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Using bi-dimensional discrete element simulations, the shear strength and microstructure of granular mixtures
composed of particles of different shapes are systematically analyzed as a function of the proportion of grains
of a given number of sides and the combination of different shapes (species) in one sample. We varied the
angularity of the particles by varying the number of sides of the polygons from 3 (triangles) up to 20 (icosagons)
and disks. The samples analyzed were built keeping in mind the following cases: (1) increase of angularity
and species starting from disks; (2) decrease of angularity and increase of species starting from triangles;
(3) random angularity and increase of species starting from disks and from polygons. The results show that
the shear strength vary monotonically with increasing numbers of species (it may increase or decrease), even
in the random mixtures (case 3). At the micro-scale, the variation in shear strength as a function of the number
of species is due to different mechanisms depending on the cases analyzed. It may result from the increase of
both the geometrical and force anisotropies, from only a decrease of frictional anisotropy, or from compensation
mechanisms involving geometrical and force anisotropies.

DOI: 10.1103/PhysRevE.100.012904

I. INTRODUCTION

Granular systems in nature and in industry are rarely
composed of grains having the same size (monodisperse)
or the same shape. They are rather mixtures of particles of
varying sizes, shapes, density, or mechanical properties [1–8].
For instance, concrete aggregates present a very wide grain
size distribution (GSD) that strongly modifies its performance
and workability [9–12]. This is also true in drug substances,
for which physicochemical and biopharmaceutical properties
depend on the particle size of there constitute [13].

Samples containing different particles sizes (polydisperse)
have been extensively analyzed [6,14–20], showing some
counterintuitive results such as the independence of the
macroscopic friction with respect to the grain size span
[21,22], the shape of the GSD [23,24], and stiffness and
Poisson’s ratio of the particles [25,26].

At the same time, an increasing number of laboratory
tests and numerical studies have shown the role of grain
shape on the packing properties and mechanical behavior
of granular materials [27–44]. Across these studies, we can
notice that there is no a single parameter for describing
grain shape. Several parameters for angularity/roundedness,
elongation, or platy-ness have been used to characterize the
shape of the particles. However, a systematic result is that
the shear strength varies non-linearly with packing fraction as
particle shape changes from spherical to very angular forms
[45,46], with non-convexity [47,48], and with anisometry
(elongation/platy-ness) [49,50].
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Granular materials having two distinctive particle shapes,
also known as binary mixtures, are of special interest in recent
investigations [51–54]. It was shown that particle segregation
can be observed when varying either grain size or shape
[55–57], yet the strength properties are nearly independent of
the degree of homogeneity of the packing [58].

In spite of this important progress in the analysis of grain
geometry and the corresponding mechanical behavior, the
effect of multiple particle shapes in a sample is still a subject
to explore. However, it is not trivial to build and analyze sys-
tems composed of very different particle shapes. Segregation
should be carefully controlled and larger packings have to be
considered in order to avoid effects related with local particle
ordering and clustering.

In this paper, we propose to explore the effects of particle
shape polydispersity on the mechanical behavior of sheared
granular packings, using contact dynamic simulations. We use
regular polygonal particles since their shape can be described
by a single shape parameter, i.e., their angularity defined from
the number of sides. Packings composed of several angular
particles (from 1 to 10 species) are studied in the quasi-static
shear state. We analyze the strength and packing fraction at
the macroscopic scale and the connectivity and anisotropy of
the contact and force networks at the microscopic scale, both
as a function of the number and shape of species.

In the following, we present the numerical method, the
packing construction and the parameters of the study (Sec. II).
Then, in Sec. III, the dependence of the macroscopic behavior
with respect with particle shape polydispersity is discussed. A
microstructural description is given in terms of particle con-
nectivity, stress transmission, and anisotropies of the fabric
and force network in Sec. IV. The results are summarized and
discussed in a concluding section.
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TABLE I. Numerical samples. The number of species Ns in each numerical series S1 to S4. The numbers in brackets refers to the number
of sides of the polygons of each species i with i ∈ [1, Ns].

