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Crack growth in heterogeneous materials sometimes exhibits crackling dynamics, made of successive
impulselike events with specific scale-invariant time and size organization reminiscent of earthquakes. Here,
we examine this dynamics in a model which identifies the crack front with a long-range elastic line driven in a
random potential. We demonstrate that, under some circumstances, fracture grows intermittently, via scale-free
impulse organized into aftershock sequences obeying the fundamental laws of statistical seismology. We examine
the effects of the driving rate and system overall stiffness (unloading factor) onto the scaling exponents and
cutoffs associated with the time and size organization. We unravel the specific conditions required to observe
a seismiclike organization in the crack propagation problem. Beyond failure problems, implications of these
results to other crackling systems are finally discussed.
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I. INTRODUCTION

Crackling systems encompass a broad range of systems;
those that, under slowly varying external forcing, respond
via series of violent random impulses, so-called avalanches.
Crack growth [1–4], damage spreading in compressed solids
[5–10], Portevin–Le Chatelier effect in alloys [11–13], plas-
tic deformation in crystalline [14–17], noncrystalline [18]
and divided solids [19], magnetization change in ferromag-
nets [20–22], imbibition in porous media [23–26], earth-
quakes [27–30], neuronal activity [31,32], strain in shape-
memory alloys [33], magnetic vortex dynamics in supercon-
ductor [34,35], etc., are illustrative examples of crackling
noise. A key feature in these systems is that the individual
avalanches exhibit universal scale-free statistics and scaling
laws, independent of the microscopic and macroscopic de-
tails but fully set by generic properties such as symmetries,
dimensionality, and interaction range (see [36] for review). In
some of these systems, these scale-free features can be under-
stood in the framework of the depinning transition of elastic
manifolds, separating a quiescent phase where the system is
trapped by the landscape disorder and an active phase where
the applied forcing is sufficient to make the manifold escape
from all metastable states and evolve at finite speed [37,38].
Functional renormalization theory (FRG) then provides the
relevant framework to describe the observed features [39–43].

Beyond the specific scale-free features obeyed by individ-
ual avalanches, crackling systems sometimes display temporal
correlations. This is, e.g., manifested by power-law distributed
waiting times between successive events [6,8,10,27,44,45].
Another illustrative example is found in seismology; earth-
quakes get organized into aftershock (AS) sequences which
obey characteristic laws [46]: productivity law [47,48] stating
that the number of produced aftershocks goes as a power law
with the main shock (MS) energy, Båth’s law [49] stipulating

that the ratio between the MS energy and that of its largest AS
is independent of the MS magnitude, and Omori-Utsu law
[50–52] telling that the production rate of AS decays alge-
braically with the time elapsed since MS. These laws, referred
to as the fundamental laws of seismology, are central in the
implementation of probabilistic forecasting models of earth-
quakes [53]. They are not specific to seismology and were
also reported, at the laboratory scale, in the acoustic emission
associated with the damaging of different materials loaded
under compression [8,9], in the global dynamics of a sheared
granular material [19,54] and in the simpler situation of a
single tensile crack slowly driven in artificial rocks [45]. In the
latter case, it has been possible to show that the fundamental
laws of seismology are direct consequences of the individual
scale-free statistics of both the event sizes and interevent
waiting times [45,55]; productivity and Båth’s law [49] for
AS sequences result from the power-law distribution of sizes
and Omori-Utsu law results from the power-law distribution
of waiting time.

Noticeably, the simplest (and standard) picture of elastic
manifolds driven quasistatically in a random potential fails
to reproduce the above time clustering features [56]. Those
can be recovered by adding supplementary ingredients, such
as, e.g., memory effects [6], viscoelasticity [57], other slow
relaxation processes [15,58,59], or a finite temperature [60].
A more general explanation has been proposed in [44,61–63]:
power-law distributed interevent waiting times simply arise
when a finite detection threshold is applied to separate the
events from the background noise. As driving rates are fi-
nite in experiments and, hence, finite detection thresholds
are required, this argument combined with the fact scale-
free statistics for both sizes and waiting times directly yield
aftershock sequences and seismic laws [45,55] provides an
explanation of the seismiclike temporal organization widely
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reported in damage and fracture problems. Still, the specific
conditions leading to this organization remain to be clarified.

We report here a theoretical and numerical study of the
fracture problem in its most fundamental state: a single
propagating crack growing throughout an elastic heteroge-
neous material. This problem is classically identified with
the motion of a one-dimensional (1D) long-range elastic
string moving in an effective two-dimensional (2D) ran-
dom media [64–67]; the different steps underpinning the
description are summarized in Sec. II. For some conditions,
this motion displays a crackling dynamics, made of succes-
sive avalanches obeying the fundamental laws of seismicity
(Sec. III). The specific conditions required to observe the seis-
miclike organization of successive events are finally discussed
(Sec. IV).

II. THEORETICAL AND SIMULATION FRAMEWORK

The existence of cracks in solids dramatically amplifies
applied stresses in their vicinity. This mechanism makes the
fracture behavior at the macroscopic scale extremely sensitive
to the presence of defects and/or microcracks down to very
small scales, which translates into large statistical aspects
difficult to assess in practice. For brittle solids under tension,
the difficulty is sidetracked by reducing the problem to the
destabilization of a single preexisting crack in an other-
wise intact material (see [68] for a recent review). Strength
statistics and its size dependence are analyzed within the
Weibull weakest-link framework [69] and linear elastic frac-
ture mechanics (LEFM) provides the theoretical framework
to describe crack destabilization and further growth (see, e.g.,
Ref. [70]).

