antecedent)  

12. input_tuples + out_call(Qi)  // query PDMS 

13. EOPi  create_enclave(opi)  // create opi enclave  

14. if not(channel(EOPi, opi) then return error 

15. send_tuples(input_tuples, EOPi)  // produce output 
/* NB: integrity of input_tuple is checked in OPi enclave code */ 

16. res_opi  accept_input(EOPi)  // execute opi 

17. successor  get_ successor(PM,res_opi) 

18. if successor = querier then  

19.  a  attest(res_opi, PM) 

20.  send(a, res_opi) 

21.  return success 

22. if not(channel(successor), self.code) then return error  

23. if not(id_check(successor)) then return error 

24. if successor.PM  PM then return error  

25. send_tuples(res_opi, successor)  

26. return success 

While hidden in the pseudo code, we assume that all 

communications between participants and the different 

enclaves are performed on secure channels. This is crucial to 

ensure that the endpoints of channels lie in real TEE enclaves 

and to prevent an adversary capable of observing the 

communications from getting access to user data. A primitive 

reaching this goal is called attested key exchange [5]. It allows 

to exchange a key with an enclave executing a specific 

program, and hence ensures (using the attestation mechanism) 

that the endpoint of the channel lies within an enclave and that 

the enclave is executing the expected program, even if the 

administrator of the machine running the enclave is corrupted. 

We abstract this creation of a secure channel as channel( 

remote, expected_code) where remote is the remote enclave 

and expected_code is the code expected to be running in the 

remote enclave. The cost is essentially 1 remote attestation 

and 2 communications. Once established, all communications 

are assumed to be done on this channel. For simplicity’s sake 

we abstract away who is the initiator of the secure channel and 

view this process as symmetric. 

Algorithm description. In lines 1 to 6, the integrity of the 

logical manifest is verified by checking its signature, the 

physical manifest is built in collaboration with the other 

participating TEE monitors (cf. Section V, which also covers 

the explanation of line 4, not required in this section) and the 

part of the manifest related to this participant is extracted (i.e., 

the set of its antecedents/successors, the data collection query 

used to retrieve data from the local PDMS and the code of the 

operator to be evaluated locally).  

Then, in lines 7 to 12, the attestation of each antecedent is 

verified, by comparing the hash value of the code it is running 

to the hash value of the TEE monitor code (common to each 

participant). Once the antecedent TEE monitor is known to be 

correct, we check that it runs the correct manifest. We also 

check its identity by requiring its enclave to send it. This 

provides enough assurance because once we know the code of 

its enclave we know that it will honestly send its identity. 

Finally, the input tuples of the local operator are retrieved 

from its antecedents and/or the local PDMS of this participant.  

In lines 13 to 16, the TEE monitor creates an additional 

enclave for the operator to be run (its code is part of the 



manifest) and requests an attestation from this enclave (the 

hash of the operator is compared to the hash of the code 

computed by the TEE monitor) to make sure that the host did 

not compromise or impersonate the operator code. Then the 

monitor establishes a secure channel with the operator 

enclave, using an attested key exchange as in [5] and TEE 

monitor calls the operator using the appropriate inputs.  

Finally, in lines 17 to 26, the TEE monitor, either sends 

the result to the querier if its result is the final result, together 

with an attestation guaranteeing the result was indeed 

produced by the correct computation of the specified data; or 

sends its result to the next participants as planned by the DEP.  

Proposition 1. Algorithm 1 satisfies the locally checkable 

execution property for the physical manifest PM derived from 

the logical manifest LM by the build_phys_manifest function. 

The sketch of proof of Proposition 1 is given in [23]. 

V. RESILIENCE TO SIDE-CHANNEL ATTACKS  

According to our trust model, a small fraction of TEEs can 

be instrumented by malicious (colluding) participants owning 

them to conduct side-channel attacks compromising the TEE 

confidentiality property. This issue is paramount in our 

Manifest-based approach which draws its genericity and 

scalability from the fact that computing nodes manipulate 

cleartext genuine data, putting them at risk.  