Ns S1 S2 S3 S4

1 {disk} {3} {disk} {7}
2 {disk,20} {3,4} {disk,3} {7,5}
3 {disk,20,15} {3,4,5} {disk,3,20} {7,5,15}
4 {disk,20,15,10} {3,4,5,6} {disk,3,20,4} {7,5,15,10}
5 {disk,20,15,10,8} {3,4,5,6,7} {disk,3,20,4,15} {7,5,15,10,4}
6 {disk,20,15,10,8,7} {3,4,5,6,7,8} {disk,3,20,4,15,5} {7,5,15,10,4,disk}
7 {disk,20,15,10,8,7,6} {3,4,5,6,7,8,10} {disk,3,20,4,15,5,10} {7,5,15,10,4,disk,8}
8 {disk,20,15,10,8,7,6,5} {3,4,5,6,7,8,10,15} {disk,3,20,4,15,5,10,6} {7,5,15,10,4,disk,8,6}
9 {disk,20,15,10,8,7,6,5,4} {3,4,5,6,7,8,10,15,20} {disk,3,20,4,15,5,10,6,8} {7,5,15,10,4,disk,8,6,20}
10 {disk,20,15,10,8,7,6,5,4,3} {3,4,5,6,7,8,10,15,20,disk} {disk,3,20,4,15,5,10,6,8,7} {7,5,15,10,4,disk,8,6,20,3}

II. NUMERICAL PROCEDURES, PACKING
CONSTRUCTION, AND BIAXIAL TEST

We use the Non-Smooth Contact Dynamics (NSCD)
method originally developed by Moreau and Jean [59,60].
This method is a discrete element approach for the simulation
of non-smooth granular dynamics with contact laws express-
ing non-penetrability of the particles and dry friction between
particles. It is unconditionally stable and well suited to the
simulation of large packing composed of frictional particle
of any shapes. For specific implementation of the method,
see [60] and [45] for the handling of polygonal particles.
We have used the simulation platform known as LMGC90
developed in Montpellier and capable of modeling a collection
of deformable or undeformable particles of various shapes
(spherical, polyhedral, polygonal, non-convex) by different
algorithms [60–62].

In general, a granular mixture is defined by, at least, three
parameters: (1) the number of species Ns, (2) a set {αi}i∈[1,Ns]

describing the properties of each species i, and (3) the pro-
portion κi of each specie. For the sake of simplicity, and in
order to reduce the number of parameters, we will assume
a uniform distribution by particle number, so that κi = 1/Ns.
The number of particles of each species is thus simply given
by Np/Ns, where Np is the total number of particles. We
consider regular polygonal particles with the number of sides
ns ∈ [3, 4, 5, 6, 7, 8, 10, 15, 20], and circular particles. So, αi

which will refer as the angularity of the specie i is simply
given by 2π/ni

s, where ni
s is the number of side of the specie

i. Note that the shear behavior of a packing composed of
polygons of ns > 20 is nearly identical to those of a packing
of disks [45]. In the following the number of species Ns is
varied from 1 to 10, and four different packings series are
considered: (S1) increase of angularity with Ns, (S2) decrease
of angularity with Ns, and (S3) and (S4) random angularity
with Ns; see Table I for a better description of the composition
of each packings. A total of 37 packings were built. Note that
for Ns = 10 all series are identical.

Each packing is composed of a total of Np = 10 000 par-
ticles, randomly placed into a rectangular box by means of
simple geometrical rules in order to build a dense system
[63]. A small size polydispersity is considered by taking
d (the diameter of circumscribing circle of the particle) in
the range [dmin, dmax] with dmax = 1.25dmin with a uniform
distribution in particle area fractions. Then, all packings are

isotropically compacted by applying a constant compressive
stress σ0 on each wall. During this process, the gravity, the
friction coefficients between particles and friction coefficient
between particles and walls are set to zero. This procedure
leads to obtain a dense system close to the so-called random
close packing state. Zooms of the packings are shown in
Fig. 1, for different values of Ns in S1, S2, S3, and S4, at the
end of isotropic compaction.