A. Crack growth in homogeneous materials:
Continuum fracture mechanics

Let us consider the situation depicted in Fig. 1(a) of a crack
front propagating in a brittle solid embedding microstructural
inhomogeneities, loaded by applying tensile stresses σ0 (or by
imposing a displacement field u0) along its external surfaces.
In the following section, we present the fundamental concepts
of fracture mechanics and we adopt the usual conventions of
this field: the axes x, y, and z align with the mean direction
of crack propagation, tensile loading, and mean crack front.
Moreover, L denotes the specimen thickness along z. Con-
tinuum engineering mechanics simplifies the problem by (i)
coarse-graining the solid into an effective linear elastic homo-
geneous material of Young modulus E [70], (ii) considering a
straight crack, without any roughness, and (iii) averaging the
behavior along z to reduce the 3D elastic problem to a 2D one.

The question of when the crack starts growing is then
solved by looking at how the total energy evolves with the
crack length, f . In a perfectly brittle material, this total energy
evolves due to two contributions: the potential elastic energy,
�pot, stored in the pulled solid and the energy dissipated to
create the crack surfaces, �surf. The former decreases with f ;
in the limit of plates with large x and y dimensions, �pot( f ) ≈
�pot( f = 0) − σ 2

0 L f 2/E . The latter increases linearly with
f : �surf = �L f , where � is the fracture energy. When σ0 is
small, the evolution of the total energy with f is dominated

FIG. 1. Schematic view of a single crack growing in a perfectly
brittle heterogeneous material. (a) 3D view of the crack propagating
from left to right, opened by the stress σ0. The crack front shape (red
line) is described horizontally by the function f (z, t ) and vertically
by the function h( f (z, t ), z). (b) 2D projection on the mean crack
plane (x, z). The sample length is M, while its periodic width is L.
Ellipses stand for heterogeneities. See the text for more details.

by the increase of �surf and the crack is stable. When σ0

is large, �tot is dominated by �pot which decreases with f
and hence the crack propagates. Griffith introduces the energy
release rate, G, defined as G = −(1/L)(d�pot/df ), which
is the amount of energy released as f increases of a unit
step [70,71] and the propagation criterion is

G > �, (1)

where, in the limit of plates of large x and y dimensions, G ≈
σ 2

0 f /E and more generally

G = σ 2
0 f

E
F ( f /Li, Lj/Li ), (2)

where F ( f /Li, Lj/Li ) is a dimensionless function of the vari-
ous macroscopic lengths Li invoked to describe the geometry:
the specimen dimensions Lx and Ly, the position of the crack,
of the loading points, etc.

Once the crack starts propagating, an additional contribu-
tion due to kinetic energy, �kin, is to be taken into account
in the total system energy. The crack speed, v = ḟ (t ), is
then selected so that the total elastodynamics energy released
as the crack propagates over a unit length exactly balances
the fracture energy: Gdyn(v) = −(1/v)d (�pot + �kin)/dt =
�. Assuming that the specimen is large enough so that the
elastic waves emitted by the propagating crack cannot reflect
on the boundaries and come back to perturb the crack motion,
this equation reduces to [72]

A(v)G = �, with A(v) ≈ 1 − v

cR
, (3)

where cR is the Rayleigh wave speed. For a slow enough
motion, Eq. (3) reduces to

1

μ
v = G − �, (4)

where the effective mobility μ is given by μ = cR/�.
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It is worth noting that any situation where the solid is
loaded by imposing the external stress breaks in a brutal
manner. Indeed, G increases with f [Eq. (2)]. This means
that as soon as the crack starts growing, G increases, making
v increase all the more rapidly, etc. Conversely, situations
involving a loading by a constant displacement rate, u̇0, may
yield stable crack growth. Indeed, σ0 = k( f )u0(t ), where the
system stiffness k( f ) is always decreasing with crack length.
Equation (2) becomes

G( f , t ) = u̇2
0t2k( f ) f

E
F ( f /Li, Lj/Li ). (5)

In some situations, the above expression yields G de-
creasing with increasing f . Then, the crack propagates in a
stable manner, so that G remains always close to �. Without
loss of generality, we choose a reference time t0 and crack
length f0 so that G( f0, t0) = � (right at propagation onset)
and look at the crack dynamics in the vicinity of this reference
after having shifted the origin: f → f − f0 and t → t − t0.
Equation (4) writes

1

μ

df

dt
= Ġt − G′ f , (6)

where Ġ = ∂G/∂t |{t0, f0} (driving rate) and G′ =
−∂G/∂ f |{t0, f0} (unloading factor) are positive constants.
In this stable configuration, the crack first displays a transient
and then grows at a constant speed v = Ġ/G′.