The resilience to side-channel attacks property introduced 

in Section II, states first that the leakage generated by an attack 

must be circumscribed to the data manipulated solely by the 

corrupted TEEs. This is intrinsically achieved in our proposal 

by never sharing any cryptographic information among 

different nodes. A second requirement is to prevent any 

attacker from targeting specific personal data. Randomness 

and Sampling are introduced next to achieve this goal. Finally, 

DEP reshaping is proposed to tackle the third requirement, 

i.e., maximizing the average Cost/Benefit ratio of an attack. 

A. Randomness and Sampling 

In a physical manifest, we distinguish participants 

assigned to a collection task (which contribute to the query 

with their own personal raw data) from participants assigned 

to a computation task (which process personal data produced 

by other participants). Attacking any TEE running a collection 

task has no interest since the attacker only gains access to his 

own personal data. Hence, the primary objective of an attacker 

is to tamper with the building phase of a physical manifest 

such that his TEE is assigned a computation task to leak the 

data it manipulates. The randomness counter-measure assigns 

a random position in the DEP to each participant. More 

precisely, it ensures that for a given physical manifest PM, any 

participant pj ∈ PM.P is able to locally verify that its position 

and the position of any other participant in PM.P have been 

obtained randomly. A protocol achieving this goal, adapted 

from [22], can be found in [23]. The idea is to ensure that the 

randomness is generated by an enclave once the querier has 

committed to the list of participants. As we consider that 

enclave integrity may not be compromised, this ensures that 

this number is chosen uniformly at random even in the 

presence of an active adversary. 

 

Figure 2. Attestation flow for position i. 

The second counter-measure to prevent an attacker from 

selecting its position in the DEP is to add a sampling phase in 

Step2 (physical manifest construction, Section III) by 

selecting a given rate  of individuals accepting to contribute 

to the computation. The lower this rate , the more TEEs need 

be corrupted to keep the same probability of selecting a given 

position in the built DEP for an attacker. For conciseness, we 
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refer to a technical report [23] for details on randomness and 

sampling algorithms and security proofs. 

B. DEP Reshaping  

In our context, the Cost factor of the Cost/Benefit ratio is 

expressed in terms of the number of TEEs to corrupt and the 

Benefit is measured by the amount of personal data leaked by 

the attack. While randomness and sampling contribute to 

exacerbate the Cost factor, our third countermeasure aims at 

reducing the amount of raw data exposed at a single TEE. To 

introduce the idea, let us consider a DEP with n participants, 

among which m computation nodes computing a function f 

and n-m collection nodes contributing with their own data. 

With the randomness countermeasure, the probability to 

corrupt exactly t computation nodes among m with c corrupted 

participants (side-channel attacks), follows an hypergeometric 

distribution 𝑝𝑛,𝑚,𝑐(𝑥 = 𝑡) = (𝑚
𝑥

)(𝑛−𝑚
𝑐−𝑥

) (𝑛
𝑐
)⁄ . The probability 

of corrupting t or more computation tasks over m is then: 

𝑝𝑛,𝑚,𝑐(𝑡 𝑥 𝑚) = ∑ (𝑚
𝑥

)(𝑛−𝑚
𝑐−𝑥

)
𝑚

𝑥=𝑡
(𝑛

𝑐
)⁄ . 

With n=10000, m=10 and c=100 (which is a high number 

of corrupted participants), the probability of corrupting at least 

one computation node is p10000,10,100 (1  x 10)=0.095, while 

with m=100, this probability drops to p10000,100,100 (10  x 

100)=5.10-8. For simplicity, we assume that each participant 

contributes with exactly one tuple mapped to a single 

computation node, hence each computation node processes 

(and may endanger) on average N/m tuples (1000 tuples here).  

  

Figure 3. Probability and expected values in tuples of successful attacks. 