Dense samples obtained at the end of the isotropic com-
pression are then subjected to bi-axial shearing by imposing a
vertical compression at a constant velocity vy of the top wall
and a constant confining stress σ0 acting on the lateral walls.
For the bi-axial shearing, the friction coefficient between
particles is set to 0.4 whereas wall friction is maintained to
0.0. We are interested in the quasi-static (rate-independent)
behavior which can be quantified through the inertial number

Ns = 1

Ns = 4

Ns = 7

Ns = 10

FIG. 1. Closeup views of some of the samples at the end of the
isotropic compression. Disks are shown in black, triangles in dark
yellow, squares in blue, pentagons in red, hexagons in light green,
heptagons in gray, octagons in light pink, dodecagons in light blue,
pentadecagons in mint green, and icosagons in yellow.
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I = ε̇
√

m/σ0 [64], where ε̇ = ẏ/y is the strain rate and m is
the average mass of a particle. To ensure that all shear tests
remain quasi-static, I was fixed to 10−4.

III. MECHANICAL BEHAVIOR AT MACROSCOPIC SCALE

For quasi-static shearing, the shear strength of dry granular
materials is classically quantified via the macroscopic friction
angle ϕ defined by

sin ϕ = q

p
, (1)

where q = (σ1 − σ2)/2 and p = (σ1 + σ2)/2 with σ1 and σ2

the principal stresses (eigenvalues) of the stress tensor. In
granular assemblies, the stress tensor is defined as the sum
of Mξ , the “tensor moment” of each particle ξ in a volume
(area in 2D) V , by [65–67]

σ = 1

V

∑
ξ∈V

Mξ , (2)

where Mξ

k j = ∑
c∈ξ f c

k rc
j with f c

k is the k component of the
force exerted on particle ξ at the contact c, rc

j is the j
component of the position vector of the same contact c,
and the sum is done over all contact neighbors of particle
ξ (noted by c ∈ ξ ). Let us define also the deviatoric strain
εq = ε1 − ε2, where ε1 = 	H/H0 and ε2 = 	L/L0 with H0

and L0 the initial height and width of the simulation box,

(a)

(b)

FIG. 2. Evolution of the stress ratio q/p (a) and the packing
fraction ρ (b) as functions of the deviatoric strain εq in each series
for Ns = 4 (�), Ns = 7 (+), and Ns = 9 (�) in S1, S2, S3, and S4.

(a)

(b)

FIG. 3. Macroscopic shear strength sin ϕ∗ and packing fraction
ρ∗, averaged in the residual state, as a function of the number of
species Ns, for S1 (back circle), S2 (blue triangle), S3 (red diamond),
and S4 (green square).

and 	H = H0 − H and 	L = L0 − L are the corresponding
cumulative displacements.

The evolution of q/p as a function of the deviatoric strain
εq is shown in Fig. 2(a) for values of Ns = 4, 7, 9 in S1, S2, S3,
and S4. As expected, we obtain an increase of shear strength
up to a peak (because of the high initial packing fraction and
perfect rigidity of the particles), followed by a slight decrease
and reaching a stress plateau corresponding to the “residual
state” in soil mechanics [68].

The evolution of packing fraction ρ = Vp/V (where Vp is
the volume occupied by the particles) is shown in Fig. 2(b)
as a function of εq for Ns = 4, 7, 9 in S1, S2, S3, and S4.
Again, a general observation is that ρ quickly declines, i.e.,
the packings dilate, from ρ0 (its value at the initial state) to
a nearly constant value in the residual state for εq � 0.20. In
the following, all presented quantities correspond to averaged
values in the residual state, with the corresponding errors bars
displaying the standard deviation of the data.