B. Crack growth in heterogeneous materials:
Depinning line model of cracks

Equation (6) predicts continuous dynamics in stable crack
growth situations, in contradiction with the crackling dy-
namics sometimes observed in experiments [1,4]. The de-
pinning approach [64,66,67] consists in taking into account
the microstructure inhomogeneities by adding a stochastic
term in the local fracture energy: �(x, y, z) = � + γ (x, y, z).
This induces in-plane [ f (z, t )] and out-of-plane [h( f (z, t ), t )]
distortions of the front [Fig. 1(a)] which, in turn, generate
local variations in G. To the first order, the variations of G
depend on the in-plane front distortion only [Fig. 1(b)] and
the problem reduces to that of a planar crack [h( f (z, t ), t ) =
const] [73]. One can then use Rice’s analysis [74,75] to relate
the local value G(z, t ) of energy release to the front shape,
f (z, t ) [Fig. 1(b)]:

G(z, t ) = G( f , t )[1 + J (z, { f })],

with J (z, { f }) = 1

π
PV

∫
crack front f

f (ζ , t ) − f (z, t )

(ζ − z)2
dζ ,

(7)

where PV denotes the principal part of the integral; the long-
range kernel J is more conveniently defined by its z-Fourier
transform Ĵ (q) = −|q| f̂ . G( f , t ) denotes the energy release
rate that would have been used in the standard continuum pic-
ture, after having coarse-grained the microstructure disorder
and having replaced the distorted front by a straight one at the
mean position f (t ) (averaged over the specimen thickness).
The application of Eq. (6) at each point z of the crack front

supplemented by Eq. (7) yields

1

μ

∂ f

∂t
= Ġt − G′ f + �J (z, { f }) + γ [z, x = f (z, t )]. (8)

The random term γ (z, x) is characterized by two main
quantities: the noise amplitude defined as �̃ = 〈γ 2(x, z)〉1/2

x,z
and the spatial correlation length 	 over which the correlation
function C(�r) = 〈γ (�r0 + �r)γ (�r0)〉�r0 decreases [67].

Equation (8) provides the equation of motion of the crack
line. A priori, it involves seven parameters: μ, �, Ġ, G′,
	, �̃, and the specimen thickness L. The introduction of
dimensionless time, t → t/(	/μ�), and space, {x, z, f } →
{x/	, z/	, f /	}, allows reducing this number of parameters to
four. The resulting equation of motion writes

∂ f

∂t
= ct − k f + J (z, { f }) + γ (z, f (z, t )), (9)

where c = Ġ	/μ�
2

is the dimensionless loading speed and
k = G′	/� is the dimensionless unloading factor. The two
other parameters are the dimensionless system size N → L/	

and the dimensionless noise amplitude �̃ → �̃/�.

C. Numerical methods, avalanche detection,
and sequence identification

In the following, both system size and noise amplitude are
constant: N = 1024 and �̃ = 1. The line is discretized along
z: f (z, t ) = fz(t ) with z = 1, . . . , N and the time evolution
of fz(t ) is obtained by solving Eq. (9) using a fourth order
Runge-Kutta scheme, as in [67,76]. The second right-hand
term in Eq. (9) is obtained using a discrete Fourier transform
along z (periodic conditions along z). A discrete uncorrelated
random Gaussian matrix γz,x is prescribed (zero average and
unit variance). The third right-hand term in Eq. (9) is obtained
via a linear interpolation of γz,x at γz,x= fz (t ). The parameters
c and k in the first right-handed term of Eq. (9) are varied
from 10−6 to 5 × 10−4 and from 10−4 to 0.5, respectively.
The movie provided as Supplemental Material [77] illustrates
the jerky motion of the crack front (in red) obtained via these
simulations.

The crackling noise signal considered in the following is
the instantaneous, spatially averaged, crack speed:

v(t ) = 1

N

N∑
z=1

dfz

dt
. (10)

An example of such signal is shown in Fig. 2(a). The
avalanches are then identified with the bursts of v(t ) above
a prescribed threshold vth; an avalanche i starts at t start

i = ti
when the signal rises above vth and ends at t end

i when v(t )
goes back below this value. The size is then defined by Si =
N

∫ t end
i

t start
i

[v(t ) − vth]dt and the interevent waiting time between
avalanches i and i + 1 as 
ti = ti+1 − ti. This is shown in
Fig. 2(b). In the following, vth has been set to the mean value
of v(t ), denoted as 〈v〉. Noticeably, 〈v〉 = c/k.

The so-obtained series of avalanches are finally decom-
posed into AS sequences. Seismologists have developed
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FIG. 2. (a) Example of a mean crack speed signal, v̄(t ). Here,
c = 2 × 10−6 and k = 1 × 10−4. Each speed peak corresponds with
the crack front jump also called an avalanche. (b) Sketch of a mean
crack speed signal. Crack speed peak i larger than a threshold v̄th =
c/k is detected as an avalanche starting at time t start

i and ending at
time t end

i . The distance swept by the crack front during this avalanche
is the area below the peak, Li, which gives an avalanche size Si =
N × Li. (c) Procedure sketch to identify the AS sequence following
a MS (red dot) of size SMS falling within a prescribed range Sth to
Sthmax � Sth. The following events until an event of size larger than
SMS is encountered are considered as AS (blue points). Along the
same line, the preceding events are considered as FS (green points).
The waiting time 
t is measured between consecutive events larger
than a size threshold Sth.

powerful declustering methods in this context (see, e.g.,
Ref. [78] for a recent review). Most of these methods are based
on the spatiotemporal proximity of the events. The spatial
proximity is not relevant in this situation with a single crack
and hence we adopted the procedure proposed in [8–10,45,55]
and sketched in Fig. 2(c) as follows.