Fig. 3 (left) plots the privacy benefit of increasing the 

number of computation nodes by reshaping the DEP such that 

each initial computation node mi is split in rf new computation 

nodes sharing mi’s initial computing load, with rf denoting the 

reshaping factor. More precisely, this curve plots the 

probability to leak the same amount of data as with the 

original settings in function of the number c of corrupted 

nodes with different reshaping factor rf (e.g., rf=1 is the initial 

settings with m=10 computation nodes, rf=2 means m=20, 

etc.). Unsurprisingly, increasing rf dramatically decreases the 

probability of an attack leaking the same amount of tuples 

since rf different computation nodes (among rfm) must now 

be corrupted with the same number c of corrupted participants.  

Fig. 3 (right) shows the expected value in number of 

leaked tuples (i.e., sum of the probability of a successful attack 

on some computation nodes times the number of tuples 

leaked) in the case of successful side-channel attacks with 

c=100 corrupted nodes. The expected gain is always small, 

although the number c of corrupted TEE is relatively high, and 

reduces linearly with rf, which is deterrent for attackers. 

Indeed, the probability to successfully break two computation 

nodes is close to zero, hence the expected gain is nearly given 

by the probability of breaking a single computation node times 

the number of leaked tuples processed in that node, which 

linearly decreases with rf. These results are true if m and c are 

small compared to n, which is typically the case in our context. 

The conclusion is that, while maximizing the distribution 

of a computation has recognized virtues in terms of 

performance and scalability (explaining the success of 

MapReduce or Spark models), this strategy leads as well to a 

better resilience against side-channel attacks. Maximizing the 

distribution can be done by exploiting some properties of the 

functions to be evaluated by DEP computation nodes: 

Definition 6: Distributive function. Let f be a function to 

be computed over a dataset D, f is said distributive if there 

exists a function g such that f(D) = g(f(D1), f(D2), …, f(DN)) 

where Di forms a partition of D (e.g., D = i ( (i, Di)) with  

a selection function).   
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Definition 7: Algebraic function. A function f is said 

algebraic if f can be computed by a combination of distributive 

functions (e.g., mean(D) = sum(D)/count(D)).  

For any DEP node computing a distributive or algebraic 

function, the number of D input tuples exposed to that node 

can be linearly reduced by augmenting the number of Di 

partitions in the same proportion. This general principle, 

called DEP reshaping, splits distributive/algebraic tasks 

allocated to a single participant into several tasks allocated to 

different nodes, each working on a partition of the initial input.  

Definition 8: rf-reshaping. Given an attribution function 

𝑎𝑡: 𝑉 → {1, … , 𝑟𝑓} associating vertices to integers uniformly, 

a distributed execution plan DEP’(V’,E’) is obtained by rf-

reshaping from DEP(V,E) such that: V’V and 

vi=(ai,opi)V/ distrib_algebra(opi)=true  vi,j’=(ai,j,opi) 

V’ with j:1..rf, and vi,j’Ant(vi) in E’ and vAnt(vi) in E, 

vAnt(vi,j’) with 𝑗 = 𝑎𝑡(𝑣) in E’. 

This definition is illustrated on Fig. 4, showing a DEP with 

6 additional computation nodes obtained by 3-reshaping from 

an initial DEP with only 2 computation nodes. Note that the 

communication overhead is very small, as only one additional 

message from each added reshaped node to the original node 

is produced compared to the original execution. In the 

remainder of the paper, we call a cluster all vertices attributed 

to the same reshaped node (i.e. 𝑎𝑡−1(𝑗)). 

All other things being equal, rf-reshaping drastically 

reduce the data exposure at each computing node. Indeed, for 

any distributive/algebraic vertex vi in DEP, rf-reshaping 

divides the probability of gaining access to the entire input D 

of vi by a factor (𝑛−𝑟𝑓
𝑐−𝑟𝑓

) ∏ (𝑛 − 𝑖) (𝑐 − 𝑖)⁄𝑖=1..𝑟𝑓 . 