Figure 3 shows the macroscopic friction angle sin ϕ∗ and
the solid fraction ρ∗, both defined from the averaged values of
q/p and ρ, respectively, in the residual state and as a function
of Ns for all series. We see that the shear strength increases
in S1 and S3 from � 0.28 to � 0.36 whereas it declines from
� 0.48 to � 0.36 for S2 and from � 0.40 to � 0.36 for S4.
Previous results have shown that, in packings composed of
identical angular shapes, the shear strength increases first with
angularity and saturates to a limit value that is independent
of particle angularity [45,46]. The monotonous variation of
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FIG. 4. Macroscopic shear strength sin ϕ∗ and packing fraction
ρ∗ (inset), averaged in the residual state, as a function of the mean
angularity 〈α〉 for all series.

sin ϕ∗ that we observe in S1 and S2 can be understood since
we add particles with more and more (or less and less) sides.
In contrast, this finding is a rather counterintuitive finding for
S3 and S4 as one could rather expect a non-monotonous and
marked variation.

In contrast, we note that ρ∗ declines with Ns for S1 and S3
from ∼0.81 to ∼0.80, while it increases with Ns for S4 from
∼0.79 to ∼0.80, and it declines again from ∼0.83 to ∼0.80
before to remain independent of Ns for S2.

The macroscopic friction sin ϕ∗ and the packing fraction
ρ∗ can be also plotted as a function of the mean angularity
〈α〉 of each packing; see Fig. 4. A general observation is that
the macroscopic friction increases with the mean angularity.
A continuous variation of both, sin ϕ∗ and ρ∗ with 〈α〉, is
observed between S1 and S2. This was expected since these
two series are “symmetric” from packings composed of ten
species. Unfortunately, no collapse of the data is observed for
random mixtures and, furthermore, significant differences in
values of sin ϕ∗ and ρ∗ are observed at identical values of the
mean angularity. This last observation suggests that the nature
of the mixture had deep effects on the granular microstructure
as we will see below.

IV. PARTICLE SCALE DESCRIPTION

In this section, we present a quantitative description of the
microstructural properties of our mixtures of angular particles
with the aim of identifying the origins of the shear strength.
We focus particularly on particle connectivity, the role of each
species in stress transmission as well as on the force/fabric
anisotropies of the contact network.

A. Particle connectivity

Figure 5 shows a snapshot of the contact network in the
residual state for the series S2 and for Ns = {1, 4, 7, 10}.
Visual inspection reveals that the contact network topology
strongly varies with particle shapes. Here, for S2, we observe
a rapid decrease of density where packings composed of
only triangles seem to be well connected with small voids,
whereas larger voids are observed for packings composed by a
larger number of different species. Quantitatively, the simplest
statistical descriptors to characterize the connectivity of the
contact network are the proportion Kf of floating particles,

(a)

(b)

(c)

(d)

FIG. 5. Contact networks in S2 for Ns = 1 (a), Ns =4 (b), Ns =7
(c), and Ns = 10 (d) in the residual state. Rattlers, i.e., particles with
no contact, are in white with color borders. Black lines join the
centers of mass of the grains to the contact points. Colors are the
same as in Fig. 1.

i.e., particles carrying no load, often referred to as the rattlers,
and the coordination number Z (average number of force-
bearing contacts per non-floating particle).

Figure 6 shows Kf and Z as functions of Ns for each series.
We see that Kf and Z are nearly independent of Ns in S1
and S4 with values around 0.15 and 3.2, respectively. Indeed,
in these two cases the first particles who are mixed can be
considered as rounded particles with a similar steric exclusion
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FIG. 6. Coordination number Z as a function of Ns for each
series. The inset shows the proportion Kf of floating particles as a
function of Ns for each series.

angle among the neighboring particles [69]. In contrast Kf

increases for Ns > 1 from ∼0.05 to ∼0.15 for S2 and S3,
whereas Z declines from ∼3.6 to ∼3.1. In these last two cases,
we note that the first particles that are mixed are the most
angular. They are as well those with the most sharped corners
and, therefore, the ones more likely to form contacts that
would be impossible when having more rounded particles.
It is interesting to note that Z do not follows the evolution
of sin ϕ∗, showing that the best connected systems are not
necessarily those with the higher shear strength.