(i) All events with energies in a predefined interval between
Sth and Sthmax are considered as MS.

(ii) The AS sequence associated with each MS is made of
all events following this MS, till an event of size equal or
larger than the MS energy, SMS , is encountered.

Foreshocks (FS) are defined the same way after having
reversed the time direction.

FIG. 3. Probability density function of the event sizes S in a sim-
ulation with c = 2 × 10−6 and k = 10−4. The axes are logarithmic.
The blue plain curve is a fit by Eq. (11), with exponent β = 1.51 ±
0.05, lower cutoff Smin = 21.3, and upper cutoff Smax = 1.04 × 105.

III. SEISMICLIKE ORGANIZATION
OF DEPINNING EVENTS

A. Size distribution and Gutenberg-Richter law

Figure 3 shows the probability density function (PDF)
to observe an event of size S for a typical simulation. The
power-law distribution expected for the crackling system is
observed over typically four decades. The whole distribution
is well fitted by

P(S) ∼ e−S/Smax

(1 + S/Smin)β
, (11)

where Smin and Smax are the upper and lower cutoffs of the
power-law distribution respectively and β is the exponent.
Both cutoffs depend on the parameters c and k. We will
return in Sec. IV C to the analysis of these dependencies.
Conversely, the size exponent, β = 1.51 ± 0.05, barely de-
pends on these parameters (Fig. 3), as expected near the
depinning critical point of a long-range elastic interface within
a random potential. Note that the measured exponent is larger
than the one expected in the limit of vanishing driving rate:
β(c → 0) 	 1.28 [2]. As discussed in [57], the measure of an
apparent, anomalously large Gutenberg-Richter exponent is
the signature of avalanche fragmentation in clusters of smaller
avalanches strongly correlated in time.

B. Number of events in AS sequences and productivity law

We now turn to the AS sequences and test whether the
scaling laws of seismicity are fulfilled. Figure 4 presents
the mean number of AS, NAS , as a function of the size Sth

prescribed for the triggering MS. In between two cutoffs, NAS

goes as a power law with Sth as expected from the productivity
law. Following [45], we checked that the NAS vs SMS curve
remains unchanged after (i) having reattributed to each event
i the energy of another event j chosen randomly and (ii)
having arbitrarily set to unity the time interval between two
successive events.

This demonstrates that the productivity law is a simple
consequence of the size distribution. The relation between
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FIG. 4. Mean number of AS in the sequence, NAS , as a function
of the MS size, SMS (c = 2 × 10−6 and k = 10−4). The axes are
logarithmic. Black straight line shows an exponent α = 1/2. Black
points are the real data and blue dashed line those obtained after
having permuted the sizes and set time step to unity. Plain red curve
is the solution provided by Eq. (12).

the two can be rationalized using the argument provided
in [45,55]: The total number of events with a size larger
than the prescribed value SMS gives, by definition, the total
number of MS of size SMS and hence the total number of AS
sequences. The total number of events with a size smaller that
SMS gives the total number to be labeled AS in the catalog.
The ratio of the latter to the former gives the mean number of
NAS (SMS ). Calling F (S) the cumulative distribution for event
size, one gets

NAS (SMS ) = F (SMS )

1 − F (SMS )
. (12)

This equation allows reproducing perfectly the data (plain
line in Fig. 4). No fitting parameter is required here. In the
scaling regime, P(S) ∼ S−β with β ≈ 1.5. Hence F (S) ∼
S1−β and NAS ∼ Sα

MS with α = β − 1 ≈ 1/2.

C. Size of the largest aftershock and Båth law

The next step is to look at the size ratio between a MS
and its largest AS. Such a curve is presented in Fig. 5. Once
again, permuting randomly the events and setting arbitrarily
the time step to unity do not modify the curve. As for the
productivity law, this means that this law finds its origin in
the size distribution only. Following [45], the relation between
the two can be derived analytically using extreme value theory
(EVT) arguments: let us call FASmax (S|NAS ) the probability that
the largest AS of a sequence of size NAS is smaller than S. All
the other AS in the sequence have a size smaller than S so that
FASmax (S|NAS ) = F (S)NAS . The mean value 〈max(SAS|SMS )〉 of
the size of the largest event over the sequences triggered by a
MS of size SMS then writes〈

max(SAS )

SMS

〉
= NAS (SMS )

×
∫ SMS

Smin

SF (S)NAS (SMS )−1P(S)dS, (13)

FIG. 5. Mean size ratio max(SMS )/SAS between a MS and its
largest AS, plotted as a function of the MS size, SMS (c = 2 × 10−6

and not as k = 10−4). The axes are logarithmic. Black points are the
real data and blue dashed line those obtained after having permuted
the sizes and set time step to unity. Plain red curve is the solution
provided by Eq. (13).

where NAS (SMS ) is given by Eq. (12). This analytical solution
gives a fairly good prediction of the order of max(SAS )/SMS

(see Fig. 5) provided the fact that there is no fitting parameter.
A discrepancy is however observed at low SMS . This is be-
cause the number of AS produced by each MS is small there
and hence the EVT argument provided to derive Eq. (13) is
not relevant anymore.