The final issue is showing that rf-reshaping may hurt the 

independence between the processed data and the dataflow as 

specified in the initial DEP. Recall that a communication flow 

E is said data independent if the DEP is such that personal 

data cannot be inferred from observing the communication 

pattern among participants. E can be data independent by 

construction (e.g., broadcast-based algorithm) or be made 

data independent for privacy concern (e.g., sending fake data 

among participants to normalize the communications). It is 

thus mandatory to preserve this independence. 

Lemma 2. If the communication flow E of a distributed 

execution plan DEP(V,E) is data independent, the 

communication flow E’ of any DEP’(V’,E’) obtained by rf-

reshaping of DEP(V,E) is also data independent. 

The result is ensured by the fact that the communication 

flow in the DEP’ only depends on the communication pattern 

in DEP and the at( ) function in Definition 8, which in turn 

only depends on vertices identifiers and not on data. Hence, 

the communication flow E’ reveals nothing more about the 

transmitted data compared to E. 

The rf-reshaping principle can be applied in many 

practical examples of computations over distributed PDMSs, 

ranging from simple statistical queries to big data analysis, as 

illustrated in the validation section. The rf-reshaping process 

can be automatically performed by a precompiler taking as 

input a logical manifest LM and producing a transformed 

logical manifest LMminExp minimizing data exposure for the 

participants for each node computing distributive or algebraic 

functions. The degree of distribution impacts the performance 

and the protection of raw data in case of successful attacks 

(see Section VI), but selecting the optimal strategy and 

integrating it into a precompiler is left for future work. 

 

Figure 4. 3-reshaping of DEP with m=2 distributive computation nodes. 

VI. VALIDATION 

The effectiveness of the solution in terms of security and 

scalability is assessed on a platform composed of 8 SGX 

capable machines with Intel I5-7200U and 16GB RAM, 
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equipped with Intel SGX SDK 2.3.101 over Ubuntu 16.04. 

We consider two use-cases of distributed processing over 

personal data, to validate the genericity of our framework. 

  

  

(a)  Combining counter-measures  (b) Impact of rf-reshaping on Cost 

  

(c) Impact of rf-reshaping on Benefit (d) Performance without reshaping 

  

(e) Performance with rf-reshaping (f) Time ratio with rf-reshaping 

Figure 5. Security and performance evaluation. 

Group-by aggregation. We consider a MapReduce-like 

implementation of an aggregate with a group by query run 

over distributed PDMSs. The processing is as follows: (1) 

each mapper sends a couple (h(group_key), value) to a reducer 

where h is a hash function which projects the group key on a 

given reducer, (2) each reducer computes the aggregate 

function over the values received for the group keys it 

manages. If the aggregate function is distributive (e.g., count, 

min, max, sum, rank, etc.) or algebraic (e.g., avg, var, etc.), rf-

reshaping is applied to all reducer nodes. Sub-reducer nodes 

contribute to the computation of the function for a subset of a 

grouping value and the initial reducers combine their work.  

K-means clustering. It is similarly computed: (1) k initial 

means representing the centroid of k clusters are randomly 

generated by the querier and sent to all participants to initialize 

the processing, (2) each participant acting as a mapper 

computes its distance with these k means and sends back its 

data to the reducer node managing the closest cluster, (3) each 

reducer recomputes the new centroid of the cluster it manages 

based on the data received from the mappers and sends it back 

to all participants. Steps 2 and 3 are repeated a number of 

times. The function computed by step 3 is algebraic since the 

centroid of a cluster ci can be computed thanks to sums and 

counts computed over all sub-clusters of ci. Hence, the number 

of reducers in step 3 can also be arbitrarily augmented by rf-

reshaping, such that each of the k initial reducers is preceded 

in DEP by a set of sub-reducers computing a partial centroid. 