We must mind the fact that in a system composed of
polygons, two families of contacts co-exist: side-side (ss) and
side-vertex (sv) contacts. In Fig. 7, we plot Zss and Zsv , the

(a)

(b)

FIG. 7. Coordination number Zsv and Zss as a function of Ns for
each series.

(a)

(b)

FIG. 8. Average coordination number zi for each species i (with
i ∈ [1, Ns]) in (a) S1 and S4 (inset), and (b) S2 and S3 (inset).

mean number of side-side and side-vertex contacts per grain,
as a function of Ns, for all series. Note that, by construction
Z = Zss + Zsv . We see that the independence of Z with Ns,
i.e., S1 and S4 cases, results from the opposite variations of
Zsv and Zss. The decrease of Z with Ns, i.e., S2 and S3 cases,
is due to the decrease of Zss in S2 and the decrease of Zsv in
S3. Furthermore, we note that Zss increases with Ns both for
S1 and S3, whereas it declines with Ns both for S2 and S4.
In other words, Zss follows a similar trend to that of sin ϕ,
confirming previous observations [35,38,45,46,49,70] on the
major role of ss contacts in the build-up of the shear strength.

B. Role of each particles species in stress transmission

In order to get further insight into the geometrical prop-
erties of the contact network, it is useful to consider the
connectivity of each species i with i ∈ [1, Ns]. We define zi

the mean coordination number of the specie i, such Z = 〈zi〉.
Figure 8 shows the variations of zi as a function of i in S1, S4
(a) and S2, S3 (b). A counterintuitive observation is that zi is
independent of both the number and nature of the species in
S1 and S4, and the number of species in S2 and S3. In this last
case the increase of Ns leads to a decrease of zi. This means
as well that, for a given mixture, each species have in average
the same number of contacts.

Along with the same line as above, the stress tensor can
be partitioned as a sum of various tensors by grouping each
particles according to their species:

σ =
∑

i∈[1,Ns]

σ i, (3)
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(a)

(b)

FIG. 9. Partial shear strength qi/p for i ∈ [1, Ns] for each species
i (with i ∈ [1, Ns]) in (a) S1 and S4 (inset), and (b) S2 and S3 (inset).

where σ i are obtained from the expression of the stress tensor
Eq. (2) by restricting the summation to particles belonging to
the same species. The corresponding partial stress deviators
qi are then calculated and normalized by the mean pressure
p. The macroscopic friction angle can be thus rewritten as
follows:

sin ϕ∗ =
∑

i∈[1,Ns]

qi

p
. (4)

Figure 9 shows the partial shear strength qi/p for each
species i in each series. We see that, in S1 and S4, qi/p is
nearly constant with i but declines from � 0.15 to � 0.05 as
Ns increases from 1 to 5. Interestingly, beyond Ns = 5, qi/p
stays independent of Ns. In a similar vein, in S2 we observe
that qi/p increases with i but declines and saturates as Ns

increases. As observed above, it tends to be also independent
of Ns from five species. In S3, we see that qi/p increases and
declines as i increases while Ns < 5, and remains independent
beyond Ns = 5. A general feature that emerge from these
observations is that the shape polydispersity plays a minor
role at high species polydispersity (typically for more than five
species). An other interesting remark is that less angular parti-
cles support larger stresses than more angular particles, while
in average all particles have the same number of contacts.

C. Contact/force anisotropies

Figure 10 shows several maps of normal forces for mix-
tures composed of four species, i.e., Ns = 4. The normal

(a)

(b)

(c)

(d)

FIG. 10. Snapshots of the force network for Ns = 4 in S1 (a), S2
(b), S3 (c), and S4 (d) in the residual state. Rattlers, i.e., particles with
no contacts, are shown in white with colored borders. Line thickness
is proportional to the contact force. Colors of the particles are the
same as in Fig. 1.

forces are represented with a line joining the particle center
and its thickness is proportional to force intensity. We observe
that long force chains are preferentially oriented along the
compression direction, i.e., at 90 degrees. But, they appear to
have more tortuous shape in S2 and S4 than in S1. We also ob-
serve a pronounced arching effect in S3. Such pictures reveal
the anisotropic character of the contact and force networks.
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FIG. 11. Probability density functions P(θ ) (a), 〈 fn〉(θ ) (b), and
〈 ft 〉(θ ) (c) (symbols) with the truncated Fourier approximations
(red lines) for S3 and Ns = 4.