D. Distribution of interevent time and Bak et al. law

We now turn to the analysis of the occurrence time of
avalanches. Scale-free statistics is observed for the waiting
time separating two successive avalanches; as for avalanche
sizes, the whole distribution is well fitted by [Fig. 6(a)]:

P(
t ) ∼ e−
t/
tmax

(1 + 
t/
tmin)γ
, (14)

where the two time cutoffs 
tmin and 
tmax bound the scale
free statistics and γ refers to the exponent in between. Same
statistics is observed when only the events of size larger than
a prescribed threshold, Sth, are considered [Fig. 6(a)]. The
parameters γ and 
tmax barely depend on Sth. Conversely, the
lower cutoff 
min increases with Sth. As observed for seismic
events [27,28] or for AE produced in fracture experiments
at laboratory scale [8–10,45,55,79] and for sheared granular
material [54], all curves collapse onto a single master curve
[Fig. 6(c)], once time is rescaled with the activity rate R(Sth),
defined as the total number of events divided by the simulation
duration:

P(
t |Eth) ∼ R(Sth) f [u = R(Sth)
t], (15)

with f (u) ∼ (1 + u/b)−γ e−u/B. The fact that f (u) takes the
form of a gamma distribution underpins a stationary statistics
for the event series [10,28,45]. The two rescaled time cutoff
b and B relates to 
tmin and 
tmax via b = R
tmin and B =
R
tmax, where R denotes the mean activity rate during the
simulation (total number of avalanches divided by the total
duration of the simulation). These three parameters γ , b, and
B can be interrelated using the conditions

∫ ∞
0 f (u)du = 1
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FIG. 6. (a) Probability density functions of the waiting time 
t
between two consecutive events of size larger than a prescribed
threshold Sth. Here, c = 1 × 10−5 and k = 5 × 10−4. The different
curves correspond to different values Sth. In the inset the dots are
the curve reproduced for Sth = 3 and the plain curve is a fit by
Eq. (14), with exponent γ = 1.88 ± 0.09, lower cutoff 
tmin = 6.0,
and upper cutoff 
tmax = 3.8 × 103. (b) Collapse obtained after
having rescaled 
t with the mean activity rate R(Sth ). Straight
dashed line is a power law of fitted exponent γ = 1.88. Black dashed
curve is the rescaled fitted curve of the curve in the inset of panel (a).
In both panels (a) and (b), the axes are logarithmic. Vertical bars
stand for 95% error bars.

[normalization of the probability density function P(
t |Eth)]
and

∫ ∞
0 u f (u)du = 1 [since 〈
t〉 = 1/R(Sth)].

E. Production rate of AS and Omori-Utsu law

Finally, we looked at the rate of AS produced by a MS of
size SMS and its evolution as a function of the time elapsed
since MS: RAS (t − tMS|EMS ). To compute these curves, we
adopted the procedure developed in [45]: for each simula-
tion, all sequences triggered by MS of size falling within a
prescribed interval are sorted out; subsequently the AS events
are binned over t − tMS and the so-obtained curves are finally
averaged. Figure 7 shows the resulting curves in a typical
simulation. An algebraic decay compatible with the Omori-
Utsu law [50,52] is observed [see Fig. 7(a)] and, within the
error bar, the Omori exponent is equal to the exponent γ

FIG. 7. (a) Rate of AS, RAS (t − tMS|SMS ), triggered by a MS
of size SMS plotted as a function of the time elapsed since MS,
t − tMS . Here, c = 1 × 10−5 and k = 5 × 10−4. The different curves
correspond to different values of SMS . In the inset the dots are
the curve reproduced for Sth = 6 and the dashed curve is obtained
after having permuted randomly the size Si attributed to each event
occurring at ti. (b) Collapse obtained after having set t − tMS → (t −
tMS )/NAS (SMS ), where NAS (SMS ) is the mean number of AS produced
by a MS of size SMS and is given by Eq. (12). Straight dashed line is a
power law of exponent γ = 1.88 ± 0.09 obtained from the analysis
of interevent time [see Fig. 6 and Eq. (14)].

associated with P(
t ):

RAS (t ) ∼ 1

(t − tMS )γ
. (16)

As in [45], permuting randomly the event sizes in the initial
series does not modify the curves observed in Fig. 7. Hence
Omori-Utsu law and the time dependency of RAS (t |SMS ) find
their origin in the scale-free distribution of P(
t ) and hence
the Omori-Utsu exponent is equal to γ [45] and is found to be
independent of the MS size SMS . Finally, following [45], we
checked that the dependency with SMS can be fully captured
by rescaling t − tMS → (t − tMS )/NAS (SMS ) [see Fig. 7(b)].

As in [45], all curves collapse onto a master curve once t −
tMS is rescaled by the mean number of AS, NAS (SMS ), produced
by a MS of size SMS:

RAS (t |SMS ) ∼ 1(
1 + t−tMS

τminNAS

)γ . (17)
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The very same relation holds for the FS rate RFS (tMS − t ) as
the event series are stationary [45].