The SGX platform is used to perform real measurements 

at small scale (up to 100 participants) and to calibrate an 

analytical model required to conduct large scale experiments. 

We used synthetic datasets since the primary goal is not 

studying the peak performance for specific data distributions 

and save seconds or minutes (manual surveys over thousands 

of participants usually take weeks). We present in Fig. 5 a 

summary of our results and give the main outcome. We refer 

to [23] for extensive experiments and details.  

Several conclusions can be drawn. First, even if the overall 

time can be considered rather high (tens of minutes for large 

numbers of participants), it is not a critical issue in our context 

from a querier perspective. Second, rf-reshaping drastically 

reduces the elapsed time by augmenting the parallelism while 

decreasing the number of attestations between mappers and 

reducers. Third rf-reshaping is deterrent for attackers by 

acting on the Benefit/Cost ratio, even for low values of rf. 

VII. RELATED WORKS 

Several works focus on protecting outsourced databases 

with encryption, but most of the existing encryption schemes 

applied to databases have been shown vulnerable to inference 

attacks [7]. Going further induces fully homomorphic 
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encryption [8] with intractable performance issues. Some 

works [4] deploy secure hardware at database server side. 

These solutions are centralized by nature and do not match our 

assumption that no hardware module is perfectly secure. 

In terms of decentralized computing, Secure Multi-Party 

Computations (MPC) have been adapted to databases (e.g. 

SMCQL [6]), but only support a few tens of participants. 

Using secure hardware, TrustedPals [9,12] makes MPC more 

scalable, but their goal and security assumptions differ from 

ours. TrustedPals ensures that results are distributed to all 

honest parties, and that all received results are consistent. 

Hence, TrustedPals is highly fault tolerant as opposed to our 

solution. Our solution is simpler, as it only aims at delivering 

the result to a querier, and thus does away with the consensus 

protocols. However, at the end of the computation, all 

involved parties in TrustedPals hold the entirety of the data 

within their security module, which would be unacceptable in 

our case as some TEEs might be compromised. 

Several works suggest distributed computation schemes 

providing anonymous data exchanges and confidential 

processing using gossip-style protocols [2]. They typically 

scale well but are not generic in terms of computations. 

Similarly, decentralized processing solutions based on secure 

hardware have also been proposed for aggregate queries [17] 

but do not match our genericity objective. 

To the best of our knowledge, all works regarding 

executing data oriented task using SGX (e.g. Ryoan [14]) have 

a unique controller, as opposed to our setting where no unique 

individual is supposed to be in control of the computation. 

Additionally, most of the time this controller also provides the 

data to be computed on. This greatly simplifies the problem as 

a same controller verifies all enclaves and organizes the 

computation. Other works [14], following VC3 [16], provide 

SGX-based Map-Reduce frameworks for executing 

computations in the cloud to ensure data confidentiality and 

hide communication patterns between mappers and reducers, 

but again, they consider a unique controller. Communication 

between enclaves in these works is quite similar to ours, but 

the assumption of a unique controller completely removes the 

need for establishing trust at a local level, which is exactly 

what our notion of local checkability aims at solving. 

VIII. CONCLUSION 

Smart disclosure initiatives and new regulations push for 

the adoption of Personal Data Management Systems managed 

under individual's control while keeping the capability to 

cross personal data of multiple individuals (e.g., economic, 

epidemiological or sociological studies). However, without 

appropriate security measures, the risk is high to see 

individuals refuse their contribution. Only fragmented 

solutions have emerged so far. The generalization of Trusted 

Execution Environment at the edge of the network changes 

the game. This paper capitalizes on this trend and proposes a 

generic secure decentralized computing framework where 

each participant gains the assurance that his data is used for 

the purpose he consents to and that only the final result is 

disclosed. Conversely, the querier is assured that the result has 

been honestly computed. We have shown the practicality of 

the solution in terms of privacy and performance. We hope 

that this work will lay the groundwork for thinking differently 

about decentralized computing on personal data. 
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