As shown in a number of previous studies (see, for ex-
ample, [24,45–50,71]), the most relevant way to quantify
the anisotropy of the fabric and force network is done by
computing the probability distribution function P(n) of con-
tact orientation n, and the average contact force 〈 f 〉(n) as a
function of n. In two dimension, the normal vector is simply
defined by an angle θ , and the average contact force can
be split according to its normal and tangential contributions.
So that, the probability density P(θ ) of contact orientation
θ and the angular averages of the normal and tangential
force component, 〈 fn〉(θ ) and 〈 ft 〉(θ ), respectively, provide a
complete description of the fabric and force anisotropies of a
granular material.

In continuous quasi-static shearing, these functions tend to
take a simple shape, well approximated by truncated Fourier
expansions [24,45–50,71]:

⎧⎪⎨
⎪⎩

P(θ ) = 1
2π

{1 + ac cos 2(θ − θc)}(a)

〈 fn〉(θ ) = 〈 fn〉{1 + a f n cos 2(θ − θ f n)}(b)

〈 ft 〉(θ ) = 〈 fn〉a f t sin 2(θ − θ f t )(c),

(5)

where 〈 fn〉 is the mean normal force, ac is the contact orien-
tation anisotropy, a f n is the normal force anisotropy, and a f t

is the frictional force anisotropy. The main orientations for
each angular distribution, θc, θ f n, and θ f t , nearly match the
principal stress direction θσ = π/2 in a bi-axial simulation,
as illustrated in Fig. 11 for Ns = 4 in S3. We see also in this
figure that Eq. (5) provides an acceptable approximation of
the angular distributions.

Assuming low span in the particle size distribution, the
expression of the stress tensor [Eq. (2)], together with the
Fourier expansions [Eq. (5)], lead to the following simple

FIG. 12. Macroscopic shear strength sin ϕ∗ as a function of Ns

for all series (symbols and solid line) calculated from the stress tensor
(see also Fig. 3) and predicted by Eq. (6) (dashed line).

approximation for the macroscopic friction [49,71]:

sin ϕ∗ � 1
2 (ac + a f n + a f t ), (6)

where the cross product between anisotropies have been
neglected. Thus, Eq. (6) reveals the crucial role of these
structural anisotropies in the understanding of the micro-
mechanical origins of the macroscopic friction, in particular
with respect of granular composition. The macroscopic fric-
tion angle sin ϕ∗ predicted by Eq. (6) is shown in Fig. 12 as
a function of Ns, for each series, together with those given by
direct measurement [Fig. 3(a)].

The evolution of the contact and force anisotropies with Ns,
and for each series, is shown in Figs. 13 and 14, respectively.
We see that, in S1, the three anisotropies increase with Ns,
underlying the observed increase in the macroscopic friction.
In contrast, in S2 both ac and a f n initially grow from its value
for Ns = 1, up to a maximum of � 0.35 at Ns = 7 for ac and
Ns = 3 for a f n, respectively, and then both decline at higher
values of Ns. Then, we note that ac + a f n is nearly constant
with Ns > 3. The decrease in the macroscopic friction results
thus from only the reduction of a f t . For S3, the small increase
of ac and a f n, together with the nearly independence of a f t

with Ns, explains the increment of the macroscopic friction
angle with Ns. Then, for S4, both a f n and a f t are nearly
constant with Ns, so that the decrease in the macroscopic
friction is due to the decrease of ac.