IV. EFFECT OF LOADING SPEED AND UNLOADING RATE

A. On the selection of size distribution

We now turn to the role played by the control parameters,
namely the (dimensionless) driving rate c and unloading
factor k in Eq. (9), onto the dynamics exhibited by the crack
front. Figures 8(a) and 8(b) present the size distribution P(S)
obtained at different k and c. Four observations emerge.

(i) The lower cutoff Smin increases with increasing c and
decreasing k.

(ii) At fixed c, the upper cutoff Smax displays a nonmono-
tonic behavior with k. It first increases with k at small k,
reaches a maximum at k∗, and decreases at larger k. The
increasing phase and the maximum position k∗ depend on c.
Conversely, the decreasing phase seems independent of c.

(iii) Over the whole range explored, P(S) is in first approx-
imation compatible with the gamma distribution (with lower
cutoff) provided by Eq. (11).

(iv) The exponent β (slope in the log-log representation)
barely depends on c.

The lower and upper cutoffs of P(S) are either measured
directly by fitting the experimental curves with Eq. (11) or by
using

Smin = 1/〈1/S〉, Smax = 〈S2〉/〈S〉. (18)

It was checked that both definitions lead to the same results,
but for a prefactor close to unit.

The lower cutoff is found to increase almost linearly with
〈v〉 = c/k [see Fig. 8(c)]:

Smin(c, k) ∼ 〈v〉. (19)

The saturation of P(S) for S � Smin may also be a conse-
quence of the prescribed threshold vth = 〈v〉. Indeed, by set-
ting a small and constant threshold vth, it has been shown [67]
that neither c nor k affect the value of Smin.

The upper cutoff, Smax, displays a nonmonotonic behavior
with k. This behavior can be qualitatively understood in the
framework of the depinning transition. At small velocity 〈v〉,
the quasistatic limit is reached and each burst corresponds to a
single depinning avalanche. In this limit, the avalanche statis-
tics is scale-free up to a correlation length ξk ∼ 1/

√
k [2].

When 〈v〉 increases, a second velocity dependent length scale
is involved:

ξv ∼ 〈v〉−ν/θ , (20)

with ν = 1.625 and θ = 0.625 [2,80]. The cutoff Smax is
governed by this length scale when ξv � ξk . The crossover
between these two regimes occurs when ξv ∼ ξk , that is

k∗ ∼ c2ν/(θ+2ν). (21)

In the framework of the depinning transition, Smax is then
expected to evolve with c and k as

Smax(c, k) ∼ k−(1+ζ )/2g(u = c/k1+θ/2ν ),

with g(u) ∼
{

1 if u 
 1,

u−ν(1+ζ )/θ if u � 1,
(22)

FIG. 8. Probability density function of the avalanche size P(S)
for different loading speed c ∈ [10−6, 5 × 10−4] keeping k = 5 ×
10−3 (a) and for different unloading factors k ∈ [10−4, 5 × 10−1]
keeping c = 10−5 (b). P(S) follows a power law with exponent
β in between two cutoffs, Smin and Smax. These three parameters
are then determined by fitting each P(S) curve using Eqs. (11)
and (18). (c) Evolution of the so-obtained lower cutoff Smin = 1

〈1/S〉 as
a function of 〈v〉. The dependency is almost linear; the black straight
line has a slope of 1. (d) Evolution of the upper cutoff Smax = 〈S2〉

〈S〉 as
a function of k for different values of c. Smax decays as a power law
with k, with a fitted exponent ∼0.7 (black straight line). (e) Exponent
β as a function of c for different k values. β (very) slightly decreases
with increasing c. On average, it remains close to ∼1.5. On all panels,
error bars stand for 95% confident interval.

where the roughness exponent ζ = 0.4 [24]. Note that this
prediction holds in the continuum limit, when finite size
and discretization effect can be neglected: 1 
 {ξk, ξv} 
 L.
In Fig. 8(d), we show the nonmonotonic behavior of Smax

with k and the agreement between the data and Eq. (22)
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FIG. 9. Evolution of Smax/k−(1+ζ )/2 vs c/k1+θ/2ν . A collapse of
all curves is predicted within the depinning transition framework
[Eq. (22)]. This collapse is fulfilled for large k and small c. Con-
versely, it is not fulfilled at large c and/or small c. This departure re-
sults from size and discretization effects. Straight black line indicates
the power law of exponent −ν(1 + ζ )/θ 	 −3.64 predicted within
the depinning transition framework.

for large k. To go deeper into the comparison, we looked at
the variation of Smax as a function of c at fixed k. Figure 9
shows Smax/k(1+ζ )/2 vs c/c∗ with c∗ ∼ k1+θ/2ν . For small c
we found the collapse of the plateau consistent with the large
scale k behavior of Eq. (22). For larger values of c, Smax

decreases with increasing c as ξv is dominant. The power law
predicted by Eq. (22) is shown by the plain black line and the
agreement is not fulfilled. This departure results from size and
discretization effects: at large k, ξv starts being dominant only
at short length scales. At smaller k, ξv is larger and the decay
approaches the expected one but the system size is too small
as can be seen from the noncollapse of the plateau.

The distribution P(S) is well fitted here by the gamma
distribution provided in Eq. (11). It is worth noting that, in the
quasistatic limit (〈v〉 → 0 and subsequently vth → 0), P(S)
displays a stretched exponential behavior with exponents that
can be computed by FRG techniques [40].

Within error bars, β is independent of k. Conversely, it
increases slightly with c, from ∼1.4 at c = 10−6 to ∼1.8
at c = 10−4 [see Fig. 8(e)]. The value at vanishing c is in
agreement with the FRG value β(c → 0) = 1.28 [2]. The
larger value observed at finite c may be an effect of the finite
threshold, which, by dividing the depinning avalanches into
smaller ones, could yield a larger effective exponent β [57].
Indeed, similar to what has already been discussed for Smin,
making a different choice for the prescribed threshold vth, that
is, setting it to a constant prescribed low value (vth = 10−3 as
in [67]) yields a constant β contrary to what is observed here.
This emphasizes the importance of finite thresholding in the
analysis of the selection of scales in crackling dynamics.

B. On the selection of waiting time law

Figure 10 synthesizes the effect of the parameters c and k
onto the distribution of waiting time. The main effect observed

FIG. 10. (a) Probability density function of the waiting time be-
tween two consecutive avalanches of size larger than Sth = 4, P(
t ).
Curves are plotted for different loading speed c ∈ [10−6, 5 × 10−4]
keeping k = 5 × 10−3 (a) and for different unloading factors k ∈
[10−4, 5 × 10−1] keeping c = 10−5 (b). P(
t ) follows a power law
with exponent γ in between two cutoffs 
tmin and 
tmax. These three
parameters are then determined by fitting each P(
t ) curve using
Eq. (14) and equations equivalent to Eq. (18) for 
t . (c) Evolution
of 
tmin as a function of the mean crack speed 〈v〉 = c/k. 
tmin

decays as a power law with 〈v〉, with a fitted exponent close to
0.74 (black straight line). (d) Evolution of 
tmax as a function of
c. 
tmax decays as a power law with c, with a fitted exponent
close to 1 (black straight line). (e) Exponent γ as a function of
v. γ increases logarithmically with v and goes from 1.4 at v 	
10−3 to 2.2 at v 	 10−1. The different colors in panels (c) to (e)
correspond to different values k according to the color bar provided
in panel (e). In all panels, the vertical bars stand for 95% error
bars.
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here is that decreasing c and/or increasing k flatten the curve
(in logarithmic axis), making the effective exponent γ larger
[see Figs. 10(a) and 10(b)]; here again, 〈v〉 = c/k, seems to
be the relevant parameter and γ goes from ∼1.4 to ∼2.2
as v goes from 10−3 to 10−1 [see Fig. 10(e)]. The value at
vanishing speed is close to 1.5, which corresponds to the
exponent of the power-law statistics of the avalanche duration
in the quasistatic limit (α = 1 + ζ/κ 	 1.50, where κ = 0.77
is the dynamic exponent for the long range depinning transi-
tion [80]). This scaling symmetry between the waiting time
statistics and the avalanche duration statistics has indeed been
invoked in [63] when a finite threshold vth = 〈v〉 is prescribed.
The increase of γ with v is similar to what is observed
experimentally in [45].

In contrast to what has been observed for the size S
(Sec. IV A), both the minimal and maximal waiting times

tmin and 
tmax decreases with c (or 〈v〉) [Figs. 10(c)
and 10(d)]. This can be understood if one thinks that the
nucleation rate of new avalanches is proportional to c. Hence
the typical waiting time, 
̃t , between successive avalanches
goes as 1/c. Indeed, as long as the duration of the avalanche
is negligible, in order to nucleate a new avalanche, one should
increase the force δF = cδt by a fixed amount ∼1/L [81].

This scaling is perfectly obeyed by 
tmax for large k
and small c. When k decreases, avalanche duration becomes
larger. This induces a decrease of the measured 
tmax, which
does not coincide exactly with the time interval between
successive nucleation events anymore. In this regime, the 1/c
scaling is only an upper bound for 
tmax that is shifted all
the more so as k decreases. This regimes survives as long as
the avalanche duration remains small with respect to 
̃t . As
the upper cutoff is mainly limited by ξk (see Sec. IV A), this
avalanche duration is expected to increase with decreasing k
and, for small enough k, to become of the order of 
̃t . At
this point, the depinning avalanches coalesce together and the
waiting time in between drops abruptly. In this coalescence
regime, it is the finite threshold value (c/k) that controls

tmax.

C. On the conditions leading to seismiclike organization

Finally, to unravel the conditions favoring seismiclike be-
havior, that is, a scale free statistics of size and waiting time,
we plotted, in Fig. 11, the number of decades over which a
scale free statistics is observed for both quantities.

Concerning the sizes, two zones with many decades of
scale-free statistics are observed [Fig. 11(a)]: a first, fairly
large, one in the left-handed–lower part of the diagram (small
k, small c) and a second smaller one at the left-handed–upper
part (finite k, small c). The fact that c should be small is well
understood: small c yields small 〈v〉, which favors both large
Smax and small Smin [see Figs. 8(c) and 8(d)]. Conversely,
k has two antagonist effects: increasing k makes ξk small,
hence preventing large Smax; but, at the same time, it makes
〈v〉 small, yielding small Smin. The existence of the small
zone with scale-free statistics at moderate k and small c is
a consequence of this small Smin; it cannot be understood
within the depinning theory but is a direct consequence of the
experimental choice of a finite threshold equal to 〈v〉.