FIG. 13. Contact orientation anisotropies ac as functions of Ns

for all series.
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(a)

(b)

FIG. 14. Normal af n (a) and frictional af t (b) force anisotropies
as functions of Ns for all series.

Physically, ac describes the excess of the number of con-
tacts oriented along the principal stress direction and their lack
along the perpendicular direction. Therefore, we can expect a
correlation between the contact anisotropy and the evolution
of Z (see Fig. 6). We may deduce that adding more and more
angular particles (the S1 case) let reorganize the ss-contacts
along the vertical direction (Z is constant, whereas Zss in-
creases with Ns). In contrast, adding more and more rounded
particles (the S2 case) a loss of ss-contacts in the horizontal
direction is induced (both Z and Zss decline with Ns). A
similar mechanisms can be evoked for S3, since ac increases
whereas Z declines. In S4, we promote the reorganization of
the contacts around each particle since ac declines whereas Z
is constant.

The normal force anisotropy a f n reflects the larger value of
the mean normal force at contacts oriented along the principal
stress direction compared to those in the perpendicular direc-
tion. The increase of a f n in S1 and S3 shows that stronger
force chains are better transmitted along the principal stress
direction at larger Ns values in these systems and, in effect,
the mean normal force given by 〈 fn〉 = ∫ π

0 P(θ )〈 fn〉(θ )dθ

increase as well. The frictional force anisotropy quantifies the
stronger mobilization of friction forces at contacts oriented
along θσ + π/4 compared to those in the principal direction.
The variation of a f t in S1 and S2 is also compatible with the
well-known proneness of facet particles to mobilize friction
at side-side contacts [38,46], since the proportion of angular
particles increases in S1 and declines in S2.

V. CONCLUSIONS, REMARKS, AND PERSPECTIVES

In summary, the effects of polydispersity by particle angu-
larity on the mechanical behavior and microstructure of mix-
ture granular materials were numerically investigated in the
framework of the NSCD method. Several packings composed
of 10000 particles under biaxial compression in rectangular
box were systematically analyzed as a function of the number
and the shape of the considered species. The number of
species were varied from 1 to 10, and the shapes from disk to
triangle. Three different cases were considered: (1) increase
of angularity and species starting from disk, (2) decrease of
angularity but increase of species starting from triangle and,
(3) random angularity and increase of species starting from
disk and from polygons.

It was shown that the mechanical behavior at the
macroscale dependents on fine geometrical properties of the
granular mixture. On the one hand, the shear strength in-
creases if both the angularity and the proportion of each
species in the sample increase. Otherwise, the strength drops.
Unexpectedly, we also found that the shear strength varies
monotonously with the number of species in random mix-
tures. On the other hand, the solid fraction varies conversely
with the shear strength. Thus, packings may be looser al-
though presenting a higher shear strength.

At the micro-scale, we analyzed in detail the particle
connectivity and fabric and forces anisotropies. In the case
S1, the increase of strength is due to a grow of the contact
and normal force anisotropies. In the case S2, the decline of
strength is a consequence of the drop in frictional anisotropy.
For S3 and S4, i.e., for random mixtures, the variations of
these anisotropies mutually compensate, which explain the
monotonous variations as the number of species increases.
This behavior is explained by the capability of angular par-
ticles to mobilize friction and better connect with neighboring
particles.

This work represents a first step for a better understanding
of the effects of particle shape polydispersity in granular
materials by showing how the shear strength is affected by the
dispersion of particle shapes. We see here that the definition of
a “good” mixture that leads to “better” rheological properties
is not evident. An initial answer would be, depending on
feasibility, either to reduce the number of species in order
to keep the most angular particles or to add more and more
angular particles. In the objective of modeling realistic gran-
ular materials, further efforts are still necessary. They should
take into consideration, for instance, more complex mixtures
containing different particle forms such as elongated and/or
non convex shapes both in two and three dimensions. In the
same way, since friction mobilization plays a major role at
large angularity, it would be interesting to investigate the
effect of polydispersity by particle friction and combine effect
of friction and particle angularity.
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