FIG. 11. Phase diagram showing the {c, k} conditions to ob-
serve: (a) crackling dynamics, that is scale-free statistics for size
over a significant number of decades, and (b) temporal seismi-
clike intermittency, that is a scale-free statistics for interevent time
over a significant number of decades. In both maps, the c and k
axes are logarithmic. The color indicates log10(Smax/Smin ) (a) and
log10(
tmax/
tmin ) (b) according to the color bar shown in between
the two panels. The range of parameters {c, k} allowing one to
observe extended scale-free statistics for size is much larger than
that required to observe extended scale-free temporal correlation [red
areas in (a) and (b)]. The white spaces in the high c–low k and high
k–low c regions of both panels (a) and (b) coincide to regions where
the number of decades over which the power law is observed is too
small to be properly determined.

Concerning the time clustering at the origin of the dynam-
ics intermittency and of the fundamental seismic laws (see
Sec. III), the scale free statistics is observed only in a tiny
region with both small k and c. Small c is needed to observe
large Smax [Fig. 10(d)] and small k is needed to get large 〈v〉,
and subsequently small Smin. Note that the extension of the
{c, k} domain which allows observing scale-free interevent
times over a significant range of scale is much smaller than
that required for observing scale-free sizes. This explains
why time clustering and seismiclike organization of avalanche
sequences are barely reported in the context of depinning
interfaces.

V. CONCLUDING DISCUSSION

We analyzed here crackling dynamics exhibited by a long-
range elastic 1D interface driven in a random potential. A slow
and constant loading rate, c, is imposed and a finite unloading
factor, k, is considered. As a result, the force applying onto
the interface self-adjusts around the depinning threshold and
the motion exhibits a steady avalanche dynamics, with a speed
signal v(t ) fluctuating highly around an average value 〈v〉 =
c/k. The avalanches were identified with the bursts above this
mean value, and their size and occurrence time were collected
in event catalogs.

The analysis of these catalogs revealed a statistical or-
ganization similar to that reported in sismology: both the
avalanche size and interevent time are power-law distributed.
Moreover, the events form aftershock sequences obeying the
fundamental laws of seismology: productivity law with a
mean number of produced aftershocks scaling as a power law
with the main shock size, Båth’s law with a ratio between the
size of the main shock and that of its largest aftershock is
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constant, and Omori-Utsu law with an aftershock productivity
rate decaying as a power law with time. As experimentally
observed in [45], these laws do not reflect some nontrivial
correlation between size and occurrence time: they directly
emerge from the scale-free statistics of energy (for the pro-
ductivity and Båth’s laws) and from that of interevent time
(for Omori’s laws).

The value of the loading rate and unloading factor has a
drastic effect on the scaling exponents associated with the
scale-free statistics of size and interevent time on one hand
and on the lower and upper cutoff limiting the scale-free
regime on the other hand. The framework of the depinning
transition allows for understanding some of this effect—the
dependency of Smax with k and that of 
tmax with c in partic-
ular. Still, this framework presupposes a quasistatic dynamics
(c → 0). A finite driving rate, e.g., requires us to work with
a finite thresholding, which is shown here to have a drastic
effect on the selection of Smin and 
tmin. This finite threshold-
ing has also been invoked to be responsible for the scale-free
statistics of interevent times [44,63]. By making the depinning
avalanches overlap partially, a finite driving rate also affects
the effective values of the scaling exponents for size and
interevent time [79]. Note finally that the dependencies of
the lower and upper cutoffs with loading rate and unloading
factor make it nontrivial to predict when crackling (scale-free
size statistics) and/or seismiclike (scale-free statistics for both
size and interevent time) are observed. Small values for both
c and k are required for the latter, while small c and even
moderate k permits one to observe crackling. This is found to
be in qualitative agreement with fracture experiment in model
rocks [45,82]: when the loading speed is increased, crackling
dynamics and time clustering are not observed anymore.

Crackling dynamics is quite generic in nature and the
paradigm of the depinning transition applies to a variety of

physical, biological, and social systems. Beyond the crack
problems, the long-range interface model analyzed here is also
known to describe other systems, including the dynamics of
contact lines in wetting problems [23] and the dynamics of do-
main walls in ferromagnets [83]. In the second case, the field
sweep rate and the demagnetization factor play the same role
as c and k. The new insights obtained here on the time-size
organization of fracture events and its evolution with c and
k can be directly transposed to these systems. Qualitatively
similar features are also expected in other problems mapping
onto the problem of driven elastic interfaces in random media,
as e.g., fluid invasion of porous and fractured media [84,85],
dislocation dynamics in random alloy [86], or combustion
fronts in paper [87]. However, due to the short-range nature of
the elastic interactions, the universality class of the exponents
will be different.

In the single crack description examined here, the events
can form AS sequences obeying the fundamental laws of
seismology, as in the more complex multicracking situations
of quasibrittle compressive fracture. As such, our results may
be instrumental to discuss some of the observations on the
Portevin–Le Chatelier effect, which emerge from the collec-
tive dynamics of interacting dislocation in random alloys.
Those include the effect of the applied strain rate onto the
exponent characterizing the scale-free statistics in energy of
emitted acoustic pulses [88,89] and the effect of thresholding
onto the statistics of waiting time between these acoustic
pulses [44].
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